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@D Introduction
Holographic Principle (or AdS/CFT)

= Geometrization” of Quantum States in QFTs

algebraically very complicated

= a geometry of quantum information.
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[MERA: Vidal 2005, Swingle 2009]
[Raamsdonk 2009]

[Bianchi-Myers 2012] .
[Miyaji-TT 2015],... Emergent spacetime from Tensor Networks

One quantity which characterizes this duality is

the entanglement entropy (EE) Sa.
[Another approach: Rob Myers’s talk on Entanglement Holography]



The holographic entanglement entropy (HEE) relates

the EE to the area of minimal surfaces: [Ryu-TT 2006]
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In this talk, we propose another (approx.) formula which
connects between geometry and quantum information:

G, ~ Mg.x

Quantum information
metric for a d+1 dim. C

FT

N

Time slice in AdS



This is partially motivated by the recent Susskind’s
conjecture [Susskind 2014] :

C - Vol(Z2)

/' G, R

Computational complexity

~ Min[# of unitary transformations]
which realizes the transformation
|0>]0>...|0> > |W>
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@ Quantum Information Metric in CFTs

(2-1) Definition
Consider two different pure states \‘Iﬂ) and \\13) We define
the distance (called Bures distance) between them as

D).

For mixed states we can generalize this to

D(pl,p2)=1—Tr[\/\ﬁpmﬁ}

_J/

¥,))=1-(% )

~
Fidelity

~How much is it difficult
to distinguish two states
by POVM measurement.



Consider pure states with parameters \‘P(/ll,ﬂz,---))
We define the information metric G as follows

DY) ¥(A+dD))=1-|(P(D)|¥(A+dD))
=G, (dA)d2)+Ol(dA)’)

Motivation of information metric = Quantum Estimation Theory

A quantum version of Cramer-Rao bound argues
[Helstrom 76]
1

((52)%) ZG—M.

Mean square error



Note: Two definitions of Information Metric
Bures: G\2dA* = B[p(A+dA), p(1)]
Relative Entropy: G!.’dA* =S[p(A+dA) || p(1)]
where  B[p,o]=1-Tr[y/po/p1

y)(y[]=1-[(xly)

Slpllo]=Trlp(log p—logo)].

Note: G(B) and G(F) are equivalent only classically.

in particular, B|x)(x

We will employ the Bures metric G(F) below.
[For the Fisher metric G(F), refer to Lashkari-Raamsdonk 2015].



Example 1: Free boson (-) and fermion (+)

W) =JIF| A2 -e ™ |0),

way) = VO |1/1_|2(g AP)

(F(1")

> dAdA*

— ds‘ = .
AF| A 1%)?

Free Boson: 2d hyperbolic space H2
Free Fermion: 2d sphere S?



Example 2: Spacetime metric from information metric ?

[Miyaji-Numasawa-Shiba-Watanabe-TT 2015]

Consider a free scalar field (with a mass) in a (d+1)
dimensional curved spacetime.

It is clear that the two point function <go(x)g0(y)>
behaves as follows when D(x,y) is very small:

1
(x, )%

(p(x)p()) ~ 5



To define a normalized state ‘¢(X)> oC go(x)‘ O> ,
we need a UV regularization, which leads to

(p(X)] o(y)) = :

E

d-1

(52 + D(X, y)z)7
Then the information metric reads

ds® oc — gudx dx!, = spacetime metric

It is natural to choose € to be a length of order Planck
scale. = The information metric measures a

distance in the unit of Planck length.
In AdS3/CFT2 we can take €~1/c = Rads™c.



The main purpose of this talk is to consider a (d+1) dim.
CFT and perform one parameter deformation:

S(A) = Sep + A dtdx' O(x, ).
We choose |¥(2)) as the ground state of the deformed

QFT defined by S(4) .

We are interested in the corresponding information
metric GM . [or called fidelity susceptibility Shi-Jian Gu 2010]



(2-2) Information Metric in CFT

In the path-integral formalism (t=Euclidean time),
T

(W(A+d)| YD)

\/217 [Dg eXp{— [ ( [ drray+ [ dr L(/1+d/1)ﬂ. 0

Since we encounter UV divergences at t=0, we regulate

by a point splitting or equally by replacing |¥(1+d4)) with
B e (”)\‘P(/Hdﬂ))

© P+ P(A+dR))

V(A+dA))



Finally we obtain the following expression:

G, = % [ [ F dr L dr(O(x, 1)O(X', 7)),

Comments: It only involves a two point function.
Thus it is universal for CFTs at A=0 when space is R¢.
G, is an universal information theoretic quantity to
characterize CFT ground states.



G, at A=0 (CFT point)

O(x,t) is a primary with conformal dim. A
|

R e Ty

After integration, we find the simple scaling (UV div.):

G,=N,-V,-&"** (whend+2-2A<0).
A d " d

27 rPr(A-d/2-1)
¢ QA-—d-DI(A)
Ford+2-2A>0, G, oV, L% (IR div.)



(3 A Gravity Dual Proposal of Information Metric

We focus on an exactly marginal perturbation i.e. A=d+1.

(3-1) Exact Gravity Dual via Janus Solutions
A gravity dual of the CFT with the interface

is known as a Janus solution.[Bak-Gutperle-Hirano 03]
[Clark-Freedman-Karch-Schnabl 04]

0

AdS3 Janus model [Bak-Gutperle-Hirano 03] . T
a _ A A
Janusz_l o baaﬂ‘ab;i'_FZRAflS:I’ . y
ds’ =Rde(dy2 +f (Y)dsjdsz)a A)=y J. - f (y) A, >Z
S = (1+\/1 2X costh)) A=A, =y+O00). 2




In this model, we can evaluate the classical on-shell action:

R, ..V 1
S —S | 0 — AdS 1 10
Jam;s(]/ ) Jam..r.s( ) 1 6 7ZGN5 g] _2 }/2

>0,

where ¢ is the UV cut off in the AdS2.

Thus we can estimate the information metric as

: : R,V
\{’ \P O — e_‘SJanus (7/)+‘5Janus (0) ~ 1_ AdS " 1 2 ,
()| ¥(0)) G5’
ch
= G,, =——. (c=centralcharge).
127¢

By noting the normalization A, c+cA,, , we can confirm that
this holographic result agrees with our previous CFT result.



(3-2) Gravity Dual Proposal for General Backgrounds

For generic setups (e.g. AdS BHs) with less symmetries, the
construction of Janus solutions is difficult.

=Instead, we would like to propose a covariant formula
which computes the information metric: ¢ —>X

A AdSbdy
G —n VolZ,_ )
e~ Ma’ vl
R %
Y :Thebulk timeslice with maximal volume z

n, :a certain O(1) coefficient

Note: This formula is based on a hard-wall approximation.
Similar to holography for BCFT
[Karch-Randall 2000,2001, TT 2011].



An explanation

Since we are interested in an infinitesimal exactly marginal
deformation of a CFT, we can model the Janus interface

as a probe defect brane with an infinitesimally small tension T:
d+1
S Janus ~ Sgravity +TJ‘ '\/gdx ' ’
z

The Einstein equation tells us

as we can confirm in Janus solutions explcitly.
The standard probe approximation leads to the formula:

VolZ, )

d+1
RAdS

G, =n,-



2
Example 1 : Poincare AdSa2 2 _ p2 92+, dx”
AdS

ZZ
_ngby
de*

v dz
G, =, [ .
A a’d], —a

dr’

r?+1

Example 2 : Global AdSd+2 45’ —Rjds(—(rz +1)di* + +r2de,].

e redr

G, =nl, .[o \/Tﬂ
r

Example 3 : AdSd+2 Schwarzschild BH

<G,

Poincare

. d+1 2
[ e e
z z2(1-(z/z)"") =z

G..=nV —_4dd + d . l ) ’ ,
AL nd d."g /h(Z)Zd—H d [ d d J b3 N1.31,...
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4 Dynamics of Information Metric and AdS BHs
In order to test our holographic information metric,
we turn to a time-dependent example.

= Consider thermofield doubled (TFD) CFTs |LP§£D>
under time evolutions. We assume 2d CFTs.

TFD = a pure state description of thermal state.

[Fun)=Z(B)" - 2™ ),

— Py :TrBULPTFD>< TFD ‘] Z(/B)_l Ze_ﬁE‘ > <n‘A = Pivermal -

Time evolution: p,,,(r) =" |W) MW, |- e,



We consider another TFD state |‘P}%> based on the CFT
with an infinitesimal exactly marginal perturbation.

= Compute the information metric for this deformation.

In the Euclidean path-integral description, we have

CFT, .
S / |‘Pz%(f )
S :%_,
= tE
e = (Y0t P (t))

~ w0}

r=07=7



Thus we can calculate the information metric:

3B,
4
+1

1 tp—¢ EHE_&.
G, ()= Ejdxl_[dxz Iﬂ . dr, J‘_Alﬁ_r . dr, <O(x1 ,7)0(x,, Tz))»
E 4 E

4

(! B)"

<O(xl,'£1)0(x2,r2 )> = -
e T =) | 273(71_’52))
p

sin +sin

Note: We assume the space direction is non-compact.
= Our result is universal for any 2d CFTs.
We focus on A=2 (exactly marginal).

2
Eventually, weget G,,(/;)= ad + 27 le [, -cot i, P :
¢  f L 4r




Real time behavior

By setting f = —it,,, weobtain
7V, 27r2V 4t f
G, ( E)— 5 [l‘ -coth . _472}
Atlate time? >> £,
we find a linear? behavior:
4 277 Vi
/1/1( E) ~ ﬁz -l

(Weexpecta half of the above
)45
result for quantum quenches.) TFD TFD




Holographic Dual

The TFD state is dual to the eternal BTZ BH. [Mmaldacena 2001]
The information metric is dual to the volume of the
maximal slice which connects the two boundaries.

= We can get a result V=V(t),

described by integrals.
k Maximal sI|c -
lt t Similar to [Hartman-Malcacena2013].
CF A CFTB ;;0{{]:‘2‘31 S 2./0“. S - 2 2&.(:?5:112('2::1 -1

\l‘m :

o Ccosh p( \/sinh?(2p) + sin?(2x,) smh’:epp)

2 / up 7 -
° \/ sinh?(2p) + sin’(2x,)

és
f -— j 7
' sinky/1— sin’(2)/sin?(95*)
\I o -}/ )

J 7
° sint pv"'l + sinh*(2p)/ sin“(2x*)



Comparison between Holographic and CFT result

Blue: Vol(Z)/R%

The functional form
almost coincides
up to a small discrepancy.

VOI(E)REL ~ 242,
7T

2
ZG/M ~ gtz




®) Conclusions

* In addition to entanglement entropy, the quantum information
metric is a useful quantity which connects between quantum
information of a QFT and the geometry of its gravity dual.

* We conjectured the holographic formula of information metric

(using a hard-wall approximation) .

G,=n,-

VolZ_ )

d+1
RAdS

cf. Susskind’s conjecture:
The volume is dual to complexity.

Any connection to our results ?

* We also computed the information metric purely in CFTs

which nicely agree with our holographic formula.

= G,, ot

is universal for any CFT TFD states.



A connection to the tensor network description

' g, O—z_ a5 U.:O—S_O',O'v Gy O, _O',,\Gn(_)', G"—O_"’.Uls_o-m o o o,sU:O v
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G,, < #Vertices~ Vol[timeslice]/R"".

Note also # Vertices= # Unitary transf.~ complexity ?



Future problems

* CFTs on compact spaces
= no universal behavior and the results depend on the
spectrum of CFTs. Can we use large N limit ?

* More time-dependent examples of gravity duals,
such as quantum quenches, local quenches etc.

 More direct connection to tensor networks (cMERA)..



