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A Simple, Practical Problem in Quantum Chromodynamics

Supercomputer Computations in Quantum Chromodynamics
Consider the amplitude for two gluons to collide and produce four: gg→gggg.

Before modern computers, this would have been computationally intractable
220 Feynman diagrams

, thousands of terms

In 1985, Parke and Taylor took up the challenge
using every theoretical tool available

and the world’s best supercomputers

final formula fit into 8 pages
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A Simple, Practical Problem in Quantum Chromodynamics

The Discovery of Incredible, Unanticipated Simplicity
They soon guessed a simplified form of the amplitude

(checked numerically):

—which naturally suggested the amplitude for all multiplicity!

=
〈a b〉4

〈1 2〉〈2 3〉〈3 4〉〈4 5〉〈5 6〉〈6 1〉 δ
2×2(λ·λ̃

)

(
≡δ2×2( n∑

a=1

λαa λ̃
α̇
a
))

Here, we have used spinor variables to describe the external momenta:

λ̃1̇
1

λ̃2̇
1

pµa

7→ pαα̇a ≡ pµaσ
αα̇
µ

=

(
p0

a + p3
a p1

a−ip2
a

p1
a+ip2

a p0
a− p3

a

)

≡ λαa λ̃α̇a

⇔ “ a〉[a ”

Notice that pµpµ=det(pαα̇)

=0 for massless particles.

which is made manifest

The (local) Lorentz group, SL(2)L×SL(2)R, acts on λa and λ̃a, respectively.The Grassmannian G(k, n): the linear span of k vectors in Cn.Momentum conservation becomes the
geometric statement:

λ⊂ λ̃⊥ and λ̃⊂λ⊥.

Thus, Lorentz invariants must be constructed out of determinants:

〈a b〉≡ det(λa, λb), [a b]≡ det(λ̃a, λ̃b)

λ̃β̇b
The action of the little group corresponds to:

(
λa, λ̃a

)
7→ (ta λa, t–1

a λ̃a
)

: Ψha
a 7→ t–2ha

a Ψha
a
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The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Physically Observable Data Describing Asymptotic States
Beyond (Mere) Scattering Amplitudes: On-Shell Functions
Basic Building Blocks: S-Matrices for Three Massless Particles

On What Data Does a Scattering Amplitude Depend?
A scattering amplitude, An, can be a generally complicated(?) function of all

the physically observable data describing each of the particles involved.

An

≡

Physical data for the ath particle: |a〉

•

pµa momentum

, on-shell: p2
a m2

a =0

•
• qa all the non-kinematical quantum

numbers of a (color, flavor, . . . )

Although a Lagrangian formalism requires that we use polarization tensors,
it is impossible to continuously define polarizations for each helicity state
without introducing unobservable (gauge) redundancy

—e.g. for σa =1:

εµa ∼ εµa + α(pa)pµa
Such unphysical baggage is almost certainly responsible for the incredible

obfuscation of simplicity in the traditional approach to quantum field theory.
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Broadening the Class of Physically Meaningful Functions
We are interested in the class of functions involving only observable quantities

unitarity dictates that we marginalize over unobserved states

—integrating

over the Lorentz-invariant phase space (“LIPS”)

for each particle I, and

summing over the possible states

(helicities, masses, colours, etc.).

AL(. . . , I)×AR(I, . . .)

≡ 4×nV

3×nI

4

= number of excess δ-functions
(= minus number of remaining integrations)

> 0

⇒ (n̂δ) kinematical constraints

= 0

⇒ ordinary (rational) function

< 0

⇒ ( n̂δ) non-trivial integrations
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Building-Up On-Shell Diagrams with “BCFW” Bridges
Very complex on-shell diagrams can be constructed by successively

adding “BCFW” bridges to diagrams

(an extremely useful tool!):
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Very complex on-shell diagrams can be constructed by successively
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Adding the bridge has the effect of shifting the momenta pa and pb
flowing into the diagram f0 according to:

λaλ̃a 7→ λâλ̃â = λaλ̃a −

α

λI λ̃I and λbλ̃b 7→ λb̂λ̃b̂ = λbλ̃b +

α

λI λ̃I ,

introducing a new parameter α, in terms of which we may write:

f (. . . , a, b, . . .) =
dα
α

f0(. . . , â, b̂, . . .)

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Building-Up On-Shell Diagrams with “BCFW” Bridges
Very complex on-shell diagrams can be constructed by successively

adding “BCFW” bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta pa and pb
flowing into the diagram f0 according to:
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λaλ̃a 7→ λâλ̃â = λa

(
λ̃a−αλ̃b

)
and λbλ̃b 7→ λb̂λ̃b̂ =

(
λb +αλa

)
λ̃b,

introducing a new parameter α, in terms of which we may write:

f (. . . , a, b, . . .) =
dα
α

f0(. . . , â, b̂, . . .)

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Building-Up On-Shell Diagrams with “BCFW” Bridges
Very complex on-shell diagrams can be constructed by successively

adding “BCFW” bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta pa and pb
flowing into the diagram f0 according to:
λaλ̃a 7→ λâλ̃â = λa
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The Analytic Boot-Strap: All-Loop Recursion Relations
Consider adding a BCFW bridge to the full n-particle scattering amplitude
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The Analytic Boot-Strap: All-Loop Recursion Relations
Consider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:

An = Ân(α→0) ∝
∮

α=0

dα
α
Ân(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)
the sum of residues away from the origin

—these come in two types:
factorization-channels and forward-limits
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An = Ân(α→0) ∝
∮

α=0

dα
α
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An = Ân(α→0) ∝
∮

α=0

dα
α
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An = Ân(α→0) ∝
∮

α=0

dα
α
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the sum of residues away from the origin:

—these come in two types:
factorization-channels and forward-limits
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Forward-limits and loop-momenta:

the familiar “off-shell” loop-momentum is represented by on-shell data as:

` ≡ λIλ̃I + αλ1λ̃n with d4` =
d2λId2λ̃I

vol(GL1)
dα 〈1 I〉 [n I]
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n !
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A(2)
4 =

=
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6 =
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Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes

—e.g. A(3)
6 :

A(3)
6 =

+ +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 =

+ +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 =

+ +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 =

+ +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = +

+

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 =

= =

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways
How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Building-Up Diagrams with “BCFW” Bridges
On-Shell (Recursive) Representations of Scattering Amplitudes
Exempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes
The BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)
n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)
6 :

A(3)
6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways
How can we characterize and systematically compute on-shell diagrams?

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
On-shell diagrams can be altered without changing their associated functions

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
On-shell diagrams can be altered without changing their associated functions

chains of equivalent three-particle vertices can be arbitrarily connected

any four-particle ‘square’ can be drawn in its two equivalent ways

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
On-shell diagrams can be altered without changing their associated functions

chains of equivalent three-particle vertices can be arbitrarily connected

any four-particle ‘square’ can be drawn in its two equivalent ways

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
On-shell diagrams can be altered without changing their associated functions

chains of equivalent three-particle vertices can be arbitrarily connected

any four-particle ‘square’ can be drawn in its two equivalent ways

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
On-shell diagrams can be altered without changing their associated functions

chains of equivalent three-particle vertices can be arbitrarily connected

any four-particle ‘square’ can be drawn in its two equivalent ways

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
On-shell diagrams can be altered without changing their associated functions

chains of equivalent three-particle vertices can be arbitrarily connected
any four-particle ‘square’ can be drawn in its two equivalent ways

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
On-shell diagrams can be altered without changing their associated functions

chains of equivalent three-particle vertices can be arbitrarily connected
any four-particle ‘square’ can be drawn in its two equivalent ways

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
On-shell diagrams can be altered without changing their associated functions

chains of equivalent three-particle vertices can be arbitrarily connected
any four-particle ‘square’ can be drawn in its two equivalent ways

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
On-shell diagrams can be altered without changing their associated functions

chains of equivalent three-particle vertices can be arbitrarily connected
any four-particle ‘square’ can be drawn in its two equivalent ways

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’:

Starting from any leg a, turn:

left at each white vertex;
right at each blue vertex.

Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’:

Starting from any leg a, turn:
left at each white vertex;

right at each blue vertex.
Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’:

Starting from any leg a, turn:
left at each white vertex;

right at each blue vertex.
Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’:

Starting from any leg a, turn:
left at each white vertex;

right at each blue vertex.
Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’:

Starting from any leg a, turn:
left at each white vertex;

right at each blue vertex.
Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’:

Starting from any leg a, turn:
left at each white vertex;

right at each blue vertex.
Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’:

Starting from any leg a, turn:
left at each white vertex;
right at each blue vertex.

Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’:

Starting from any leg a, turn:
left at each white vertex;
right at each blue vertex.

Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’:

Starting from any leg a, turn:
left at each white vertex;
right at each blue vertex.

Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’:

Starting from any leg a, turn:
left at each white vertex;
right at each blue vertex.

Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’:

Starting from any leg a, turn:
left at each white vertex;
right at each blue vertex.

Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’:

Starting from any leg a, turn:
left at each white vertex;
right at each blue vertex.

Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’:

Starting from any leg a, turn:
left at each white vertex;
right at each blue vertex.

Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’

Starting from any leg a, turn:
left at each white vertex;
right at each blue vertex.

Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’

Starting from any leg a, turn:
left at each white vertex;
right at each blue vertex.

Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’

Starting from any leg a, turn:
left at each white vertex;
right at each blue vertex.

Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’

Starting from any leg a, turn:
left at each white vertex;
right at each blue vertex.

Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’

Starting from any leg a, turn:
left at each white vertex;
right at each blue vertex.

Let σ(a) denote where path terminates.

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Combinatorial Characterization of On-Shell Diagrams
These moves leave invariant a permutation defined by ‘left-right paths’.

Recall that different contributions to A(3)
6 were related by rotation:
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σ :

(1 2 3 4 5 6

↓ ↓ ↓ ↓ ↓ ↓
3 5 6 1 2 4

)
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Combinatorial Characterization of On-Shell Diagrams
Notice that the merge and square moves leave the number of ‘faces’ of an

on-shell diagram invariant.

Diagrams with different numbers of faces
can be related by ‘reduction’

—also known as ‘bubble deletion’:

Bubble-deletion does not, however, relate ‘identical’ on-shell diagrams:

it leaves behind an overall factor of dα/α in the on-shell function
and it alters the corresponding left-right path permutation

Such factors of dα/α arising from bubble deletion encode loop integrands!
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on-shell diagram invariant. Diagrams with different numbers of faces
can be related by ‘reduction’—also known as ‘bubble deletion’:

Bubble-deletion does not, however, relate ‘identical’ on-shell diagrams:
it leaves behind an overall factor of dα/α in the on-shell function
and it alters the corresponding left-right path permutation

Such factors of dα/α arising from bubble deletion encode loop integrands!
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Canonical Coordinates for Computing On-Shell Functions
Recall that attaching ‘BCFW bridges’ can lead to very rich on-shell diagrams.
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Recall that attaching ‘BCFW bridges’ can lead to very rich on-shell diagrams.

Conveniently, adding a BCFW bridge acts very nicely on permutations:

it merely transposes the images of σ!
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Canonical Coordinates for Computing On-Shell Functions
Recall that attaching ‘BCFW bridges’ can lead to very rich on-shell diagrams.

Read the other way,

we can ‘peel-off’ bridges and thereby decompose
a permutation into transpositions according to σ = (a b) ◦ σ′
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There are many ways to decompose a permutation into transpositions

—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8

‘Bridge’ Decomposition

σ :

fσ
fσ
fσ
fσ
fσ
fσ
fσ
fσ
fσ

(1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{

3 5 6 7 8 10

}

{

5 3 6 7 8 10

}
{

5 6 3 7 8 10

}
{

6 5 3 7 8 10

}
{

6 7 3 5 8 10

}
{

7 6 3 5 8 10

}
{

7 6 3 8 5 10

}
{

7 8 3 6 5 10

}
{

7 8 3 10 5 6

}

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)
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(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

‘Bridge’ Decomposition

σ :
f0
f1
f2
f3
f4
f5

f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}

{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)

(2 4)
(4 6)
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The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

‘Bridge’ Decomposition

σ :
f0
f1
f2
f3
f4
f5
f6

f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}

{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)

(4 6)
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The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

‘Bridge’ Decomposition

σ :
f0
f1
f2
f3
f4
f5
f6
f7

f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}

{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

‘Bridge’ Decomposition

σ :
f0
f1
f2
f3
f4
f5
f6
f7

f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}

{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f8 =
∏

a=σ(a)+n

(
δ4(η̃a

)
δ2(λ̃a

)) ∏

b=σ(b)

(
δ2(λb

))

C≡




1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0




‘Bridge’ Decomposition

σ :
f0
f1
f2
f3
f4
f5
f6
f7

f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}

{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f8 =
∏

a=σ(a)+n

(
δ4(η̃a

)
δ2(λ̃a

)) ∏

b=σ(b)

(
δ2(λb

))

C≡




1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0




‘Bridge’ Decomposition

σ :
f0
f1
f2
f3
f4
f5
f6
f7

f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}

{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f8 =δ3×4(C·η̃
)
δ3×2(C·λ̃

)
δ2×3(λ·C⊥

)

C≡




1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0




‘Bridge’ Decomposition

σ :
f0
f1
f2
f3
f4
f5
f6
f7

f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}

{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f8 =δ3×4(C·η̃
)
δ3×2(C·λ̃

)
δ2×3(λ·C⊥

)

C≡




1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0




‘Bridge’ Decomposition

σ :
f0
f1
f2
f3
f4
f5
f6
f7

f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}

{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f7 =
dα8

α8
δ3×4(C·η̃

)
δ3×2(C·λ̃

)
δ2×3(λ·C⊥

)

C≡




1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 α8




(4 6) : c6 7→ c6 + α8 c4

‘Bridge’ Decomposition

σ :
f0
f1
f2
f3
f4
f5
f6

f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}

{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)

(4 6)
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The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f6 =
dα7

α7

dα8

α8
δ3×4(C·η̃

)
δ3×2(C·λ̃

)
δ2×3(λ·C⊥

)

C≡




1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 α7 0 0
0 0 0 1 0 α8




(2 4) : c4 7→ c4 + α7 c2

‘Bridge’ Decomposition

σ :
f0
f1
f2
f3
f4
f5

f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}

{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)

(2 4)
(4 6)
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The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f5 =
dα6

α6

dα7

α7

dα8

α8
δ3×4(C·η̃

)
δ3×2(C·λ̃

)
δ2×3(λ·C⊥

)

C≡




1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 α7 α6α7 0
0 0 0 1 α6 α8




(4 5) : c5 7→ c5 + α6 c4

‘Bridge’ Decomposition

σ :
f0
f1
f2
f3
f4

f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}

{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)

(4 5)
(2 4)
(4 6)
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The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f4 =
dα5

α5
· · · dα8

α8
δ3×4(C·η̃

)
δ3×2(C·λ̃

)
δ2×3(λ·C⊥

)

C≡




1 2 3 4 5 6
1 α5 0 0 0 0
0 1 0 α7 α6α7 0
0 0 0 1 α6 α8




(1 2) : c2 7→ c2 + α5 c1

‘Bridge’ Decomposition

σ :
f0
f1
f2
f3

f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}

{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)

(1 2)
(4 5)
(2 4)
(4 6)
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The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f3 =
dα4

α4
· · · dα8

α8
δ3×4(C·η̃

)
δ3×2(C·λ̃

)
δ2×3(λ·C⊥

)

C≡




1 2 3 4 5 6
1 α5 0 α4α5 0 0
0 1 0 (α4 +α7)α6α7 0
0 0 0 1 α6 α8




(2 4) : c4 7→ c4 + α4 c2

‘Bridge’ Decomposition

σ :
f0
f1
f2

f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}

{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)

(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Combinatorial Classification of On-Shell Functions in Planar SYM
Canonical Coordinates, Computation, & the Auxiliary Grassmannian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f2 =
dα3

α3
· · · dα8

α8
δ3×4(C·η̃

)
δ3×2(C·λ̃

)
δ2×3(λ·C⊥

)

C≡




1 2 3 4 5 6
1 (α3+α5) 0 α4α5 0 0
0 1 0 (α4 +α7)α6α7 0
0 0 0 1 α6 α8




(1 2) : c2 7→ c2 + α3 c1

‘Bridge’ Decomposition

σ :
f0
f1

f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}

{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)

(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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The Combinatorics of Scattering (and Grassmannian Geometry)

Representations of Loop Amplitudes via Recursion
Parke-Taylor’s Guess, Thirty Years Later

On-Shell Recursion of Loop-Amplitude Integrands
Let’s look at an example of how loop amplitudes are represented by recursion.

For A(2),1
4 , the only terms come from the ‘forward limit’ of the tree A(3),0

6 :

A(2),0
4 ×

∫

`∈R3,1

dlog
(

`2

(` `∗)2

)
dlog

(
(`+p1)2

(` `∗)2

)
dlog

(
(`+p1+p2)2

(` `∗)2

)
dlog

(
(` p4)2

(` `∗)2

)

= A(2),0
4 ×

∫

`∈R3,1

d4`
(p1+p2)2(p3+p4)2

`2(`+p1)2(`+p1+p2)2(` p4)2
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Pushing Parke and Taylor’s Amplitude Beyond Tree-Level
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complexity of the computations. It has also been useful to use the results for the cuts

already computed when computing the coefficients of integrals detected by new cuts. In this

way, one can insure the consistency of results from different cuts and reduce the number of

unknowns at the same time.

Let us make a further comment about our computation procedure. The conformal inte-

grals with pentagon loops have numerators containing the loop momenta in combinations

like (k + l)2, where l is the loop momentum and k is an external on-shell momentum. If

the propagator with momentum l is cut then, on that cut, one cannot distinguish between

(k+ l)2 and 2k · l. However, it is easy to see that one can choose to cut another propagator

and in that case this ambiguity does not arise and the numerator factor is uniquely defined.

IV. RESULTS

We use dual variable notation (see Ref. [48]) for the integrals. The external dual variables

are listed in clockwise direction. To the left loop we associate the dual variable xp and to

the right loop we associate the dual variable xq. We use the notation xij ≡ xi − xj .

We introduce the following notation which will be useful in the following


a b c · · ·
a′ b′ c′ · · ·


 = x2

aa′x
2
bb′x

2
cc′ · · · ± (permutations of {a′, b′, c′, . . .}). (6)

The sign ± above takes into account the signature of the permutation of {a′, b′, c′, . . .}. It

is easy to show that 
a b c · · ·
a′ b′ c′ · · ·


 = det

i∈{a,b,c,··· }
j∈{a′,b′,c′,··· }

x2
ij . (7)

For some topologies, the expansion of the
[ ]

symbol yields terms that would cancel

propagators. For those cases we make the convention that all the terms that would cancel

propagators are absent. In fact, as we will see, terms that would cancel propagators of the

double pentagon topologies naturally yield coefficients for some of the topologies with a

smaller number of propagators.
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A. Double box topologies

In the case of the double box topologies the massive legs attached to the vertices incident

with the common edge have to be a sum of at least three massless momenta. The cases

where these massive legs are the sum of two massless momenta are treated separately in the

subsection. IVA7. This distinction only arises for the double box topologies.

1. No legs attached

1

2

(
x2
a,a+2

)2
x2
a−1,a+1 (8)

1

4

(
x2
ab

)2
x2
a−1,a+1 (9)

− 1

4
x2
ab

(
x2
a,b−1x

2
a−1,b − x2

abx
2
a−1,b−1

)2
(10)

2. One massless leg attached

1

4

(
x2
a,b+1x

2
a+1,b − x2

abx
2
a+1,b+1

)
x2
a+2,b (11)

1

4

(
−x2

a−1,bx
2
a,a+2x

2
a+1,b + x2

a−1,a+2x
2
abx

2
a+1,b−

− x2
a−1,a+1x

2
abx

2
a+2,b

)
(12)

− 1

4
x2
abx

2
a+1,bx

2
b−1,b+1 (13)

− 1

4
x2
a−3,ax

2
a−2,ax

2
a−1,a+1 (14)
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1

4

(
x2
a−4,a−1x

2
a−3,a − 2x2

a−4,ax
2
a−3,a−1

)
x2
a−2,a (15)

3. Two massless legs attached

1

4

(
x2
a,b+2x

2
a+1,bx

2
b−1,b+1 − x2

a,b+1x
2
a+1,bx

2
b−1,b+2+

+ x2
a,b+1x

2
a+1,b−1x

2
b,b+2

)
(16)

1

4

(
−x2

a−1,b−1x
2
a,b+1x

2
a+1,b + x2

a−1,b−1x
2
abx

2
a+1,b+1−

− x2
a−1,a+1x

2
abx

2
b−1,b+1

)
(17)

1

4

(
x2
a−2,a+3x

2
a−1,a+1x

2
a,a+2 − 2x2

a−2,a+2x
2
a−1,a+1x

2
a,a+3+

+ x2
a−2,a+1x

2
a−1,a+2x

2
a,a+3 − x2

a−2,ax
2
a−1,a+2x

2
a+1,a+3

)
(18)

4. One massive leg attached

1

4
x2
a−2,ax

2
a−1,a+1x

2
a,a+2 (19)

1

4

(
x2
a−1,a+1x

2
a,b−1x

2
a+1,b − x2

a−1,a+1x
2
abx

2
a+1,b−1

)
(20)

0 (21)

1

4

(
x2
acx

2
a+1,bx

2
b,c−1 − x2

abx
2
a+1,cx

2
b,c−1−

− x2
a,c−1x

2
a+1,bx

2
bc + x2

abx
2
a+1,c−1x

2
bc

)
(22)
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0 (23)

0 (24)

5. One massless leg and one massive leg attached

− 1

4
x2
a−2,ax

2
a−1,a+2x

2
a+1,a+3 (25)

0 (26)

1

4
x2
a−2,a

(
x2
a−1,bx

2
a+1,b−1 − x2

a−1,b−1x
2
a+1,b

)
(27)

1

4

(
−x2

acx
2
a+1,bx

2
b+1,c−1 + x2

abx
2
a+1,cx

2
b+1,c−1+

+ x2
a,c−1x

2
a+1,bx

2
b+1,c − x2

abx
2
a+1,c−1x

2
b+1,c

)
(28)

0 (29)

0 (30)

6. Two massive legs attached

0 (31)
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1

0 (32)

0 (33)

0 (34)

7. Extra double boxes

1

4

(
−x2

a−2,bx
2
a−1,a+2x

2
a+1,b + x2

a−2,a+2x
2
a−1,bx

2
a+1,b+

+ x2
a−2,bx

2
a−1,a+1x

2
a+2,b − x2

a−2,a+1x
2
a−1,bx

2
a+2,b

)
(35)

− 1

4


a+ 1 b − 1 b

b b+ 1 a − 1


 (36)

0 (37)

− 1

4


 a a + 1 a + 2

a + 2 a + 3 a − 2


 (38)

1

4

(
x2
a−3,a+1x

2
a−2,a+2 − x2

a−3,a+2x
2
a−2,a+1

)
x2
a,a+2 (39)

− 1

4


a+ 1 b − 1 b

b+ 1 b+ 2 a − 1


 (40)

0 (41)
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1

− 1

4


 a a + 1 a + 2

a + 3 a + 4 a − 2


 (42)

1

4

(
x2
a−3,a+3x

2
a−2,a+1 − x2

a−3,a+1x
2
a−2,a+3

)
x2
a,a+2 (43)

− 1

4


a − 1 a a+ 1

a+ 3 a − 4 a − 3


 (44)

0 (45)

0 (46)

− 1

2


2 3 4

6 7 8


 (47)

0 (48)

− 1

4


a − 2 a − 1 a

a+ 2 b − 1 b


 (49)

− 1

4


a − 3 a − 2 a − 1

a+ 1 a + 2 a+ 3


 (50)

0 (51)

0 (52)
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1

− 1

4


 a a + 1 b − 1

b+ 1 c − 1 c


 (53)

B. Kissing double-box topologies

− 1

4


a a + 1 b − 1 b

b b+ 1 a − 1 a


+

1

4


 a a + 1

b − 1 b




 b b+ 1

a − 1 a


 =

1

4

(
x2
a−1,b+1x

2
a+1,b−1

(
x2
ab

)
2 − x2

a−1,b−1x
2
a+1,b+1

(
x2
ab

)
2+

+ x2
a−1,a+1x

2
b−1,b+1

(
x2
ab

)
2 − x2

a−1,bx
2
a,b+1x

2
a+1,b−1x

2
ab−

− x2
a−1,b+1x

2
a,b−1x

2
a+1,bx

2
ab + x2

a−1,b−1x
2
a,b+1x

2
a+1,bx

2
ab+

+ x2
a−1,bx

2
a,b−1x

2
a+1,b+1x

2
ab

)
(54)

− 1

4


a+ 1 a+ 2 b − 1 b

b b+ 1 a − 1 a


+

1

4


a − 1 a

b b+ 1




a + 1 a + 2

b − 1 b




(55)

− 1

4


a+ 1 a+ 2 b − 1 b

b+ 1 b+ 2 a − 1 a


+

1

4


a+ 1 a+ 2

b − 1 b




b+ 1 b+ 2

a − 1 a




(56)

− 1

4


a a+ 1 b − 1 b

b b+ 1 c − 1 c


+

1

4


 a a+ 1

b − 1 b




 b b+ 1

c − 1 c


 (57)

− 1

4


 a a+ 1 b − 1 b

b+ 1 b+ 2 c − 1 c


+

1

4


 a a + 1

b − 1 b




b+ 1 b+ 2

c − 1 c




(58)

− 1

4


a a + 1 b − 1 b

c c+ 1 d − 1 d


+

1

4


 a a + 1

b − 1 b




 c c+ 1

d − 1 d


 (59)
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1

C. Box-Pentagon topologies

1. No legs attached

1

4
x2
abx

2
a+1,q

(
x2
a,b+1x

2
a−1,b − x2

abx
2
a−1,b+1

)
(60)

1

2
x2
a,a+2x

2
a+1,q

(
x2
a−1,a+2x

2
a,a+3 − x2

a−1,a+3x
2
a,a+2

)
(61)

2. One massless leg attached

1

4

(
x2
a−1,b+1x

2
ab − x2

a−1,bx
2
a,b+1

) (
x2
a+1,qx

2
a+2,b − x2

a+1,bx
2
a+2,q

)
(62)

1

4
x2
a−1,b

(
x2
abx

2
a+1,qx

2
b−1,b+1 + x2

a,b+1x
2
a+1,bx

2
b−1,q − x2

abx
2
a+1,b+1x

2
b−1,q

)

(63)

1

4

(
x2
a−4,ax

2
a−3,ax

2
a−2,qx

2
a−1,a+1 − x2

a−4,a+1x
2
a−3,ax

2
a−2,ax

2
a−1,q+

+ 2x2
a−4,ax

2
a−3,a+1x

2
a−2,ax

2
a−1,q − x2

a−4,ax
2
a−3,ax

2
a−2,a+1x

2
a−1,q

)

(64)

3. One massive leg attached

0 (65)

1

4

(
x2
aqx

2
a+1,b − x2

abx
2
a+1,q

) (
x2
bcx

2
b+1,c−1 − x2

b,c−1x
2
b+1,c

)
(66)

1

4
x2
a−1,a+1x

2
aq

(
x2
a+1,b−1x

2
a+2,b − x2

a+1,bx
2
a+2,b−1

)
(67)
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1

4. One massless, one massive leg attached

0 (68)

− 1

4


 a a + 1 b b+ 1

b+ 2 c − 1 c q


 . (69)

Note that in the previous formula we suppress the terms containing x2
b+1,q which would

otherwise cancel a propagator of the underlying topology. When expanded out, the expres-

sion above has 12 terms.

− 1

4


a − 2 a − 1 a a + 1

a+ 2 b − 1 b q


 . (70)

In the previous formula we suppress the terms containing x2
a+1,q which would otherwise

cancel a propagator of the underlying topology.

5. Two massless legs attached

1

4


 a a + 1 b − 1 b

b+ 1 b+ 2 a − 1 q


 (71)

In the previous formula we suppress the terms containing x2
a+1,q which would otherwise

cancel a propagator of the underlying topology.
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1

1

4


a − 2 a − 1 a a + 1

a + 2 a+ 3 a − 3 q


−1

4


a − 1 a a+ 1 a+ 2

a+ 3 a − 3 a − 2 q


 =

1

4

(
−x2

a−3,a+1x
2
a−2,a+3x

2
a−1,qx

2
a,a+2 + x2

a−3,a−1x
2
a−2,a+3x

2
a+1,qx

2
a,a+2−

− x2
a−3,a+2x

2
a−2,a+1x

2
a−1,qx

2
a,a+3 + 2x2

a−3,a+1x
2
a−2,a+2x

2
a−1,qx

2
a,a+3+

+ x2
a−3,a+1x

2
a−2,a+3x

2
a−1,a+2x

2
aq + x2

a−3,a+2x
2
a−2,a+1x

2
a−1,a+3x

2
aq−

− 2x2
a−3,a+1x

2
a−2,a+2x

2
a−1,a+3x

2
aq + x2

a−3,a+2x
2
a−2,ax

2
a−1,qx

2
a+1,a+3−

− 2x2
a−3,ax

2
a−2,a+2x

2
a−1,qx

2
a+1,a+3 + 2x2

a−3,a−1x
2
a−2,a+2x

2
aqx

2
a+1,a+3−

− x2
a−3,ax

2
a−2,a+3x

2
a−1,a+2x

2
a+1,q − x2

a−3,a+2x
2
a−2,ax

2
a−1,a+3x

2
a+1,q+

+2x2
a−3,ax

2
a−2,a+2x

2
a−1,a+3x

2
a+1,q−2x2

a−3,a−1x
2
a−2,a+2x

2
a,a+3x

2
a+1,q

)
.

(72)

We have written down this formula to emphasize how nontrivial it is. We suppress

the terms containing x2
a−2,q and x2

a+2,q, respectively. These terms would otherwise cancel a

propagator of the underlying topology. We will see below that the box-pentagon topologies

with massless legs attached to the vertices of the edge common to both loops can in fact be

seen to originate in double-pentagon topologies, by cancelling some propagators.

D. Double pentagon topologies

1. No legs attached

− 1

4


a a+ 1 b − 1 b p

b b+ 1 a − 1 a q


 (73)

In the expansion of the above formula we drop terms that would cancel propagators (in

this case, the terms containing x2
ap, x

2
aq, x

2
bp, x

2
bq, or x

2
pq). This expression has 6 terms when

expanded.
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1

2. One massless leg attached

− 1

4


a+ 1 a+ 2 b − 1 b p

b b+ 1 a − 1 a q


 (74)

In the formula above we drop terms that would cancel propagators (in this case, the

terms are x2
bp, x

2
bq and x2

pq). This expression has 15 terms when expanded.

3. One massive leg attached

− 1

4


a a + 1 b − 1 b p

b b+ 1 c − 1 c q


 (75)

In the formula above we drop terms that would cancel propagators (in this case, the

terms containing x2
bp, x

2
bq or x2

pq). This expression has 16 terms when expanded.

4. Two massless legs attached

− 1

4


a+ 1 a+ 2 b − 1 b p

b+ 1 b+ 2 a − 1 a q


 (76)

In the formula we drop terms that would cancel propagators (in this case, the terms

containing x2
pq). This expression has 64 terms when expanded.

5. One massless, one massive leg attached

− 1

4


 a a+ 1 b − 1 b p

b+ 1 b+ 2 c − 1 c q


 (77)
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1

In the formula above we drop terms that would cancel propagators (in this case, the

terms containing x2
pq). This expression has 78 terms when expanded.

6. Two massive legs attached

− 1

4


a a+ 1 b − 1 b p

c c+ 1 d − 1 d q


 (78)

In the formula above we drop terms that would cancel propagators (in this case, the terms

containing x2
pq). When expanded, the above expression contains 96 terms. The number of

conformal dressings is 160 (the number of coefficients unrelated by symmetries is lower).

E. Assembly of the result

As explained in Sec. II, for the MHV amplitudes the ratio between the ℓ-loop amplitude

and the tree-level amplitude can be written as a sum between parity even and parity odd

contributions

M (ℓ)
n = M (ℓ),even

n +M (ℓ),odd
n . (79)

Then, the even part can be written

M (2),even
n = −π−De2γǫ

∫
dDxpd

Dxq

∑

σ

∑

i∈Topologies
siciIi, (80)

where the first sum runs over cyclic and anti-cyclic permutations of the external legs, the

second sum runs over all the topologies, si is a symmetry factor associated to topology i,

ci is the numerator of the topology i, as listed in Sec. IV and Ii is the denominator or the

product of propagators in the topology i.

Apart from the parity odd part which we have not computed, there is also a contribution

which is not detectable from four-dimensional cuts, denoted by M (2),µ. This part of the

result is such that its integrand vanishes in four dimensions, but the integral itself can give

contributions to the divergent and finite parts. In Ref. [32], for n = 6 case, this part of the

result was found to be closely related to O(ǫ) contributions at one loop, M (1),µ.

Based on previous computations we expect that the odd part and the µ integrals will

not be needed in order to compare with the Wilson loop results. The odd parts could be
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1

computed by using the leading singularity method (see Ref. [33] and also [34, 35]) or the

technique of maximal cuts of Ref. [31]. In order to compute M (2),µ, one would have to

compute D-dimensional cuts. In practice this is done by computing the cuts of N = 1

super-Yang-Mills in ten dimensions, dimensionally reduced to D dimensions.

V. DISCUSSION

In this paper we computed the even part of the two-loop planar MHV scattering ampli-

tudes in N = 4 super Yang-Mills. The answer can be expressed in terms of a finite (and

relatively small) number of two-loop pseudo-conformal integrals.

A computation of these integrals in dimensional regularization through the finite parts

(of order O(ǫ0)) would be very interesting and would allow a comparison with the results of

Ref. [28], where the corresponding Wilson loop computation was performed.

However, a computation of these integrals seems to be rather difficult. In Ref. [28]

the Wilson loop result was expressed in terms of some master integrals called: “hard”,

“curtain”, “cross”, “Y” and “factorized cross.” These master integrals depend on whether

some momenta are zero, massless or massive (this is similar to the situation for scattering

amplitudes; in that case also, the value of the integral depends on whether the external legs

are massive or massless).

It is interesting to note that for the Wilson loop computation, there are no new master

integrals beyond nine sides (this number arises by considering the “hard” integral where

all the momenta Q1, Q2 and Q3 are massive). For the scattering amplitude, however, new

integrals appear until twelve points, as shown in this paper. It would be interesting to get

a deeper understanding of this “mismatch.”

The results presented in this paper hint that a different organization of the result may

be possible. For example, the coefficients written down using the square brackets symbols

can be assembled over a common denominator whose topology is that of a double pentagon.

Sometimes, the coefficient of a given topology needs to be split into two contributions which

get assembled into different double pentagon topologies (see Eq. (72) for an example).

It is also noteworthy that part of the kissing double boxes coefficient neatly combines with

a double pentagon topology after multiplying the numerator and denominator by x2
pq, while

the remaining part has a factorized form. This factorized form is a product of “one-mass”

23

Monday, 13th April 2015 Joint NBIA-Oxford Colloquium The Vernacular of the S-Matrix: A Revolutionary Reformulation of QFT



The Physical Vernacular of the S-Matrix: On-Shell Observables
The On-Shell Analytic S-Matrix: All-Loop Recursion Relations
The Combinatorics of Scattering (and Grassmannian Geometry)

Representations of Loop Amplitudes via Recursion
Parke-Taylor’s Guess, Thirty Years Later

Pushing Parke and Taylor’s Amplitude Beyond Tree-Level
Not long ago, Cristian Vergu determined the next-to-next-to leading order
corrections to Parke and Taylor’s formula for the amplitude: gg→gg · · · g

using techniques based on
‘generalized unitarity’, and

expanding into a basis of
70 integrand topologies

the final formula: 11 pages

ar
X

iv
:0

90
8.

23
94

v1
  [

he
p-

th
] 

 1
7 

A
ug

 2
00

9

Brown/HET-1585

The two-loop MHV amplitudes in N = 4 supersymmetric

Yang-Mills theory

C. Vergu∗

Physics Department, Brown University, Providence, RI 02912, USA

Abstract

We compute the even part of the planar two-loop MHV amplitude in N = 4 supersymmetric

Yang-Mills theory, for an arbitrary number of external particles. The answer is expressed as a sum

of conformal integrals.

PACS numbers: 11.15.Bt, 11.15.Pg, 11.25.Db, 11.25.Tq, 12.60.Jv

∗Electronic address: Cristian˙Vergu@brown.edu

1

computed by using the leading singularity method (see Ref. [33] and also [34, 35]) or the

technique of maximal cuts of Ref. [31]. In order to compute M (2),µ, one would have to

compute D-dimensional cuts. In practice this is done by computing the cuts of N = 1

super-Yang-Mills in ten dimensions, dimensionally reduced to D dimensions.

V. DISCUSSION

In this paper we computed the even part of the two-loop planar MHV scattering ampli-

tudes in N = 4 super Yang-Mills. The answer can be expressed in terms of a finite (and

relatively small) number of two-loop pseudo-conformal integrals.

A computation of these integrals in dimensional regularization through the finite parts

(of order O(ǫ0)) would be very interesting and would allow a comparison with the results of

Ref. [28], where the corresponding Wilson loop computation was performed.

However, a computation of these integrals seems to be rather difficult. In Ref. [28]

the Wilson loop result was expressed in terms of some master integrals called: “hard”,

“curtain”, “cross”, “Y” and “factorized cross.” These master integrals depend on whether

some momenta are zero, massless or massive (this is similar to the situation for scattering

amplitudes; in that case also, the value of the integral depends on whether the external legs

are massive or massless).

It is interesting to note that for the Wilson loop computation, there are no new master

integrals beyond nine sides (this number arises by considering the “hard” integral where

all the momenta Q1, Q2 and Q3 are massive). For the scattering amplitude, however, new

integrals appear until twelve points, as shown in this paper. It would be interesting to get

a deeper understanding of this “mismatch.”

The results presented in this paper hint that a different organization of the result may

be possible. For example, the coefficients written down using the square brackets symbols

can be assembled over a common denominator whose topology is that of a double pentagon.
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6 analytically

—a truly heroic
computation on par with Parke and Taylor’s

dimensionally regulating thousands of
separately divergent integrals

final formula: 18 pages of so-called
“Goncharov” polylogarithms
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Abstract: In the planar N = 4 supersymmetric Yang-Mills theory, the conformal sym-

metry constrains multi-loop n-edged Wilson loops to be given in terms of the one-loop

n-edged Wilson loop, augmented, for n ≥ 6, by a function of conformally invariant cross

ratios. That function is termed the remainder function. In a recent paper, we have dis-

played the first analytic computation of the two-loop six-edged Wilson loop, and thus of the

corresponding remainder function. Although the calculation was performed in the quasi-

multi-Regge kinematics of a pair along the ladder, the Regge exactness of the six-edged

Wilson loop in those kinematics entails that the result is the same as in general kinematics.

We show in detail how the most difficult of the integrals is computed, which contribute to

the six-edged Wilson loop. Finally, the remainder function is given as a function of uniform

transcendental weight four in terms of Goncharov polylogarithms. We consider also some

asymptotic values of the remainder function, and the value when all the cross ratios are

equal.
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H. The analytic expression of the remainder function

In this appendix we present the full analytic expression of the remainder function. The re-

sult is also available in electronic form from www.arXiv.org. Using the notation introduced

in Eqs. (3.23) and (5.7), the full expression reads,
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We show in detail how the most difficult of the integrals is computed, which contribute to

the six-edged Wilson loop. Finally, the remainder function is given as a function of uniform

transcendental weight four in terms of Goncharov polylogarithms. We consider also some

asymptotic values of the remainder function, and the value when all the cross ratios are
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We present a compact analytic formula for the two-loop six-particle maximally helicity violating
remainder function (equivalently, the two-loop lightlike hexagon Wilson loop) in N = 4 supersym-
metric Yang-Mills theory in terms of the classical polylogarithm functions Lik with cross-ratios of
momentum twistor invariants as their arguments. In deriving our formula we rely on results from
the theory of motives.

INTRODUCTION

The past few years have witnessed revolutionary ad-
vances in our understanding of the structure of scattering
amplitudes, especially in N = 4 supersymmetric Yang-
Mills theory (SYM). It is easy to argue that the seeds
of modern progress were sown already in the 1980s with
the discovery of the Parke-Taylor formula for the sim-
plest nontrivial amplitudes: tree-level maximally helicity
violating (MHV) gluon scattering. The mere existence
of such a simple formula for a quantity which otherwise
would have been prohibitively difficult to calculate us-
ing traditional Feynman diagram methods signalled the
tantalizing possibility that a great vista of unanticipated
structure in scattering amplitudes awaited exploration.

In contrast to the situation at tree level, it is fair to
say that recent progress at loop level has mostly been
evolutionary rather than revolutionary, driven primarily
by faster computers, improved algorithms (both analytic
and numeric), and software for multiloop calculations
which has been made publicly available. Yet we hope
that a great new vista of unexplored structure awaits us
also at loop level in SYM theory.

This paper is concerned with the planar two-loop six-
particle MHV amplitude [1, 2], which in a sense is the
simplest nontrivial SYM loop amplitude. The known in-
frared and collinear behavior of general amplitudes, con-
veniently encapsulated in the ABDK/BDS ansatz [3, 4],
determines the n-particle MHV amplitude at each loop
order L ≥ 2 up to an additive finite function of kinematic

invariants called the remainder function R
(L)
n . Given the

presumption of dual conformal invariance [5, 6] for SYM
amplitudes (not yet proven, but supported by all avail-

able evidence [1, 3, 4, 7, 8]), R
(L)
n can depend on confor-

mal cross-ratios only. Since there are no cross-ratios for

n = 4, 5, the first nontrivial remainder function is R
(2)
6 .

The same function R
(2)
6 is also believed [9–12] to arise

as the expectation value of the two-loop lightlike hexagon
Wilson loop in SYM theory [13, 14] (after appropriate
subtraction of ultraviolet divergences, e.g. [15]). Numer-
ical agreement between the two remainder functions was
established in [1, 14]. In a heroic effort, Del Duca, Duhr,
and Smirnov (DDS) explicitly evaluated the appropriate

Wilson loop diagrams to obtain an analytic expression

for R
(2)
6 as a 17-page linear combination of generalized

polylogarithm functions [16, 17] (see also [18]).
The motivation for the present work is the belief that

if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R
(2)
6 .

Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R
(2)
6 in the next sec-

tion and then describe the algorithm by which it was
obtained.

THE REMAINDER FUNCTION R
(2)
6

The remainder function R
(2)
6 is usually presented as a

function of the three dual conformal cross-ratios

u1 =
s12s45

s123s345
, u2 =

s23s56
s234s123

, u3 =
s34s61

s345s234
, (1)

of the momentum invariants si···j = (ki + · · · + kj)
2,

though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
i = uix

±, x± =
u1 + u2 + u3 − 1 ±

√
∆

2u1u2u3
, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find

R
(2)
6 (u1, u2, u3) =

3∑

i=1

(
L4(x

+
i , x−

i ) − 1

2
Li4(1 − 1/ui)

)

− 1

8

(
3∑

i=1

Li2(1 − 1/ui)

)2

+
1

24
J4 +

π2

12
J2 +

π4

72
. (3)

Here we use the functions

L4(x
+, x−) =

1

8!!
log(x+x−)4

+
3∑

m=0

(−1)m

(2m)!!
log(x+x−)m(ℓ4−m(x+) + ℓ4−m(x−)) (4)
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would have been prohibitively difficult to calculate us-
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We present a compact analytic formula for the two-loop six-particle maximally helicity violating
remainder function (equivalently, the two-loop lightlike hexagon Wilson loop) in N = 4 supersym-
metric Yang-Mills theory in terms of the classical polylogarithm functions Lik with cross-ratios of
momentum twistor invariants as their arguments. In deriving our formula we rely on results from
the theory of motives.

INTRODUCTION

The past few years have witnessed revolutionary ad-
vances in our understanding of the structure of scattering
amplitudes, especially in N = 4 supersymmetric Yang-
Mills theory (SYM). It is easy to argue that the seeds
of modern progress were sown already in the 1980s with
the discovery of the Parke-Taylor formula for the sim-
plest nontrivial amplitudes: tree-level maximally helicity
violating (MHV) gluon scattering. The mere existence
of such a simple formula for a quantity which otherwise
would have been prohibitively difficult to calculate us-
ing traditional Feynman diagram methods signalled the
tantalizing possibility that a great vista of unanticipated
structure in scattering amplitudes awaited exploration.

In contrast to the situation at tree level, it is fair to
say that recent progress at loop level has mostly been
evolutionary rather than revolutionary, driven primarily
by faster computers, improved algorithms (both analytic
and numeric), and software for multiloop calculations
which has been made publicly available. Yet we hope
that a great new vista of unexplored structure awaits us
also at loop level in SYM theory.

This paper is concerned with the planar two-loop six-
particle MHV amplitude [1, 2], which in a sense is the
simplest nontrivial SYM loop amplitude. The known in-
frared and collinear behavior of general amplitudes, con-
veniently encapsulated in the ABDK/BDS ansatz [3, 4],
determines the n-particle MHV amplitude at each loop
order L ≥ 2 up to an additive finite function of kinematic

invariants called the remainder function R
(L)
n . Given the

presumption of dual conformal invariance [5, 6] for SYM
amplitudes (not yet proven, but supported by all avail-

able evidence [1, 3, 4, 7, 8]), R
(L)
n can depend on confor-

mal cross-ratios only. Since there are no cross-ratios for

n = 4, 5, the first nontrivial remainder function is R
(2)
6 .

The same function R
(2)
6 is also believed [9–12] to arise

as the expectation value of the two-loop lightlike hexagon
Wilson loop in SYM theory [13, 14] (after appropriate
subtraction of ultraviolet divergences, e.g. [15]). Numer-
ical agreement between the two remainder functions was
established in [1, 14]. In a heroic effort, Del Duca, Duhr,
and Smirnov (DDS) explicitly evaluated the appropriate

Wilson loop diagrams to obtain an analytic expression

for R
(2)
6 as a 17-page linear combination of generalized

polylogarithm functions [16, 17] (see also [18]).
The motivation for the present work is the belief that

if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R
(2)
6 .

Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R
(2)
6 in the next sec-

tion and then describe the algorithm by which it was
obtained.

THE REMAINDER FUNCTION R
(2)
6

The remainder function R
(2)
6 is usually presented as a

function of the three dual conformal cross-ratios

u1 =
s12s45

s123s345
, u2 =

s23s56
s234s123

, u3 =
s34s61

s345s234
, (1)

of the momentum invariants si···j = (ki + · · · + kj)
2,

though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
i = uix

±, x± =
u1 + u2 + u3 − 1 ±

√
∆

2u1u2u3
, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find

R
(2)
6 (u1, u2, u3) =

3∑

i=1
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L4(x

+
i , x−

i ) − 1

2
Li4(1 − 1/ui)
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− 1

8
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)2

+
1

24
J4 +

π2

12
J2 +

π4

72
. (3)

Here we use the functions

L4(x
+, x−) =

1

8!!
log(x+x−)4
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(2m)!!
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We present our new formula for R
(2)
6 in the next sec-

tion and then describe the algorithm by which it was
obtained.

THE REMAINDER FUNCTION R
(2)
6

The remainder function R
(2)
6 is usually presented as a

function of the three dual conformal cross-ratios

u1 =
s12s45

s123s345
, u2 =

s23s56
s234s123

, u3 =
s34s61

s345s234
, (1)

of the momentum invariants si···j = (ki + · · · + kj)
2,

though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
i = uix

±, x± =
u1 + u2 + u3 − 1 ±

√
∆

2u1u2u3
, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find

R
(2)
6 (u1, u2, u3) =

3∑

i=1

(
L4(x

+
i , x−

i ) − 1

2
Li4(1 − 1/ui)

)

− 1

8

(
3∑

i=1

Li2(1 − 1/ui)

)2

+
1

24
J4 +

π2

12
J2 +

π4

72
. (3)

Here we use the functions

L4(x
+, x−) =

1

8!!
log(x+x−)4

+
3∑

m=0

(−1)m

(2m)!!
log(x+x−)m(ℓ4−m(x+) + ℓ4−m(x−)) (4)

1

4
H
(

1, 1, 0, 1;
1

v321

)
+

3

2
H
(

1, 1, 1, 1;
1

v123

)
+

3

2
H
(

1, 1, 1, 1;
1

v231

)
+

3

2
H
(

1, 1, 1, 1;
1

v312

)
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