Particle Physics from String Theory

Andre Lukas

University of Oxford

NBIA-Oxford Colloquium, Copenhagen, April 2015

based on:

1412.8696, 1411.0034, 1409.2412, 1404.2767, 1311.1941, 1307.4787, 1305.0594, 1304.2704, 1202.1757, 1107.3573, 1106.4804, 1102.0011, 1010.0255, 0911.1569,
with Lara Anderson, Evgeny Buchbinder, Andrei Constantin, James Gray, Yang-Hui He, Michael Klaput, Seong-Joo Lee, Cyril Matti, Burt Ovrut, Eran Palti, Eirik Svanes

Outline

- Introduction: String- and M-theory
- String theory and particle physics: some general features
- Model building
- The standard model of particle physics from strings
- Conclusion

Introduction: String- and M-theory

Starting point: From worldline

$$
S=-m \int d \tau \sqrt{-\frac{d X^{\mu}}{d \tau} \frac{d X^{\nu}}{d \tau} \eta_{\mu \nu}}
$$

Introduction: String- and M-theory

Starting point: From worldline

$$
S=-m \int d \tau \sqrt{-\frac{d X^{\mu}}{d \tau} \frac{d X^{\nu}}{d \tau} \eta_{\mu \nu}}
$$

to world sheet

$$
S=-\frac{1}{2 \pi \alpha^{\prime}} \int d^{2} \sigma \sqrt{-\operatorname{det}\left(\frac{d X^{\mu}}{d \sigma^{\alpha}} \frac{d X^{\nu}}{d \sigma^{\beta}} \eta_{\mu \nu}\right)}
$$

Introduction: String- and M-theory

Starting point: From worldline

$$
S=-m \int d \tau \sqrt{-\frac{d X^{\mu}}{d \tau} \frac{d X^{\nu}}{d \tau} \eta_{\mu \nu}}
$$

to world sheet

many subtleties after quantisation, including:

- world sheet susy to avoid tachyons
- consistent only in 10 space-time dimensions
- five different types
many subtleties after quantisation, including:
- world sheet susy to avoid tachyons
- consistent only in 10 space-time dimensions
- five different types
but basically:
spectrum: $\quad \alpha^{\prime} m^{2}=n \in \mathbb{Z}\left\{\begin{array}{lll}n=0 & \rightarrow & \text { observed particles } \\ n \neq 0 & \rightarrow & \text { supermassive }\end{array}\right.$
massless modes contain graviton (closed strings) and gauge fields (open strings)

- String theory contains extended objects of all dimensions -> p-branes
- spectrum of these objects leads to relations between string theories -> dualities

- a "unique" theory of relativistic extended objects
- certainly the most complicated and richest structure ever in mathematical physics

- a "unique" theory of relativistic extended objects
- certainly the most complicated and richest structure ever in mathematical physics

Is it relevant to particle physics?

String theory and particle physics: some general features

1) Gauge theories and gravity

Gauge theories and gravity are the main structural features of the established fundamental theories.

String theory and particle physics: some general features

1) Gauge theories and gravity

Gauge theories and gravity are the main structural features of the established fundamental theories.

Both are contained in string theory, gravity generically, gauge theories depending on construction.

String theory and particle physics: some general features

1) Gauge theories and gravity

Gauge theories and gravity are the main structural features of the established fundamental theories.

Both are contained in string theory, gravity generically, gauge theories depending on construction.

2) UV finiteness

Unlike field theory, string theory is UV finite, including for processes which involve gravitons.

2) UV finiteness

Unlike field theory, string theory is UV finite, including for processes which involve gravitons.

2) UV finiteness

Unlike field theory, string theory is UV finite, including for processes which involve gravitons.

3) family repetition

every matter particle appears in three flavours, a characteristic put puzzling feature of the standard model

3) family repetition

every matter particle appears in three flavours, a characteristic put puzzling feature of the standard model
family repetition is a generic feature of compactification, as required in string theory

3) family repetition

every matter particle appears in three flavours, a characteristic put puzzling feature of the standard model
family repetition is a generic feature of compactification, as required in string theory

3) family repetition

every matter particle appears in three flavours, a characteristic put puzzling feature of the standard model
family repetition is a generic feature of compactification, as required in string theory

3) family repetition

every matter particle appears in three flavours, a characteristic put puzzling feature of the standard model
family repetition is a generic feature of compactification, as required in string theory

3) family repetition

every matter particle appears in three flavours, a characteristic put puzzling feature of the standard model
family repetition is a generic feature of compactification, as required in string theory

3) family repetition

every matter particle appears in three flavours, a characteristic put puzzling feature of the standard model
family repetition is a generic feature of compactification, as required in string theory

4) $\operatorname{SU}(3) \times S U(2) \times U(1)$ representation structure
one standard model family:
$S U(3) \times S U(2) \times U(1): \stackrel{d}{(\overline{\mathbf{3}}, \mathbf{1})_{2 / 3} \oplus} \stackrel{L}{(\mathbf{1}, \mathbf{2})_{-1} \oplus(\mathbf{3}, \mathbf{2})_{-1 / 3} \oplus(\overline{\mathbf{3}}, \mathbf{1})_{-4 / 3} \oplus(\mathbf{1}, \mathbf{1})_{2}}$
4) $\operatorname{SU}(3) \times S U(2) \times U(1)$ representation structure one standard model family:

4) $\operatorname{SU}(3) \times S U(2) \times U(1)$ representation structure one standard model family:

4) $\operatorname{SU}(3) \times S U(2) \times U(1)$ representation structure one standard model family:

4) $\operatorname{SU}(3) \times S U(2) \times U(1)$ representation structure one standard model family:

Which group contains the spinor of SO(10)
in its adjoint?
4) $\operatorname{SU}(3) \times S U(2) \times U(1)$ representation structure one standard model family:

Which group contains the spinor of SO(10) $\quad E_{7}$: in its adjoint?
E_{6} :
ค
ค

ก
$E_{8}:$

78
ก
133
\cap
248
E_{8}
E_{7}

O-O-O-O-O-8 $0-0-0-0$
E_{8}
E_{7}
E_{6}

O-O-O-O-O-8 O-O-O-O-8 --O-O-O-O

$$
\begin{aligned}
& E_{8} \\
& E_{7} \\
& E_{6} \\
& E_{5}=S O(10)
\end{aligned}
$$

$0-0-0-0-8$
O-O-O-O-2.
$0-\mathrm{O}-\mathrm{O}$

$$
\begin{aligned}
& E_{8} \\
& E_{7} \\
& E_{6} \\
& E_{5}=S O(10) \\
& E_{4}=S U(5)
\end{aligned}
$$

O-O-O-O-O-O
O-O-O-O-8
O-O-O-O-®
O-O-O-8
$0-0$ -
E_{8}
E_{7}
E_{6}
$E_{5}=S O(10)$
$E_{4}=S U(5)$
$E_{3}=S U(3) \times S U(2)$
$0-0-0-0-0-0-1$
$0-0-0-0-2$
-0-O-O-8
-0-O-8
-0-9
0
$\mathrm{O}-\mathrm{O}$

```
E8
E7
E6
E5}=SO(10
E4}=SU(5
E S =SU(3)\timesSU(2)
```

E_{8}
E_{7}
E_{6}
$E_{5}=S O(10)$
$E_{4}=S U(5)$
$E_{3}=S U(3) \times S U(2)$
$0-\mathrm{O}-\mathrm{O}-\mathrm{O}-8$

0

Exceptional gauge groups and E_{8} in particular are prevalent in string theory $->$ representation structure of known particles can be accounted for.
5) The Higgs multiplet
H
$S U(3) \times S U(2) \times U(1): \quad(\mathbf{1}, \mathbf{2})_{-1}$
5) The Higgs multiplet

	H	T
$S U(3) \times S U(2) \times U(1):$	$(\mathbf{1}, \mathbf{2})_{-1}$	$\oplus(\overline{\mathbf{3}}, \mathbf{1})_{2 / 3}$

5) The Higgs multiplet

$$
S U(5): \quad \overline{5}
$$

5) The Higgs multiplet

How can the Higgs be reconciled with unification?
-> heavy mass to triplet, "doublet-triplet" splitting
5) The Higgs multiplet

How can the Higgs be reconciled with unification?
-> heavy mass to triplet, "doublet-triplet" splitting

Works nicely in string theory: topological reason for light doublet and heavy triplet

What is the main problem?
Large degeneracy of vacua through choice in compactification:

What is the main problem?

Large degeneracy of vacua through choice in compactification:
topology:

What is the main problem?

Large degeneracy of vacua through choice in compactification:

\longrightarrow structure of 4d theory
\longrightarrow algebraic geometry

What is the main problem?

Large degeneracy of vacua through choice in compactification:

moduli:

What is the main problem?

Large degeneracy of vacua through choice in compactification:

moduli:

\longrightarrow couplings in 4d theory \longrightarrow differential geometry

What is the main problem?

Large degeneracy of vacua through choice in compactification:

moduli:

Leads to close relation between geometry and field theory.

What is the main problem?

Large degeneracy of vacua through choice in compactification:
topology:

\longrightarrow structure of 4d theory
\longrightarrow algebraic geometry
moduli:

Leads to close relation between geometry and field theory. How do we find the "right" vacuum?

- moduli: presumably fixed dynamically
- topology: currently, we can only explore the possible choices

Figure 1: A plot of the Hodge numbers of the Kreuzer-Skarke list. $\chi=2\left(h^{11}-h^{21}\right)$ is plotted horizontally and $h^{11}+h^{21}$ is plotted vertically. The oblique axes bound the region $h^{11} \geq 0, h^{21} \geq 0$.

Figure 1: A plot of the Hodge numbers of the Kreuzer-Skarke list. $\chi=2\left(h^{11}-h^{21}\right)$ is plotted horizontally and $h^{11}+h^{21}$ is plotted vertically. The oblique axes bound the region $h^{11} \geq 0, h^{21} \geq 0$.

Model building

. . . in the context of the $E_{8} \times E_{8}$ heterotic string:

Model building

. . . in the context of the $E_{8} \times E_{8}$ heterotic string:

6d manifold

X

metric $g_{m n}$

Model building

. . . in the context of the $E_{8} \times E_{8}$ heterotic string:

6d manifold

X
metric $g_{m n}$
vector bundle

connection A_{m}

Model building

. . . in the context of the $E_{8} \times E_{8}$ heterotic string:

6d manifold

X
metric $g_{m n}$

$$
\begin{aligned}
& R_{a b}=R_{\bar{a} \bar{b}}=0 \\
& R_{a \bar{b}}=0
\end{aligned}
$$

vector bundle
V
connection A_{m}
consistency:

Model building

. . . in the context of the $E_{8} \times E_{8}$ heterotic string:

6d manifold

metric $g_{m n}$

$$
R_{a b}=R_{\bar{a} \bar{b}}=0
$$

$$
R_{a \bar{b}}=0
$$

vector bundle

connection A_{m}

$$
\begin{aligned}
& F_{a b}=F_{\bar{a} \bar{b}}=0 \\
& g^{a \bar{b}} F_{a \bar{b}}=0
\end{aligned}
$$

Model building

. . . in the context of the $E_{8} \times E_{8}$ heterotic string:

6d manifold

metric $g_{m n}$

$$
R_{a b}=R_{\bar{a} \bar{b}}=0
$$

$$
R_{a \bar{b}}=0
$$

vector bundle
connection A_{m}

$$
\begin{aligned}
& F_{a b}=F_{\bar{a} \bar{b}}=0 \\
& g^{a \bar{b}} F_{a \bar{b}}=0
\end{aligned}
$$

Yau's theorem \downarrow
X complex, Kahler, $c_{1}(X)=0$
$\Longleftrightarrow X$ CY manifold

Model building

. . . in the context of the $E_{8} \times E_{8}$ heterotic string:

bd manifold

X

metric $g_{m n}$
consistency:

$$
\begin{aligned}
& R_{a b}=R_{\bar{a} \bar{b}}=0 \\
& R_{a \bar{b}}=0
\end{aligned}
$$

You's theorem

vector bundle

connection A_{m}

$$
\begin{aligned}
& F_{a b}=F_{\bar{a} \bar{b}}=0 \\
& g^{a \bar{b}} F_{a \bar{b}}=0
\end{aligned}
$$

\downarrow Donaldson,
V holomorphic, poly-stable
$\Longleftrightarrow X$ CY manifold

Model building

. . . in the context of the $E_{8} \times E_{8}$ heterotic string:

bd manifold

metric $g_{m n}$
consistency:

$$
\begin{aligned}
& R_{a b}=R_{\bar{a} \bar{b}}=0 \\
& R_{a \bar{b}}=0
\end{aligned}
$$

You's theorem

vector bundle

connection A_{m}

$$
\begin{aligned}
& F_{a b}=F_{\bar{a} \bar{b}}=0 \\
& g^{a \bar{b}} F_{a \bar{b}}=0
\end{aligned}
$$

\downarrow Donaldson,
V holomorphic, poly-stable
$\Longleftrightarrow X$ CY manifold
-> heterotic vacuum determined by a pair (X, V)

Which gauge group (structure group) for the bundle V ?

Which gauge group (structure group) for the bundle V ?

$$
S U(5) \times S U(5) \subset E_{8}
$$

Which gauge group (structure group) for the bundle V ?

Which gauge group (structure group) for the bundle V ?

Which gauge group (structure group) for the bundle V ?

structure group 4d gauge group
$248_{E_{8}} \rightarrow[(\mathbf{1}, \mathbf{2 4}) \oplus(\mathbf{5}, \overline{\mathbf{1 0}}) \oplus(\overline{\mathbf{5}}, \mathbf{1 0}) \oplus(\mathbf{1 0}, \mathbf{5}) \oplus(\overline{\mathbf{1 0}}, \overline{\mathbf{5}}) \oplus(\mathbf{2 4}, \mathbf{1})]_{\mathrm{SU}(\mathbf{5}) \times \mathrm{SU}(\mathbf{5})}$

Which gauge group (structure group) for the bundle V ?

$\mathbf{2 4 8} 8_{E_{8}} \rightarrow[(\mathbf{1}, \mathbf{2 4}) \oplus(\mathbf{5}, \overline{\mathbf{1 0}}) \oplus(\overline{\mathbf{5}}, \mathbf{1 0}) \oplus(\mathbf{1 0}, \mathbf{5}) \oplus(\overline{\mathbf{1 0}}, \overline{\mathbf{5}}) \oplus(\mathbf{2 4}, \mathbf{1})]_{\mathrm{SU}(\mathbf{5}) \times \operatorname{SU}(\mathbf{5})}$

4d gauge
fields

Which gauge group (structure group) for the bundle V ?

$\mathbf{2 4 8} 8_{E_{8}} \rightarrow[(\mathbf{1}, \mathbf{2 4}) \oplus(\mathbf{5}, \overline{\mathbf{1 0}}) \oplus(\overline{\mathbf{5}}, \mathbf{1 0}) \oplus(\mathbf{1 0}, \mathbf{5}) \oplus(\overline{\mathbf{1 0}}, \overline{\mathbf{5}}) \oplus(\mathbf{2 4}, \mathbf{1})]_{\mathrm{SU}(\mathbf{5}) \times \operatorname{SU}(\mathbf{5})}$

($Q, u, e)$
fields

Which gauge group (structure group) for the bundle V ?

structure group 4d gauge group
$248_{E_{8}} \rightarrow[(\mathbf{1}, \mathbf{2 4}) \oplus(\mathbf{5}, \overline{\mathbf{1 0}}) \oplus(\overline{5}, \mathbf{1 0}) \oplus(\mathbf{1 0}, \mathbf{5}) \oplus(\overline{\mathbf{1 0}}, \overline{5}) \oplus(\mathbf{2 4}, \mathbf{1})] \mathrm{SU}(\mathbf{5}) \times \operatorname{SU}(\mathbf{5})$
4d gauge

$$
(Q, u, e)
$$

$$
(d, L)
$$

Which gauge group (structure group) for the bundle V ?

structure group 4d gauge group
$248_{E_{8}} \rightarrow[(\mathbf{1}, \mathbf{2 4}) \oplus(5, \overline{\mathbf{1 0}}) \oplus(\overline{5}, \mathbf{1 0}) \oplus(\mathbf{1 0}, \mathbf{5}) \oplus(\overline{\mathbf{1 0}}, \overline{5}) \oplus(\mathbf{2 4}, \mathbf{1})] \operatorname{SU}(\mathbf{5}) \times \operatorname{SU}(\mathbf{5})$
4d gauge

$$
(Q, u, e) \quad(\tilde{d}, \tilde{L}) \quad(d, L)
$$

fields

Which gauge group (structure group) for the bundle V ?

structure group 4d gauge group
$248_{E_{8}} \rightarrow[(\mathbf{1}, \mathbf{2 4}) \oplus(\mathbf{5}, \overline{\mathbf{1 0}}) \oplus(\overline{5}, \mathbf{1 0}) \oplus(\mathbf{1 0}, \mathbf{5}) \oplus(\overline{\mathbf{1 0}}, \overline{5}) \oplus(\mathbf{2 4}, \mathbf{1})] \operatorname{SU}(\mathbf{5}) \times \operatorname{SU}(\mathbf{5})$
4d gauge fields

Which gauge group (structure group) for the bundle V ?

structure group 4d gauge group
$248_{E_{8}} \rightarrow[(\mathbf{1}, \mathbf{2 4}) \oplus(\mathbf{5}, \overline{\mathbf{1 0}}) \oplus(\overline{\mathbf{5}}, \mathbf{1 0}) \oplus(\mathbf{1 0}, \mathbf{5}) \oplus(\overline{\mathbf{1 0}}, \overline{\mathbf{5}}) \oplus(\mathbf{2 4}, \mathbf{1})]_{\mathrm{SU}(\mathbf{5}) \times \operatorname{SU}(\mathbf{5})}$
Ld gauge
fields $\quad(\tilde{Q}, \tilde{u}, \tilde{e}) \quad(Q, u, e) \quad(\tilde{d}, \tilde{L}) \quad(d, L) \quad \begin{aligned} & \text { bundle } \\ & \text { moduli }\end{aligned}$

First pass: $\left.\begin{array}{rl}\# \overline{\mathbf{1 0}}-\# \mathbf{1 0} & =\operatorname{ind}(V) \\ \# \mathbf{5}-\# \overline{\mathbf{5}} & =\operatorname{ind}\left(\wedge^{2} V\right)\end{array}\right\} \stackrel{!}{=} "-3 "$

First pass: $\left.\begin{array}{rl}\# \overline{\mathbf{1 0}}-\# \mathbf{1 0} & =\operatorname{ind}(V) \\ \# \mathbf{5}-\# \overline{\mathbf{5}} & =\operatorname{ind}\left(\wedge^{2} V\right)\end{array}\right\} \stackrel{!}{=} "-3 "$

Fortunately, for all $S U(5)$ bundles, $\operatorname{ind}(V)=\operatorname{ind}\left(\wedge^{2} V\right)$

First pass: $\left.\begin{array}{rl}\# \overline{\mathbf{1 0}}-\# \mathbf{1 0} & =\operatorname{ind}(V) \\ \# \mathbf{5}-\# \overline{\mathbf{5}} & =\operatorname{ind}\left(\wedge^{2} V\right)\end{array}\right\} \stackrel{!}{=} "-3 "$
Fortunately, for all $S U(5)$ bundles, $\operatorname{ind}(V)=\operatorname{ind}\left(\wedge^{2} V\right)$

Full spectrum from bundle cohomology, e.g.:

$$
\# \mathbf{1 0}=h^{1}(X, V), \quad \# \overline{\mathbf{1 0}}=h^{1}\left(X, V^{*}\right)
$$

First pass: $\left.\begin{array}{rl}\# \overline{\mathbf{1 0}}-\# \mathbf{1 0} & =\operatorname{ind}(V) \\ \# \mathbf{5}-\# \overline{\mathbf{5}} & =\operatorname{ind}\left(\wedge^{2} V\right)\end{array}\right\} \stackrel{!}{=} "-3 "$
Fortunately, for all $S U(5)$ bundles, $\operatorname{ind}(V)=\operatorname{ind}\left(\wedge^{2} V\right)$

Full spectrum from bundle cohomology, e.g.:

$$
\# \mathbf{1 0}=h^{1}(X, V), \quad \# \overline{\mathbf{1 0}}=h^{1}\left(X, V^{*}\right)
$$

In practice use structure group $S\left(U(1)^{5}\right) \subset S U(5)$ so that

$$
V=\bigoplus_{a=1}^{5} L_{a}, \quad L_{a}=\mathcal{O}_{X}\left(\mathbf{k}_{a}\right)
$$

is a sum of five line bundles, specified by integer vectors \mathbf{k}_{a}.
. . . results in GUT models with gauge group
$S U(5) \times S\left(U(1)^{5}\right) \longleftarrow \quad \begin{aligned} & \text { typically } \\ & \text { anomalous }\end{aligned}$
. . . results in GUT models with gauge group

$$
S U(5) \times S\left(U(1)^{5}\right) \longleftarrow \quad \begin{aligned}
& \text { typically } \\
& \text { anomalous }
\end{aligned}
$$

. . . and matter multiplets

$$
\mathbf{1 0}_{a}, \overline{\mathbf{1 0}}_{a}, \mathbf{5}_{a, b}, \overline{\mathbf{5}}_{a, b}, \mathbf{1}_{a, b}=S_{a, b}
$$

. . . results in GUT models with gauge group

$$
S U(5) \times S\left(U(1)^{5}\right) \longleftarrow \quad \begin{aligned}
& \text { typically } \\
& \text { anomalous }
\end{aligned}
$$

. . . and matter multiplets

$$
\mathbf{1 0}_{a}, \overline{\mathbf{1 0}}_{a}, \mathbf{5}_{a, b}, \overline{\mathbf{5}}_{a, b}, \mathbf{1}_{a, b}=S_{a, b}
$$

. . . with multiplicities $h^{1}(X, L)$:

multiplet	$S\left(U(1)^{5}\right)$ charge	associated line bundle L	contained in
$\mathbf{1 0}_{\mathbf{e}_{a}}$	\mathbf{e}_{a}	L_{a}	V
$\overline{\mathbf{1 0}}$	$L_{-\mathbf{e}_{a}}$	$-\mathbf{e}_{a}$	$L_{a}^{*} \otimes L_{b}$
$\overline{\mathbf{5}}_{\mathbf{e}_{a}+\mathbf{e}_{b}}$	$\mathbf{e}_{a}+\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}^{*}$	V^{*}
$\mathbf{5}_{-\mathbf{e}_{a}-\mathbf{e}_{b}}$	$-\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a} \otimes L_{b}^{*}$	$\wedge^{2} V$
$\mathbf{1}_{\mathbf{e}_{a}-\mathbf{e}_{b}}$	$\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}$	$V \otimes V^{*}$
$\mathbf{1}_{-\mathbf{e}_{a}+\mathbf{e}_{b}}$	$-\mathbf{e}_{a}+\mathbf{e}_{b}$		

. . . results in GUT models with gauge group

$$
S U(5) \times S\left(U(1)^{5}\right) \longleftarrow \quad \begin{gathered}
\text { typically } \\
\text { anomalous }
\end{gathered}
$$

... and matter multiplets

$$
\mathbf{1 0}_{a}, \overline{\mathbf{1 0}}_{a}, \mathbf{5}_{a, b}, \overline{\mathbf{5}}_{a, b}, \mathbf{1}_{a, b}=S_{a, b}
$$

.. . with multiplicities $h^{1}(X, L)$:
families and mirror families

multiplet	$S\left(U(1)^{5}\right)$ charge	associated line bundle L	contained in
$\mathbf{1 0}_{\mathbf{e}_{a}}$	\mathbf{e}_{a}	L_{a}	V
$\overline{\mathbf{0}} \mathbf{- e}_{a}$	$-\mathbf{e}_{a}$	L_{a}^{*}	V^{*}
$\overline{\mathbf{5}}_{\mathbf{e}_{a}+\mathbf{e}_{b}}$	$\mathbf{e}_{a}+\mathbf{e}_{b}$	$L_{a} \otimes L_{b}$	$\wedge^{2} V$
$\mathbf{5}_{-\mathbf{e}_{a}-\mathbf{e}_{b}}$	$-\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}^{*}$	$\wedge^{2} V^{*}$
$\mathbf{1}_{\mathbf{e}_{a}-\mathbf{e}_{b}}$	$\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a} \otimes L_{b}^{*}$	$V \otimes V^{*}$
$\mathbf{1}_{-\mathbf{e}_{a}+\mathbf{e}_{b}}$	$-\mathbf{e}_{a}+\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}$	

. . . results in GUT models with gauge group

$$
S U(5) \times S\left(U(1)^{5}\right) \longleftarrow \quad \begin{gathered}
\text { typically } \\
\text { anomalous }
\end{gathered}
$$

... and matter multiplets

$$
\mathbf{1 0}_{a}, \overline{\mathbf{1 0}}_{a}, \mathbf{5}_{a, b}, \overline{\mathbf{5}}_{a, b}, \mathbf{1}_{a, b}=S_{a, b}
$$

.. . with multiplicities $h^{1}(X, L)$:

families and mirror families	multiplet	$S\left(U(1)^{5}\right)$ charge	associated line bundle L	contained in
	$10_{\mathbf{e}_{a}}$	\mathbf{e}_{a}	L_{a}	V
	$\overline{10}{ }_{-\mathrm{e}_{a}}$	$-\mathbf{e}_{a}$	L_{a}^{*}	V^{*}
	$\overline{5}_{\mathbf{e}_{a}+\mathrm{e}_{b}}$	$\mathbf{e}_{a}+\mathbf{e}_{b}$	$L_{a} \otimes L_{b}$	$\wedge^{2} V$
	$5_{-\mathrm{e}_{a}-\mathrm{e}_{b}}$	$-\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}^{*}$	$\wedge^{2} V^{*}$
bundle moduli S^{α}	$\begin{aligned} & \mathbf{1}_{\mathbf{e}_{a}-\mathbf{e}_{b}} \\ & \mathbf{1}_{-\mathbf{e}_{a}+\mathbf{e}_{b}} \end{aligned}$	$\begin{gathered} \mathbf{e}_{a}-\mathbf{e}_{b} \\ -\mathbf{e}_{a}+\mathbf{e}_{b} \end{gathered}$	$\begin{array}{l\|l} \hline L_{a} \otimes L_{b}^{*} \\ L_{a}^{*} \otimes L_{b} \end{array}$	$V \otimes V^{*}$

. . . results in GUT models with gauge group

$$
S U(5) \times S\left(U(1)^{5}\right) \longleftarrow \quad \begin{aligned}
& \text { typically } \\
& \text { anomalous }
\end{aligned}
$$

. . . and matter multiplets

$$
\mathbf{1 0}_{a}, \overline{\mathbf{1 0}}_{a}, \mathbf{5}_{a, b}, \overline{\mathbf{5}}_{a, b}, \mathbf{1}_{a, b}=S_{a, b}
$$

... with multiplicities $h^{1}(X, L)$:

families and mirror families	multiplet	$S\left(U(1)^{5}\right)$ charge	associated line bundle L	contained in
	$10_{\mathrm{e}_{a}}$	e_{a}	L_{a}	V
	$\overline{10}{ }_{-e_{a}}$	$-\mathbf{e}_{a}$	L_{a}^{*}	V^{*}
	$\overline{5}_{\mathrm{e}_{a}+\mathrm{e}_{b}}$	$\mathbf{e}_{a}+\mathrm{e}_{b}$	$L_{a} \otimes L_{b}$	$\wedge^{2} V$
	$5^{-e_{a}-e_{b}}$	$-\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}^{*}$	$\wedge^{2} V^{*}$
bundle	$1_{\mathrm{e}_{a}-\mathrm{e}_{b}}$	$\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a} \otimes L_{b}^{*}$	$V \otimes V^{*}$
moduli S^{α}	$1_{-e_{a}+\mathrm{e}_{b}}$	$-\mathbf{e}_{a}+\mathrm{e}_{b}$	$L_{a}^{*} \otimes L_{b}$	

Can lead to standard models after taking Γ-quotient and including Wilson line.

The standard model of particle physics from string theory

An example:

CY data: - Cicy 7862, Symmetry 3

$X=\left(\begin{array}{l}2 \\ 2 \\ 2 \\ 2\end{array}\right)$
$\eta(\mathrm{X})=-128 \quad \mathrm{~h}^{1,1}(\mathrm{X})=4 \quad \mathrm{~h}^{2,1}(\mathrm{X})=68 \quad \mathrm{c}_{2}(\mathrm{TX})=\{24,24,24,24\}$
$\kappa=12 t_{1} t_{2} t_{3}+12 t_{1} t_{2} t_{4}+12 t_{1} t_{3} t_{4}+12 t_{2} t_{3} t_{4}$
symmetry: 3 order: 4
Abelian: True block diagonal: True factors: $\{2,2\}$
Action on coordinates: $\left\{\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right),\left(\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)\right\}$
Action on polynomials: $\{(1),(1)\}$

The standard model of particle physics from string theory

An example:

CY data: - Cicy 7862, Symmetry 3
$x=\left(\begin{array}{l}2 \\ 2 \\ 2 \\ 2\end{array}\right) \longleftarrow C Y$: tetra-quadric in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$
$\eta(\mathrm{X})=-128 \quad \mathrm{~h}^{1,1}(\mathrm{X})=4 \quad \mathrm{~h}^{2,1}(\mathrm{X})=68 \quad \mathrm{c}_{2}(\mathrm{TX})=\{24,24,24,24\}$
$\kappa=12 t_{1} t_{2} t_{3}+12 t_{1} t_{2} t_{4}+12 t_{1} t_{3} t_{4}+12 t_{2} t_{3} t_{4}$
symmetry: 3 order: 4
Abelian: True block diagonal: True factors: $\{2,2\}$
Action on coordinates: $\left.\left\{\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right),\left(\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)\right\}$
Action on polynomials: $\{(1),(1)\}$

The standard model of particle physics from string theory

An example:

CY data: - Cicy 7862, Symmetry 3
$x=\left(\begin{array}{l}2 \\ 2 \\ 2 \\ 2\end{array}\right) \longleftarrow C Y$: tetra-quadric in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$
$\eta(X)=-128 \quad h^{1,1}(X)=4 \quad h^{2,1}(X)=68 \quad c_{2}(T X)=\{24,24,24,24\} \longleftarrow$ topological data
$\kappa=12 t_{1} t_{2} t_{3}+12 t_{1} t_{2} t_{4}+12 t_{1} t_{3} t_{4}+12 t_{2} t_{3} t_{4}$
symmetry: 3 order: 4
Abelian: True block diagonal: True factors: $\{2,2\}$
Action on coordinates: $\left\{\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right),\left(\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)\right\}$
Action on polynomials: $\{(1),(1)\}$

The standard model of particle physics from string theory

An example:

CY data: - Cicy 7862, Symmetry 3
$x=\left(\begin{array}{l}2 \\ 2 \\ 2 \\ 2\end{array}\right) \longleftarrow C Y$: tetra-quadric in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$
$\eta(X)=-128 \quad h^{1,1}(X)=4 \quad h^{2,1}(X)=68 \quad c_{2}(T X)=\{24,24,24,24\} \longleftarrow$ topological data
$\kappa=12 t_{1} t_{2} t_{3}+12 t_{1} t_{2} t_{4}+12 t_{1} t_{3} t_{4}+12 t_{2} t_{3} t_{4} \longleftarrow$ volume
symmetry: 3 order: 4
Abelian: True block diagonal: True factors: $\{2,2\}$
Action on coordinates: $\left\{\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right),\left(\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)\right\}$
Action on polynomials: $\{(1),(1)\}$

The standard model of particle physics from string theory

An example:

CY data: - Cicy 7862, Symmetry 3

$X=\left(\begin{array}{l}2 \\ 2 \\ 2 \\ 2\end{array}\right) \longleftarrow$ CY: tetra-quadric in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$
$\eta(X)=-128 \quad h^{1.1}(X)=4 \quad h^{21}(X)=68 \quad c_{2}(T X)=\{24,24,24,24\} \longleftarrow$ topological data
$\kappa=12 t_{1} t_{2} t_{3}+12 t_{1} t_{2} t_{4}+12 t_{1} t_{3} t_{4}+12 t_{2} t_{3} t_{4} \quad \longleftarrow$ volume
symmetry: 3 order: 4
Abelian: True block diagonal: True factors: $\{2,2\}$
Action on coordinates: $\left\{\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right),\left(\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)\right\}$
Action on polynomials: $\{(1),(1)\}$

bundle data:

- Basic properties

standard model? True massless $\mathrm{U}(1)$: 1 number of $5 \overline{5}$ pairs: $3 \quad \mathrm{c}_{2}(\mathrm{~V})=\{24,8,20,12\}$
$\mathrm{V}:\left(\mathrm{k}_{\mathrm{a}}^{\mathrm{i}}\right)=\left(\begin{array}{ccccc}-1 & -1 & 0 & 1 & 1 \\ 0 & -3 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & 0 \\ 1 & 2 & 0 & -1 & -2\end{array}\right)$
Cohomology of V :

L_{2}	$=\{-1,-3,2,2\}$	$\mathrm{h}\left[\mathrm{L}_{2}\right]$	$\{0,8,0,0\}$, R]	$=\{\{0,0,0,0\},\{2,2,2,2\},\{0,0,0,0\},\{0,0,0,0\}\}$
L_{5}	$=\{1,1,0,-2\}$	$\mathrm{h}\left[\mathrm{L}_{5}\right]$	$\{0,4,0,0\}$	$h\left[L_{5}, \mathrm{R}\right]$	$=\{\{0,0,0,0\},\{1,1,1,1\},\{0,0,0,0\},\{0,0,0,0\}\}$
$\mathrm{L}_{2} \times \mathrm{L}_{4}$	$=\{0,-2,1,1\}$	$\mathrm{h}\left[\mathrm{L}_{2} \times \mathrm{L}_{4}\right]$	$\{0,4,0,0\}$	$\mathrm{h}\left[\mathrm{L}_{2} \times \mathrm{L}_{4}, \mathrm{R}\right]$	$=\{\{0,0,0,0\},\{1,1,1,1\},\{0,0,0,0\},\{0,0,0$
$\mathrm{L}_{2} \times \mathrm{L}_{5}$	$=\{0,-2,2,0\}$	$h\left[L_{2} \times L_{5}\right]$	$\{0,3,3,0\}$	$h\left[L_{2} \times L_{5}, R\right]$	$=\{\{0,0,0,0\},\{0,1,1,1\},\{0,1,1,1\},\{0,0,0,0\}\}$
$\mathrm{L}_{4} \times \mathrm{L}_{5}$	$=\{2,2,-1,-3\}$	$\mathrm{h}\left[\mathrm{L}_{4} \times \mathrm{L}_{5}\right]$	$\{0,8,0,0\}$	$\mathrm{h}\left[\mathrm{L}_{4} \times \mathrm{L}_{5}, \mathrm{R}\right]$	$=\{\{0,0,0,0\},\{2,2,2,2\},\{0,0,0,0\},\{0,0,0,0\}\}$
$L_{1} \times L_{2}{ }^{*}$	$=\{0,3,-2,-1\}$	$\mathrm{h}\left[\mathrm{L}_{1} \times \mathrm{L}_{2}{ }^{*}\right]$	$\{0,0,12,0\}$	$\mathrm{h}\left[\mathrm{L}_{1} \times \mathrm{L}_{2}{ }^{*}, \mathrm{R}\right]$	$=\{\{0,0,0,0\},\{0,0,0,0\},\{3,3,3,3\},\{0,0,0,0\}\}$
$L_{1} \times L_{5}{ }^{*}$	$=\{-2,-1,0,3\}$	$\mathrm{h}\left[\mathrm{L}_{1} \times \mathrm{L}_{5}{ }^{*}\right]$	$\{0,0,12,0\}$	$h\left[L_{1} \times L_{5}{ }^{*}, R\right]$	$=\{\{0,0,0,0\},\{0,0,0,0\},\{3,3,3,3\},\{0,0,0,0\}\}$
$L_{2} \times L_{3}{ }^{*}$	$=\{-1,-4,3,2\}$	$\mathrm{h}\left[\mathrm{L}_{2} \times \mathrm{L}_{3}{ }^{*}\right]$	$\{0,20,0,0\}$	$h\left[L_{2} \times L_{3}{ }^{*}, R\right]$	$=\{\{0,0,0,0\},\{5,5,5,5\},\{0,0,0,0\},\{0,0,0,0\}\}$
$\mathrm{L}_{2} \times \mathrm{L}_{4}{ }^{*}$	$=\{-2,-4,3,3\}$	$\mathrm{h}\left[\mathrm{L}_{2} \times \mathrm{L}_{4}{ }^{*}\right]$	$\{0,12,0,0\}$	$\mathrm{h}\left[\mathrm{L}_{2} \times \mathrm{L}_{4}{ }^{*}, \mathrm{R}\right]$	$=\{\{0,0,0,0\},\{3,3,3,3\},\{0,0,0,0\},\{0,0,0,0\}\}$
$\mathrm{L}_{3} \times \mathrm{L}_{5}{ }^{*}$	$\{-1,0,-1,2\}$	$h\left[L_{3} \times L_{5}{ }^{*}\right]$	$\{0,0,4,0\}$	$h\left[L_{3} \times L_{5}{ }^{*}, R\right]$	\{ $00,0,0,0\},\{0$,

Wilson line: $\{\{0,0\},\{0,1\}\}$ Equivariant structure: $\{\{0,0\},\{0,0\},\{0,0\},\{0,0\},\{0,0\}\}$ Higgs pairs: 1

Downstairs spectrum: $\left\{210_{2}, 10_{5}, \overline{5}_{2,4}, 2 \overline{5}_{4,5}, H_{2,5}, \bar{H}_{2,5}, 3 S_{2,1}, 3 S_{5,1}, 5 S_{2,3}, 3 S_{2,4}, S_{5,3}\right\}$ Phys. Higgs: $\left\{\mathrm{H}_{2,5}, \bar{H}_{2,5}\right\}$
Transfer format: $\{\{6,1,1,4,6,5,9,9,8,10,1,7,17\},\{6,6,-1,-1,-1,-1\}\}$
$\left.\operatorname{rk}\left(Y^{(u)}\right)=\{2,2\} \quad \operatorname{rk}\left(Y^{(d)}\right)\right)=\{0,0\} \operatorname{dim} .4$ operators absent: \{True, True $\} \operatorname{dim} .5$ operators absent: \{True, True $\}$

bundle data:

- Basic properties
standard model? True massless $\mathrm{U}(1)$: 1 number of $5 \overline{5}$ pairs: $3 \quad c_{2}(\mathrm{~V})=\{24,8,20,12\}$
$\mathrm{V}:\left(\mathrm{K}_{\mathrm{a}}^{\mathrm{i}}\right)=\left(\begin{array}{ccccc}-1 & -1 & 0 & 1 & 1 \\ 0 & -3 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & 0 \\ 1 & 2 & 0 & -1 & -2\end{array}\right)$
\longleftarrow integer matrix defining line bundle sum

Cohomology of V:

L_{2}	$=\{-1,-3,2,2\}$	$\mathrm{h}\left[\mathrm{L}_{2}\right]$	$=\{0,8,0,0\}$	$h\left[L_{2}, R\right]$	$=\{\{0,0,0,0\},\{2,2,2,2\},\{0,0,0,0\},\{0,0,0,0\}\}$
L_{5}	$=\{1,1,0,-2\}$	$\mathrm{h}\left[\mathrm{L}_{5}\right]$	$=\{0,4,0,0\}$	$h\left[L_{5}, R\right]$	$=\{\{0,0,0,0\},\{1,1,1,1\},\{0,0,0,0\},\{0,0,0,0\}\}$
$\mathrm{L}_{2} \times \mathrm{L}_{4}$	$=\{0,-2,1,1\}$	$\mathrm{h}\left[\mathrm{L}_{2} \times \mathrm{L}_{4}\right]$	$=\{0,4,0,0\}$	$\mathrm{h}\left[\mathrm{L}_{2} \times \mathrm{L}_{4}, \mathrm{R}\right]$	$=\{\{0,0,0,0\},\{1,1,1,1\},\{0,0,0,0\},\{0,0,0,0\}\}$
$L_{2} \times L_{5}$	$=\{0,-2,2,0\}$	$h\left[L_{2} \times L_{5}\right]$	$=\{0,3,3,0\}$	$h\left[L_{2} \times L_{5}, R\right]$	$=\{\{0,0,0,0\},\{0,1,1,1\},\{0,1,1,1\},\{0,0,0,0\}\}$
$\mathrm{L}_{4} \times \mathrm{L}_{5}$	$=\{2,2,-1,-3\}$	$\mathrm{h}\left[\mathrm{L}_{4} \times \mathrm{L}_{5}\right]$	$=\{0,8,0,0\}$	$h\left[L_{4} \times L_{5}, R\right]$	$=\{\{0,0,0,0\},\{2,2,2,2\},\{0,0,0,0\},\{0,0,0,0\}\}$
$\mathrm{L}_{1} \times \mathrm{L}_{2}{ }^{*}$	$=\{0,3,-2,-1\}$	$\mathrm{h}\left[\mathrm{L}_{1} \times \mathrm{L}_{2}{ }^{*}\right]$	$=\{0,0,12,0\}$	$h\left[L_{1} \times L_{2}{ }^{*}, R\right]$	$=\{\{0,0,0,0\},\{0,0,0,0\},\{3,3,3,3\},\{0,0,0,0\}\}$
$L_{1} \times L_{5}{ }^{*}$	$=\{-2,-1,0,3\}$	$\mathrm{h}\left[\mathrm{L}_{1} \times \mathrm{L}_{5}{ }^{*}\right]$	$=\{0,0,12,0\}$	$h\left[L_{1} \times L_{5}{ }^{*}, \mathrm{R}\right]$	$=\{\{0,0,0,0\},\{0,0,0,0\},\{3,3,3,3\},\{0,0,0,0\}\}$
$\mathrm{L}_{2} \times \mathrm{L}_{3}{ }^{*}$	$=\{-1,-4,3,2\}$	$h\left[L_{2} \times L_{3}{ }^{*}\right]$	$=\{0,20,0,0\}$	$h\left[L_{2} \times L_{3}{ }^{*}, R\right]$	$=\{\{0,0,0,0\},\{5,5,5,5\},\{0,0,0,0\},\{0,0,0,0\}\}$
$\mathrm{L}_{2} \times \mathrm{L}_{4}{ }^{*}$	$=\{-2,-4,3,3\}$	$\mathrm{h}\left[\mathrm{L}_{2} \times \mathrm{L}_{4}{ }^{*}\right]$	$=\{0,12,0,0\}$	$h\left[L_{2} \times L_{4}{ }^{*}, R\right]$	$=\{\{0,0,0,0\},\{3,3,3,3\},\{0,0,0,0\},\{0,0,0,0\}\}$
$L_{3} \times L_{5}{ }^{*}$	$=\{-1,0,-1,2\}$	$\mathrm{h}\left[\mathrm{L}_{3} \times \mathrm{L}_{5}{ }^{*}\right]$	$=\{0,0,4,0\}$	$\mathrm{h}\left[\mathrm{L}_{3} \times \mathrm{L}_{5}{ }^{*}, \mathrm{R}\right]$	$=\{\{0,0,0,0\},\{0,0,0,0\},\{1,1,1,1\},\{0,0,0,0\}\}$

Wilson line: $\{\{0,0\},\{0,1\}\}$ Equivariant structure: $\{\{0,0\},\{0,0\},\{0,0\},\{0,0\},\{0,0\}\}$ Higgs pairs: 1

Downstairs spectrum: $\left\{210_{2}, 10_{5}, \overline{5}_{2,4}, 2 \overline{5}_{4,5}, \mathrm{H}_{2,5}, \bar{H}_{2,5}, 3 \mathrm{~S}_{2,1}, 3 \mathrm{~S}_{5,1}, 5 \mathrm{~S}_{2,3}, 3 \mathrm{~S}_{2,4}, \mathrm{~S}_{5,3}\right\}$ Phys. Higgs: $\left\{\mathrm{H}_{2,5}, \overline{\mathrm{H}}_{2,5}\right\}$
Transfer format: $\{\{6,1,1,4,6,5,9,9,8,10,1,7,17\},\{6,6,-1,-1,-1,-1\}\}$
$\left.\operatorname{rk}\left(Y^{(u)}\right)=\{2,2\} \quad \operatorname{rk}\left(Y^{(d)}\right)\right)=\{0,0\}$ dim. 4 operators absent: $\{$ True, True $\}$ dim. 5 operators absent: $\{$ True, True $\}$

bundle data:

- Basic properties
standard model? True massless $\mathrm{U}(1)$: 1 number of $5 \overline{5}$ pairs: $3 \quad \mathrm{c}_{2}(\mathrm{~V})=\{24,8,20,12\}$
$\mathrm{V}:\left(\mathrm{K}_{\mathrm{a}}^{\mathrm{i}}\right)=\left(\begin{array}{ccccc}-1 & -1 & 0 & 1 & 1 \\ 0 & -3 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & 0 \\ 1 & 2 & 0 & -1 & -2\end{array}\right)$
\longleftarrow integer matrix defining line bundle sum

Cohomology of V:

L_{2}	$=\{-1,-3,2,2\}$	$\mathrm{h}\left[\mathrm{L}_{2}\right]$	$\{0,8,0,0\}$, R]	$=\{\{0,0,0,0\},\{2,2,2,2\},\{0,0,0,0\},\{0,0,0,0\}\}$
L_{5}	$=\{1,1,0,-2\}$	$\mathrm{h}\left[\mathrm{L}_{5}\right]$	$\{0,4,0,0\}$	$h\left[L_{5}, \mathrm{R}\right]$	$=\{\{0,0,0,0\},\{1,1,1,1\},\{0,0,0,0\},\{0,0,0,0\}\}$
$\mathrm{L}_{2} \times \mathrm{L}_{4}$	$=\{0,-2,1,1\}$	$\mathrm{h}\left[\mathrm{L}_{2} \times \mathrm{L}_{4}\right]$	$\{0,4,0,0\}$	$\mathrm{h}\left[\mathrm{L}_{2} \times \mathrm{L}_{4}, \mathrm{R}\right]$	$=\{\{0,0,0,0\},\{1,1,1,1\},\{0,0,0,0\},\{0,0,0$
$\mathrm{L}_{2} \times \mathrm{L}_{5}$	$=\{0,-2,2,0\}$	$h\left[L_{2} \times L_{5}\right]$	$\{0,3,3,0\}$	$h\left[L_{2} \times L_{5}, R\right]$	$=\{\{0,0,0,0\},\{0,1,1,1\},\{0,1,1,1\},\{0,0,0,0\}\}$
$\mathrm{L}_{4} \times \mathrm{L}_{5}$	$=\{2,2,-1,-3\}$	$\mathrm{h}\left[\mathrm{L}_{4} \times \mathrm{L}_{5}\right]$	$\{0,8,0,0\}$	$\mathrm{h}\left[\mathrm{L}_{4} \times \mathrm{L}_{5}, \mathrm{R}\right]$	$=\{\{0,0,0,0\},\{2,2,2,2\},\{0,0,0,0\},\{0,0,0,0\}\}$
$L_{1} \times L_{2}{ }^{*}$	$=\{0,3,-2,-1\}$	$\mathrm{h}\left[\mathrm{L}_{1} \times \mathrm{L}_{2}{ }^{*}\right]$	$\{0,0,12,0\}$	$\mathrm{h}\left[\mathrm{L}_{1} \times \mathrm{L}_{2}{ }^{*}, \mathrm{R}\right]$	$=\{\{0,0,0,0\},\{0,0,0,0\},\{3,3,3,3\},\{0,0,0,0\}\}$
$L_{1} \times L_{5}{ }^{*}$	$=\{-2,-1,0,3\}$	$\mathrm{h}\left[\mathrm{L}_{1} \times \mathrm{L}_{5}{ }^{*}\right]$	$\{0,0,12,0\}$	$h\left[L_{1} \times L_{5}{ }^{*}, R\right]$	$=\{\{0,0,0,0\},\{0,0,0,0\},\{3,3,3,3\},\{0,0,0,0\}\}$
$L_{2} \times L_{3}{ }^{*}$	$=\{-1,-4,3,2\}$	$\mathrm{h}\left[\mathrm{L}_{2} \times \mathrm{L}_{3}{ }^{*}\right]$	$\{0,20,0,0\}$	$h\left[L_{2} \times L_{3}{ }^{*}, R\right]$	$=\{\{0,0,0,0\},\{5,5,5,5\},\{0,0,0,0\},\{0,0,0,0\}\}$
$\mathrm{L}_{2} \times \mathrm{L}_{4}{ }^{*}$	$=\{-2,-4,3,3\}$	$\mathrm{h}\left[\mathrm{L}_{2} \times \mathrm{L}_{4}{ }^{*}\right]$	$\{0,12,0,0\}$	$\mathrm{h}\left[\mathrm{L}_{2} \times \mathrm{L}_{4}{ }^{*}, \mathrm{R}\right]$	$=\{\{0,0,0,0\},\{3,3,3,3\},\{0,0,0,0\},\{0,0,0,0\}\}$
$\mathrm{L}_{3} \times \mathrm{L}_{5}{ }^{*}$	$\{-1,0,-1,2\}$	$h\left[L_{3} \times L_{5}{ }^{*}\right]$	$\{0,0,4,0\}$	$h\left[L_{3} \times L_{5}{ }^{*}, R\right]$	\{ $00,0,0,0\},\{0$,

Wilson line: $\{\{0,0\},\{0,1\}\}$ Equivariant structure: $\{\{0,0\},\{0,0\},\{0,0\},\{0,0\},\{0,0\}\}$ Higgs pairs: 1
Downstairs spectrum: $\left\{210_{2}, 105, \overline{5}_{2,4}, 2 \overline{5}_{4,5}, \mathrm{H}_{2,5}, \bar{H}_{2,5}, 3 \mathrm{~S}_{2,1}, 3 \mathrm{~S}_{5,1}, 5 \mathrm{~S}_{2,3}, 3 \mathrm{~S}_{2,4}, \mathrm{~S}_{5,3}\right\}$ Phys. Higgs: $\left\{\mathrm{H}_{2,5}, \overline{\mathrm{H}}_{2,5}\right\}$
Transfer format: $\{\{6,1,1,4,6,5,9,9,8,10,1,7$ nit, $\{6,6,-1,-1,-1,-1\}\}$
$\left.\operatorname{rk}\left(Y^{(u)}\right)=\{2,2\} \quad \operatorname{rk}\left(Y^{(d)}\right)\right)=\{0,0\}$ dim. 4 operators absent: $\{$ True, True $\} \operatorname{dim} .5$ operators absent: $\{$ True, True $\}$
spectrum: $\mathbf{1 0}_{2}, \mathbf{1 0}_{2}, \mathbf{1 0}_{5}, \overline{\mathbf{5}}_{2,4}, \overline{\mathbf{5}}_{4,5}, \overline{\mathbf{5}}_{4,5}, H_{2,5}, \bar{H}_{2,5}$

$$
3 \mathbf{1}_{2,1}, 3 \mathbf{1}_{5,1}, 5 \mathbf{1}_{2,3}, 3 \mathbf{1}_{2,4}, \mathbf{1}_{5,3}
$$

allowed operators:

- Operators

basic superpotential terms:
$\bar{H} 10^{p} 10^{q}: Y^{(u)}=\left(\begin{array}{ccc}(0) & (0) & (1) \\ (0) & (0) & (1) \\ (1) & (1) & (0)\end{array}\right)$
$H \overline{5}^{p} 10^{q}: Y^{(d)}=\left(\begin{array}{ccc}(0) & (0) & (0) \\ (0) & (0) & (0) \\ (0) & (0) & (0)\end{array}\right)$
$\mathrm{H} \overline{\mathrm{H}}: \mu=\{1\}$
$\mathrm{W}_{\text {sing }}=\{0\}$
R-parity violating terms in superpotential:
$\bar{H}^{\mathrm{p}}: \rho=\left(\begin{array}{c}0 \\ \mathrm{~S}_{2,4} \\ \mathrm{~S}_{2,4}\end{array}\right)$
$\left.\left.\left.\left.\left.10^{p} \overline{5}^{q} \overrightarrow{5}^{r}: \lambda=\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\right\},\{10\},\{0\},\{0\}\right\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\right\},\{0\},\{0\},\{0\}\right\}\right\}$
Dimension 5 operators in superpotential:
$\overline{5}^{-1} 10^{q} 10^{r} 10^{s}: \lambda^{\prime}=\{\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\}$, $\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\},\{\{\{\{0\},\{0\},\{0\}\},\{\{0\}$,

D-terms:
FI-terms: $k_{a}^{i} \kappa_{i}=\left(\begin{array}{c}4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}-4 t_{3} t_{4} \\ 16 t_{1} t_{2}-4 t_{1} t_{3}+4 t_{2} t_{3}-4 t_{1} t_{4}+4 t_{2} t_{4}-16 t_{3} t_{4} \\ -4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}+4 t_{3} t_{4} \\ -8 t_{1} t_{2}+8 t_{3} t_{4} \\ -8 t_{1} t_{2}-4 t_{1} t_{3}-4 t_{2} t_{3}+4 t_{1} t_{4}+4 t_{2} t_{4}+8 t_{3} t_{4}\end{array}\right)$
singlet D-terms: $\mathrm{q}_{\alpha \mathrm{a}} \mathrm{S}^{\alpha} \bar{S}^{\bar{\beta}}=\left(\begin{array}{c}-\mathrm{S}_{2,1} \mathrm{~S}^{\dagger}{ }_{2,1}-\mathrm{S}_{5,1} \mathrm{~S}^{\dagger}{ }_{5,1} \\ \mathrm{~S}_{2,1} \mathrm{~S}_{2,1}^{\dagger}+\mathrm{S}_{2,3} \mathrm{~S}_{2,3}^{\dagger}+\mathrm{S}_{2,4} \mathrm{~S}^{\dagger}{ }_{2,4} \\ -\mathrm{S}_{2,3} \mathrm{~S}_{2,3}-\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger} \\ -\mathrm{S}_{2,4} \mathrm{~S}_{2,4}^{\dagger} \\ \mathrm{S}_{5,1} \mathrm{~S}_{5,1}^{\dagger}+\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger}\end{array}\right)$

allowed operators:

- Operators

basic superpotential terms:
$\bar{H} 10^{p} 10^{q}: Y^{(u)}=\left(\begin{array}{ccc}(0) & (0) & (1) \\ (0) & (0) & (1) \\ (1) & (1) & (0)\end{array}\right) ~ « r a n k 2$
$H \overline{5}^{p} 10^{q}: Y^{(d)}=\left(\begin{array}{ccc}(0) & (0) & (0) \\ (0) & (0) & (0) \\ (0) & (0) & (0)\end{array}\right)$
$\mathrm{HH}: \mu=\{1\}$
$\mathrm{W}_{\text {sing }}=\{0\}$
R-parity violating terms in superpotential:
$\bar{H}^{\mathrm{p}}: \rho=\left(\begin{array}{c}0 \\ \mathrm{~S}_{2,4} \\ \mathrm{~S}_{2,4}\end{array}\right)$
$\left.\left.\left.\left.\left.10^{p} \overline{5}^{q} \overrightarrow{5}^{r}: \lambda=\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\right\},\{10\},\{0\},\{0\}\right\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\right\},\{0\},\{0\},\{0\}\right\}\right\}$
Dimension 5 operators in superpotential:
$\overline{5}^{-1} 10^{q} 10^{r} 10^{s}: \lambda^{\prime}=\{\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\}$, $\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\},\{\{\{\{0\},\{0\},\{0\}\},\{\{0\}$,

D-terms:
FI-terms: $k_{a}^{i} \kappa_{i}=\left(\begin{array}{c}4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}-4 t_{3} t_{4} \\ 16 t_{1} t_{2}-4 t_{1} t_{3}+4 t_{2} t_{3}-4 t_{1} t_{4}+4 t_{2} t_{4}-16 t_{3} t_{4} \\ -4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}+4 t_{3} t_{4} \\ -8 t_{1} t_{2}+8 t_{3} t_{4} \\ -8 t_{1} t_{2}-4 t_{1} t_{3}-4 t_{2} t_{3}+4 t_{1} t_{4}+4 t_{2} t_{4}+8 t_{3} t_{4}\end{array}\right)$
singlet D-terms: $\mathrm{q}_{\alpha \mathrm{a}} \mathrm{S}^{\alpha} \bar{S}^{\bar{\beta}}=\left(\begin{array}{c}-\mathrm{S}_{2,1} \mathrm{~S}^{\dagger}{ }_{2,1}-\mathrm{S}_{5,1} \mathrm{~S}^{\dagger}{ }_{5,1} \\ \mathrm{~S}_{2,1} \mathrm{~S}_{2,1}^{\dagger}+\mathrm{S}_{2,3} \mathrm{~S}_{2,3}^{\dagger}+\mathrm{S}_{2,4} \mathrm{~S}^{\dagger}{ }_{2,4} \\ -\mathrm{S}_{2,3} \mathrm{~S}_{2,3}-\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger} \\ -\mathrm{S}_{2,4} \mathrm{~S}_{2,4}^{\dagger} \\ \mathrm{S}_{5,1} \mathrm{~S}_{5,1}^{\dagger}+\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger}\end{array}\right)$

allowed operators:

- Operators

basic superpotential terms:
$\bar{H} 10^{p} 10^{q}: Y^{(u)}=\left(\begin{array}{ccc}(0) & (0) & (1) \\ 0 & (0) & (1) \\ (1) & (1) & (0)\end{array}\right) ~ « r a n k 2$
$H 5^{\mathrm{p}} 10^{\mathrm{q}}: \mathrm{Y}^{(\mathrm{d})}=\left(\begin{array}{ccc}(0) & (0) & (0) \\ (0) & (0) & (0) \\ (0) & (0) & (0)\end{array}\right) \quad$ ~rank 0
$\mathrm{H} \overline{\mathrm{H}}: \mu=\{1\}$
$\mathrm{W}_{\text {sing }}=\{0\}$
R-parity violating terms in superpotential:
$\bar{H}^{\mathrm{p}}: \rho=\left(\begin{array}{c}0 \\ \mathrm{~S}_{2,4} \\ \mathrm{~S}_{2,4}\end{array}\right)$
$\left.\left.\left.\left.10^{p} \overline{5}^{q} \overrightarrow{5}^{r}: \lambda=\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{10\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\right\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\right\},\{0\},\{0\},\{0\}\right\}\right\}$
Dimension 5 operators in superpotential:
$\overline{5}^{-1} 10^{q} 10^{r} 10^{s}: \lambda^{\prime}=\{\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\}$, $\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\},\{\{\{\{0\},\{0\},\{0\}\},\{\{0\}$,

D-terms:
FI-terms: $k_{a}^{i} \kappa_{i}=\left(\begin{array}{c}4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}-4 t_{3} t_{4} \\ 16 t_{1} t_{2}-4 t_{1} t_{3}+4 t_{2} t_{3}-4 t_{1} t_{4}+4 t_{2} t_{4}-16 t_{3} t_{4} \\ -4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}+4 t_{3} t_{4} \\ -8 t_{1} t_{2}+8 t_{3} t_{4} \\ -8 t_{1} t_{2}-4 t_{1} t_{3}-4 t_{2} t_{3}+4 t_{1} t_{4}+4 t_{2} t_{4}+8 t_{3} t_{4}\end{array}\right)$
singlet D-terms: $\mathrm{q}_{\alpha \mathrm{a}} \mathrm{S}^{\alpha} \bar{S}^{\bar{\beta}}=\left(\begin{array}{c}-\mathrm{S}_{2,1} \mathrm{~S}^{\dagger}{ }_{2,1}-\mathrm{S}_{5,1} \mathrm{~S}^{\dagger}{ }_{5,1} \\ \mathrm{~S}_{2,1} \mathrm{~S}_{2,1}^{\dagger}+\mathrm{S}_{2,3} \mathrm{~S}_{2,3}^{\dagger}+\mathrm{S}_{2,4} \mathrm{~S}^{\dagger}{ }_{2,4} \\ -\mathrm{S}_{2,3} \mathrm{~S}_{2,3}-\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger} \\ -\mathrm{S}_{2,4} \mathrm{~S}_{2,4}^{\dagger} \\ \mathrm{S}_{5,1} \mathrm{~S}_{5,1}^{\dagger}+\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger}\end{array}\right)$

allowed operators:

- Operators

basic superpotential terms:
$\bar{H} 10^{p} 10^{q}: Y^{(u)}=\left(\begin{array}{ccc}(0) & (0) & (1) \\ (0) & (0) & (1) \\ (1) & (1) & (0)\end{array}\right) ~ « r a n k 2$
$H 5^{p} 10^{q}: Y^{(d)}=\left(\begin{array}{ccc}(0) & (0) & (0) \\ (0) & (0) & (0) \\ (0) & (0) & (0)\end{array}\right) \quad$ ~rank 0
$\left.\boldsymbol{H} \bar{H}: \mu={ }_{11}\right) \quad \longleftarrow \mu$-term vanishes
$\mathrm{W}_{\text {sing }}=\{0\}$
R-parity violating terms in superpotential:
$\bar{H}^{\mathrm{p}}: \rho=\left(\begin{array}{c}0 \\ \mathrm{~S}_{2,4} \\ \mathrm{~S}_{2,4}\end{array}\right)$
$\left.\left.\left.\left.10^{p} \overline{5}^{q} \overrightarrow{5}^{r}: \lambda=\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{10\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\right\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\right\},\{0\},\{0\},\{0\}\right\}\right\}$
Dimension 5 operators in superpotential:
$\overline{5}^{-1} 10^{q} 10^{r} 10^{s}: \lambda^{\prime}=\{\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\}$, $\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\},\{\{\{\{0\},\{0\},\{0\}\},\{\{0\}$,

D-terms:
FI-terms: $k_{a}^{i} \kappa_{i}=\left(\begin{array}{c}4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}-4 t_{3} t_{4} \\ 16 t_{1} t_{2}-4 t_{1} t_{3}+4 t_{2} t_{3}-4 t_{1} t_{4}+4 t_{2} t_{4}-16 t_{3} t_{4} \\ -4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}+4 t_{3} t_{4} \\ -8 t_{1} t_{2}+8 t_{3} t_{4} \\ -8 t_{1} t_{2}-4 t_{1} t_{3}-4 t_{2} t_{3}+4 t_{1} t_{4}+4 t_{2} t_{4}+8 t_{3} t_{4}\end{array}\right)$
singlet D-terms: $\mathrm{q}_{\alpha \mathrm{a}} \mathrm{S}^{\alpha} \bar{S}^{\bar{\beta}}=\left(\begin{array}{c}-\mathrm{S}_{2,1} \mathrm{~S}^{\dagger}{ }_{2,1}-\mathrm{S}_{5,1} \mathrm{~S}^{\dagger}{ }_{5,1} \\ \mathrm{~S}_{2,1} \mathrm{~S}_{2,1}^{\dagger}+\mathrm{S}_{2,3} \mathrm{~S}_{2,3}^{\dagger}+\mathrm{S}_{2,4} \mathrm{~S}^{\dagger}{ }_{2,4} \\ -\mathrm{S}_{2,3} \mathrm{~S}_{2,3}-\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger} \\ -\mathrm{S}_{2,4} \mathrm{~S}_{2,4}^{\dagger} \\ \mathrm{S}_{5,1} \mathrm{~S}_{5,1}^{\dagger}+\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger}\end{array}\right)$

allowed operators:

- Operators

basic superpotential terms:
$\bar{H} 10^{\mathrm{p}} 10^{\mathrm{a}}: \mathrm{Y}^{(\mathrm{u})}=\left(\begin{array}{ccc}(0) & (0) & (1) \\ (0) & (0) \\ (1) \\ (1) & (1) \\ (1) & (0)\end{array}\right) \longleftarrow \operatorname{rank} 2$
$H 5^{p} 10^{9}: Y^{(0)}=\left[\begin{array}{ccc}(0) & (0) & (0) \\ 00 & (0) & (0) \\ (0) & (0) & (0)\end{array}\right) \longleftarrow$ rank 0
ні: $\mu={ }_{(1)} \longleftarrow \mu$-term vanishes
$\mathrm{W}_{\text {sing }}=\{0\}$
R-parity violating terms in superpotential:
$\bar{H} L^{p} ; \rho=\binom{0}{s_{24} 4} \longleftarrow$ zero for $\left\langle\mathbf{1}_{2,4}\right\rangle=0$, non-zero otherwise $\left.\left.10^{p} \overline{5}^{q} \overrightarrow{5}^{r}: \lambda=\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{10\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\right\}\right\}$

Dimension 5 operators in superpotential:
$5^{p} 10^{q} 10^{r} 10^{s}: \lambda^{\prime}=\{\{1\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\}$ $\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{10\},\{0\},\{0\}\}\},\{\{10\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{10\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\},\{1\{\{0\},\{0\},\{0\}\},\{\{0\}$,

D-terms:
FI-terms: $k_{a}^{i} \kappa_{i}=\left(\begin{array}{c}4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}-4 t_{3} t_{4} \\ 16 t_{1} t_{2}-4 t_{1} t_{3}+4 t_{2} t_{3}-4 t_{1} t_{4}+4 t_{2} t_{4}-16 t_{3} t_{4} \\ -4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}+4 t_{3} t_{4} \\ -8 t_{1} t_{2}+8 t_{3} t_{4} \\ -8 t_{1} t_{2}-4 t_{1} t_{3}-4 t_{2} t_{3}+4 t_{1} t_{4}+4 t_{2} t_{4}+8 t_{3} t_{4}\end{array}\right)$
singlet D-terms: $\mathrm{q}_{\alpha \mathrm{a}} \mathrm{S}^{\alpha} \bar{S}^{\bar{\beta}}=\left(\begin{array}{c}-\mathrm{S}_{2,1} \mathrm{~S}^{\dagger}{ }_{2,1}-\mathrm{S}_{5,1} \mathrm{~S}_{5,1}^{\dagger} \\ \mathrm{S}_{2,1} \mathrm{~S}_{2,1}^{\dagger}+\mathrm{S}_{2,3} \mathrm{~S}_{2,3}^{\dagger}+\mathrm{S}_{2,4} \mathrm{~S}^{\dagger}{ }_{2,4} \\ -\mathrm{S}_{2,3} \mathrm{~S}_{2,3}^{\dagger}-\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger} \\ -\mathrm{S}_{2,4} \mathrm{~S}_{2,4}^{\dagger} \\ \mathrm{S}_{5,1} \mathrm{~S}_{5,1}^{\dagger}+\mathrm{S}_{5,3} \mathrm{~S}_{5,3}\end{array}\right)$

allowed operators:

- Operators

basic superpotential terms:
$\bar{H} 10^{p} 10^{q}: Y^{(u)}=\left(\begin{array}{ccc}(0) & (0) & (1) \\ (0) & (0) & (1) \\ (1) & (1) & (0)\end{array}\right) ~ « r a n k 2$
$H 5^{p} 10^{q}: Y^{(d)}=\left(\begin{array}{ccc}(0) & (0) & (0) \\ (0) & (0) & (0) \\ (0) & (0) & (0)\end{array}\right) \quad$ ~rank 0
$\left.\boldsymbol{H} \bar{H}: \mu={ }_{11}\right) \quad \longleftarrow \mu$-term vanishes
$\mathrm{W}_{\text {sing }}=\{0\}$
R-parity violating terms in superpotential:
$\bar{H} L^{p} ; \rho=\binom{0}{s_{24} 4} \longleftarrow$ zero for $\left\langle\mathbf{1}_{2,4}\right\rangle=0$, non-zero otherwise
$\left.10^{p} \overline{5}^{q} \overline{5}^{r}: \lambda=\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\right\}$
Dimension 5 operators in superpotential:
$\overline{5}^{-1} 10^{q} 10^{r} 10^{s}: \lambda^{\prime}=\{\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\}$, $\{2\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{10\},\{0\},\{0\}\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{00\},\{0\},\{0\}\}\},\{\{10\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\},\{\{\{10\},\{0\},\{0\}\},\{\{0\}$,

D-terms:
FI-terms: $k_{a}^{i} \kappa_{i}=\left(\begin{array}{c}4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}-4 t_{3} t_{4} \\ 16 t_{1} t_{2}-4 t_{1} t_{3}+4 t_{2} t_{3}-4 t_{1} t_{4}+4 t_{2} t_{4}-16 t_{3} t_{4} \\ -4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}+4 t_{3} t_{4} \\ -8 t_{1} t_{2}+8 t_{3} t_{4} \\ -8 t_{1} t_{2}-4 t_{1} t_{3}-4 t_{2} t_{3}+4 t_{1} t_{4}+4 t_{2} t_{4}+8 t_{3} t_{4}\end{array}\right)$
singlet D-terms: $\mathrm{q}_{\alpha \mathrm{a}} \mathrm{S}^{\alpha} \bar{S}^{\bar{\beta}}=\left(\begin{array}{c}-\mathrm{S}_{2,1} \mathrm{~S}^{\dagger}{ }_{2,1}-\mathrm{S}_{5,1} \mathrm{~S}^{\dagger}{ }_{5,1} \\ \mathrm{~S}_{2,1} \mathrm{~S}_{2,1}^{\dagger}+\mathrm{S}_{2,3} \mathrm{~S}_{2,3}^{\dagger}+\mathrm{S}_{2,4} \mathrm{~S}^{\dagger}{ }_{2,4} \\ -\mathrm{S}_{2,3} \mathrm{~S}_{2,3}-\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger} \\ -\mathrm{S}_{2,4} \mathrm{~S}_{2,4}^{\dagger} \\ \mathrm{S}_{5,1} \mathrm{~S}_{5,1}^{\dagger}+\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger}\end{array}\right)$

An exhaustive scan over favourable Cicys:

Aim: Find all viable line bundle $\operatorname{SU}(5)$ GUT models (and later all standard models) on favourable Cicys with freely-acting symmetries.

Aim: Find all viable line bundle $\operatorname{SU}(5)$ GUT models (and later all standard models) on favourable Cicys with freely-acting symmetries.

68 Cicys with $h^{1,1}(X) \leq 6$

Aim: Find all viable line bundle $\operatorname{SU}(5)$ GUT models (and later all standard models) on favourable Cicys with freely-acting symmetries.

68 Cicys with $h^{1,1}(X) \leq 6$

Requires scanning over $\sim 10^{40}$ bundles $\left(k_{a}^{i}\right)$

Number of consistent SU(5) GUT models with correct indices:

$h^{1,1}(X)$	I	2	3	4	5	6	total
\#models	0	0	6	552	2173 I	41036	63325

Number of consistent SU(5) GUT models with correct indices:

$h^{1,1}(X)$	I	2	3	4	5	6	total
\#models	0	0	6	552	2173 I	41036	63325

After demanding absence of $\overline{10}$ and presence of $5-\overline{5}$ pair:

34989 models

Number of consistent SU(5) GUT models with correct indices:

$h^{1,1}(X)$	I	2	3	4	5	6	total
\#models	0	0	6	552	21731	41036	63325

After demanding absence of $\overline{10}$ and presence of $5-\overline{5}$ pair:

34989 models

Available at:
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html

Number of consistent SU(5) GUT models with correct indices:

$h^{1,1}(X)$	I	2	3	4	5	6	total
\#models	0	0	6	552	2173 I	41036	63325

After demanding absence of $\overline{10}$ and presence of $5-\overline{5}$ pair:

34989 models

Available at:
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html

Roughly, a factor 10 more models per CY for each additional Kahler parameter!

Conclusion

- String theory has all generic ingredients to account for observed particle physics.
- Detailed model building now allows construction of models with the correct spectrum.
- Finer details, such as the values of Yukawa couplings, are within reach but a fully realistic model has yet to be found.
- Possible string physics beyond the standard model includes supersymmetry, additional $U(1)$ gauge symmetries, axions, SM singlets, . . . Details depend on model.

Open problems:

- What is the number of string standard models?
- Details of moduli stabilisation and supersymmetry breaking.
- Many hard mathematical problems related to computation of couplings for CY compactifications.
- How to go beyond CY manifolds: G2 manifolds, G-structure manifolds, non-geometric compactifications, . . .
-> much of the required mathematics not yet available

Open problems:

- What is the number of string standard models?
- Details of moduli stabilisation and supersymmetry breaking.
- Many hard mathematical problems related to computation of couplings for CY compactifications.
- How to go beyond CY manifolds: G2 manifolds, G-structure manifolds, non-geometric compactifications, . . .
-> much of the required mathematics not yet available

Is the choice of topology arbitrary or will string theory provide a mechanism to select a specific topology?

Thanks

