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The Turbulent Dynamics of Accretion Disks



Astrophysical Disks



Angular Momentum Conservation



Why Do Disks Form?

Gas cools down faster than it can get rid 
of angular momentum.

Imagine a cloud of gas collapsing due to its own gravity ... 



Stars vs. Disks
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•Mostly spherical

•Gravity balanced by P grad.

•Magnetic fields do not 
  influence stellar structure 

•Mostly thermal energy •Non-thermal processes

•Magnetic fields are
  essential for disk to work

•Large aspect ratios

•Differential rotation
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Why Study These Disks?

- How do stars and planets form?
- What powers the brightest X-ray sources in the sky?
- Why do Active Galactic Nuclei (Quasars) shine?
- What are the properties of space-time close to a black hole?

Proto-star Active Galactic NucleusX-ray Binary



 

Accretion Disks in the Universe



Protoplanetary Disks



Dawn of a New Era in Astrophysics

Addressing this questions demands a detailed 
understanding of how accretion disks work

HL Tauri by ALMA - ESO

How Nature goes from this... ... to this?



Accretion Disks in Binary Systems



X-ray Binary Disks



Disks in Active Galactic Nuclei



 

A Crash Course on Accretion Disks



Dynamical Considerations

R

If the disk were a collection of non-interacting 
  particles there would be no accretion

Particles in a central potential 
move in stable Keplerian orbits
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Keplerian Disks
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Angular Momentum Transport 
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Gas in the disk must lose angular momentum!!!!

Angular 
Momentum



Stress and Angular Momentum
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If there is no stress, angular momentum for fluid elements 
in the disk is conserved and matter does not accrete! 

Mass conservation
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�t
+r.(lv) 6= 0 Angular momentum

is not conserved....



The Angular Momentum Problem 

!!!

A Newtonian Model for the Stress



Re~10Re~13Re~26Re~140Re~2000Re~10000

Guadalupe Island vortex street movie from GOES
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Courtesy of CK Chan

Reynolds numbers in accretion disks are HUGE!!!
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The Angular Momentum Problem 

t
turb

⇠ t
obs

!!!

With this enhanced stress
we can match the fast 
timescales observed!

Proposal: Assume some kind of “turbulent” viscosity
Eddies of size ‘H’ interacting with turnover velocity ‘α cs’

Shakura & Sunyaev ‘70s, α-model

T̄r� = �r⌃⌫turb
d⌦

dr

⌫turb = �turbvturb

⌫turb ⌘ ↵Hcs



Standard Accretion Disk
‘viscosity’ prescription to remove angular momentum

Matter

Angular 
momentum

�(r), P (r), T (r), vr(r), ...



 
Keplerian hydrodynamic 
disks are quite resilient...

However, magneto-hydrodynamic
disks are prone to a plethora

of instabilities.



Sound Waves & Magnetic Waves

Restoring force: pressure gradient
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Restoring force: magnetic tension

Magnetic waves can become unstable in differential rotation

These instabilities drive the turbulence responsible for accretion 



Instabilities in Accretion Disks

courtesy of C.K. Chan



Transport in Turbulent Flow

Sano et al. 2004

MHD turbulence in disks
 leads to correlated fluctuations 

 of the PROPER sign!
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T̄r� = R̄r� � M̄r�

R̄r� = h⇢ �vr �v�i Reynolds

M̄r� = h�Br �B�i Maxwell



Accretion Disk Theory in a Nutshell

Matter must lose 
most of its 

angular momentum 
in order to accrete

    Important Milestones

1- Disks are turbulent (1973)
     Shakura & Sunyaev (alpha model)

2- Magnetic fields key (1991)
     Balbus & Hawley (MRI)

Efficiency of angular 
momentum transport 
intimately related to 

anisotropic turbulence 

angular momentum

matter

radiation



Ideal Magnetohydrodynamics
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Global 3D MHD Simulations

courtesy M. FLock



 

An effective mean-field theory for 
magnetohydrodynamic turbulence in 

disks is highly desirable...



 

A Current Problem of Interest...

How can we characterize MHD
turbulence in disks in a robust way?



Local Models of Astrophysical Disks

Essence of the local approximation: expand the equations 
of motion around a point corotating with the disk

Beckwith, Armitage and Simon, 2011



Linear Phase of Instability (MRI)

G. Murphy & MEP, 2015



Breakdown of Linear Modes

In late linear regime: 
Bx=By > Bz 

In turbulent regime: 
By >Bx , Bz 

What about the fully developed turbulent state?



PSD of Temporal Fluctuations

In the turbulent regime,
vy, vx grow to be 

“overtaken” by vz in a 
cyclic manner

Time series analysis 
reveals cyclic behavior

How can we analyze this behavior in a systematic way?

G. Murphy & MEP, 2015
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Invariant Tensor Analysis

Stress dynamics can be 
characterized using 
invariant quantities

Stress tensors are real 
and symmetric

they can always be 
diagonalized

Introduced by Lumley 
in1977 to study 

hydro. turbulence

�i : eigenvalues



Graphic Representation

AB = BA , !16"

then the matrices A and B share the same eigenvectors.
Since the tensor 1 /3!ij is equal to the identity matrix I /3,
Eq. !16" always holds between the matrices T and I. They
therefore share the same eigenvector n and the following
relationship will hold:

bn = # T
Tkk

−
1
3

I$n . !17"

The relationship between the eigenvalues of b and T then
becomes

"i =
#i

Tkk
−

1
3

. !18"

For the nondimensional anisotropy tensor, b, related
shapes of the ellipsoid formed by the Reynolds stresses are
illustrated in Fig. 3 and characteristics of the flow are given
in Table I.

Now it is time to address the misconception encountered
in the designation of the limits of Lumley’s invariant map.
Axisymmetric turbulence means that two of the principal
stresses #i, or "i, are equal. Writing b in terms of the prin-
cipal stresses we have

FIG. 4. Anisotropy invariant map with correct designations of the axisym-
metric states.

FIG. 3. Illustration of the ellipsoid shapes formed by the Reynolds stress
tensor in different regions of the flow.

TABLE I. Characteristics of the turbulence stress tensor and anisotropic tensor.

State
of

turbulence Invariants Eigenvalues of bij

Shape of
stress tensor

%see Eq. !15"&
Symbol in

Figs. 1 and 3

Isotropic I2= I3=0 "i=0 Sphere a,
isotropic

Axisym. !One large "" −
I2

3
= # I3

2
$2/3

0$"1$ 1
3 , − 1

6 $"2="3$0
Prolate

spheroid

b,
axisymmetric

!I3%0"

Axisym. !One small "" −
I2

3
= #− I3

2
$2/3

− 1
3 $"1$0, 0$"2="3$ 1

6
Oblate

spheroid

c,
axisymmetric

!I3$0"

One-comp. I3= 2
27,

I2=− 1
3

"1= 2
3 , "2="3=− 1

3
Line d,

1 component

Two comp., axisym. I3=− 1
108 ,

I2=− 1
12

"1=− 1
3 , "2="3= 1

6
Disk e,

2 component
!axisymmetric"

Two component −I2=3! 1
27 + I3" "1+"2= 1

3 , "3=− 1
3

Ellipsoid f,
2 component

088103-3 Turbulent stress invariant analysis Phys. Fluids 17, 088103 !2005"

We can plot tensors as 
glyphs to obtain a 

graphic representation

Principal axes of the 
ellipsoid are given 

by the eigenvectors

This analysis can be
carried out at any
point and time in 
the turbulent flow



Lumley Triangle

Figure 3: Anisotropy invariant map with correct designation of the axisymmetric states.
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Figure 4: Illustration of streamwise vortex tube stretching(A) and stress ellipsoid deformation(B).

to shapes of the turbulence. As demonstrated by the above dis-
cussion the shape designated to the axisymmetric limits in the
invariant map may be interpreted in two ways. Although this
has no effect on turbulence modelling it does lead to some con-
fusion when visualizing the turbulence. Since the invariant map
itself is based on the turbulent stress tensor, it would be prefer-
able that the designation of its axis is related to this quantity
only.
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We can quantify anisotropy level, temporal variation and spatial distribution



Temporal Fluctuations in Anisotropy

Reynolds Stress Maxwell Stress
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Averages in Fourier Space

k1k2

Anisotropic nature of 
MHD disk turbulence
has long been known

Usually illustrated using 
2D cuts along cartesian

axis in Fourier space

Nevertheless we tend 
to collapse all this 

information by taking
spherical averages

(Hawley et al 1995, Workman & Armitage 2008, Fromang 2010, Lesur & Longaretti 2011)



Spectral Distribution of Anisotropy
10 Murphy & Pessah

Fig. 11.— Analysis of the power spectral density of the magnetic energy density in the early stages of the nonlinear evolution of the MRI and the fully developed
turbulent state. The upper and lower row correspond to t = 10 ⌦�1 and t = 260 ⌦�1, respectively. The first three panels in each row, from left to right, show slices
of the 3D discrete Fourier Transform (DFT) of the magnetic energy density in the (k1, kz),(k2, kz) and (kx, ky) planes, respectively. The data have been smoothed
by using a box average filter over every two cells. The black contours in each panel are 2D gaussian elliptical fits to the smoothed distributions. The right-most
column shows 1D cuts of the same data, compared with the spherical average as a function of the radial wave vector. It is evident that the turbulence exhibits a
high degree of anisotropy. In particular, there is di↵erence of almost two orders of magnitude in power between the 1D spectra along kz and k2.

izontal axis. The color map shows the density of points that
have associated the pair of values (�2, �3) when each stress
tensor is averaged in the vertical direction. At t = 119 ⌦�1,
the stress tensors have a peak which is far from the origin.
The highest density (shown in red) is o↵set from the origin
which is consistent with anisotropic turbulence. The major-
ity of points are distributed close to the 1D-3D locus, with
almost no points on the 1D-2D locus. As time progress, at
t = 111 ⌦�1 and t = 113 ⌦�1 the distribution of anisotropy
shifts along the 1D-3D locus, further from isotropy (i.e., the
origin). At t = 113 ⌦�1, the peak of anisotropy is reached and
almost no power present near the origin. At t = 115 ⌦�1, the
distribution of invariants shift back towards the origin, indi-
cating a return towards isotropy. The peak of the distribution
remains far from the origin, however. At t = 117 ⌦�1, the
distribution shifts even further towards the origin.

This e↵ect is even more pronounced in the Maxwell stress
tensor (right column of Figure 10) , which shows a strong in-
crease in anisotropy between 109 < t ⌦�1 < 113, which then
reverses between 113 < t ⌦�1 < 117. The examination of
other timeframes (not reproduced here) reveals that this pat-
tern of increase and decrease in anisotropy is quasi-periodic,
in agreement with Figure 8.

5.2. Time-Dependent, Anisotropic Power Spectral
Distributions

A number of works have studied the Fourier spectrum of
MRI-driven turbulence (see, e.g., Hawley et al. 1995 for early

studies and Fromang 2010; Lesur & Longaretti 2011; Nauman
& Blackman 2014 for more recent work). In order to visualize
the distribution of power as a function of scale, it is custom-
ary to plot either spherical shell-averaged spectra or 2D slices
in the planes perpendicular to the directions given by k̂x, k̂y,
and k̂z. The second approach reveals that the turbulence in
highly anisotropic, rendering the first approach suspect. In
either case, temporal averages over many orbital time scales
are usually invoked in order to obtain smooth spectral. How-
ever, as we have shown in the previous section, the degree of
anisotropy of the turbulence varies with time significantly.

In order to gain a deeper understanding of the temporal evo-
lution of the anisotropy of the turbulence in Fourier space
we pursue a di↵erent approach as follows. We demonstrate
the procedure by computing the Fourier spectrum2 associated
with the magnetic energy density in the early stages after the
saturation of the linear instability and in the turbulent state. It
is useful to visualize the results by selecting two-dimensional
cuts in the three-dimensional Fourier space. The anisotropic
nature of the turbulence in the (kx, ky) plane presents a nat-
ural direction to define two perpendicular directions in this

2 Standard Fourier analysis requires a periodic domain, and the shearing
box domain that we employ is only strictly periodic in the azimuthal and
vertical directions. The radial direction, which is only shearing-periodic, be-
comes strictly periodic only at specific times (Hawley et al. 1995). In order
to compute Fourier transforms at arbitrary times, it is necessary to first trans-
form in the x-direction, and then shift the appropriate phase before taking the
transform in the y and z-directions. This procedure is explained in detail in,
e.g., Heinemann & Papaloizou (2009).

k1k2

G. Murphy & MEP, 2015



PSD of Temporal Fluctuations
Power along each 

independent direction 
can differ significantly 
wrt spherical average

Direction of maximum
power wobbles

around well defined 
angle ~ 35 degs.

Recent ideas about
transverse cascade
in 2D shear flows

(Mamatsashvili et al. 2014)

G. Murphy & MEP, 2015


