
Seminar @ Niels Bohr Institute,  Oct.30th, 2015  

Gravity Dual of Quantum Information Metric

Tadashi Takayanagi  

Yukawa Institute for Theoretical Physics (YITP),  Kyoto University

Mainly based on the paper arXiv:1507.07555  written with                               

Masamichi Miyaji,  Tokiro Numasawa, Noburo Shiba,  

and Kento Watanabe  (YITP, Kyoto)

Also partially based on arXiv:1506.01353

[Phys. Rev. Lett. 115, 171602 (2015)]. 



Holographic Principle (or AdS/CFT)

⇒ ``Geometrization’’ of  Quantum States in QFTs
algebraically very complicated

⇒ a geometry of quantum information.

① Introduction

Emergent spacetime from Tensor Networks 

[MERA: Vidal 2005, Swingle 2009]
[Raamsdonk 2009] 
[Bianchi-Myers 2012] 
[Miyaji-TT 2015],… 

One quantity which characterizes this duality is
the entanglement entropy (EE) SA .  

[Another approach: Rob Myers’s talk on Entanglement Holography]



The holographic entanglement entropy (HEE) relates

the EE to the area of minimal surfaces: [Ryu-TT 2006]

In this talk, we propose another (approx.) formula which 
connects between geometry and quantum information:

Quantum information 
metric for a d+1 dim. CFT

Time slice in AdS



This is partially motivated by the recent Susskind’s 
conjecture [Susskind 2014] :

Computational complexity
~ Min[# of unitary transformations]
which realizes the transformation 
|0>|0>…|0>  →|Ψ> 
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② Quantum Information Metric in CFTs

(2-1) Definition 

Consider two different pure states        and        .  We define 

the distance (called Bures distance) between them as

For mixed states we can generalize this to 

Fidelity
~How much is it difficult
to distinguish two states
by POVM measurement. 



Consider pure states with parameters                       .

We define the information metric G as follows 

Motivation of information metric ⇒ Quantum Estimation Theory

A quantum version of Cramer-Rao bound argues
[Helstrom 76]

Mean square error
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Note:  Two definitions of Information Metric

Note: G(B) and G(F) are equivalent only classically. 

We will employ the Bures metric G(F) below. 
[For the Fisher metric G(F), refer to Lashkari-Raamsdonk 2015].
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Example 1: Free boson (-) and fermion (+)
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Free Boson:  2d hyperbolic space H2

Free Fermion:  2d sphere S2



Example 2: Spacetime metric from information metric ?

[Miyaji‐Numasawa‐Shiba‐Watanabe‐TT 2015]

Consider a free scalar field (with a mass) in a (d+1) 
dimensional curved spacetime.  

It is clear that the two point function 

behaves as follows when D(x,y) is very small:

φ(x)φ(y)
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To define a normalized state                                 ,

we need a UV regularization, which leads to 

Then the information metric reads

It is natural to choose ε to be a length of order Planck 
scale. ⇒ The information metric measures a 

distance in the unit of Planck length. 

In AdS3/CFT2 we can take ε~1/c ⇒ RAdS~c.
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The main purpose of this talk is to consider a (d+1) dim. 
CFT and perform one parameter deformation: 

We choose              as the ground state of the deformed 

QFT defined by         .  

We are interested in the corresponding information 
metric      . [or called fidelity susceptibility Shi-Jian Gu 2010]



(2-2) Information Metric in CFT

In the path-integral formalism (τ=Euclidean time), 

Since we encounter UV divergences at τ=0, we regulate 

by a point splitting or equally by replacing                  with 

τ

0 x



Finally we obtain the following expression:

Comments: It only involves a two point function.

Thus it is universal for CFTs at λ=0 when space is Rd.

is an universal information theoretic quantity to 

characterize CFT ground states.



at λ=0 (CFT point)

O(x,t) is a primary with conformal  dim. Δ

After integration, we find the simple scaling (UV div.):



③ A Gravity Dual Proposal of Information Metric 

We focus on an exactly marginal perturbation i.e. Δ=d+1. 

(3-1) Exact Gravity Dual via Janus Solutions

A gravity dual of the CFT with the interface

is known as a Janus solution.[Bak-Gutperle-Hirano 03]

[Clark-Freedman-Karch-Schnabl 04]

AdS3 Janus model [Bak-Gutperle-Hirano 03] : τ

0 x

τ

z

y



In this model, we can evaluate the classical on-shell action:

where    is the UV cut off in the AdS2.

Thus we can estimate the information metric as

By noting the normalization                           , we can confirm that 

this holographic result agrees with our previous CFT result. 



(3-2) Gravity Dual Proposal for General Backgrounds

For generic setups (e.g. AdS BHs) with less symmetries, the 
construction of Janus solutions is difficult. 

⇒Instead, we would like to propose a covariant formula 

which computes the information metric:

Note: This formula is based on a hard-wall approximation.

Similar to holography for BCFT 

[Karch-Randall 2000,2001, TT 2011].
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An explanation

Since we are interested in an infinitesimal exactly marginal 
deformation of a CFT, we can model the Janus interface 

as a probe defect brane with an infinitesimally small  tension T:

The Einstein equation tells us  

as we can confirm in Janus solutions explcitly.

The standard probe approximation leads to the formula: 



Example 1 : Poincare AdSd+2

Example 2 : Global AdSd+2

Example 3 :  AdSd+2 Schwarzschild BH 



④ Dynamics of Information Metric and AdS BHs

In order to test our holographic information metric,

we turn to a time-dependent example.  

⇒ Consider thermofield doubled (TFD) CFTs 

under time evolutions. We assume 2d CFTs.

TFD = a pure state description of thermal state.



We consider another TFD state              based on the CFT 
with an infinitesimal exactly marginal perturbation.

⇒ Compute the information metric for this deformation.

In the Euclidean path-integral description, we have 

=



Thus we can calculate the information metric:

Note:   We assume the space  direction is non-compact.

⇒ Our result is universal for any 2d CFTs. 

We focus on Δ=2 (exactly marginal).



Real time behavior

t=0

ｔ>>β



Holographic Dual

The TFD state is dual to the eternal BTZ BH. [Maldacena 2001]

The information metric is dual to the volume of the 

maximal slice which connects the two boundaries.

⇒ We can get a result V=V(t) , 

described by integrals.
[Hartman-Malcacena2013].

Maximal slice

CFTA

Similar to [Hartman-Malcacena2013].

CFTB



Comparison between Holographic and CFT result
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The functional form 
almost coincides
up to a small discrepancy. 
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⑤ Conclusions

• In addition to entanglement entropy,  the quantum information 
metric  is a useful quantity which connects between quantum 
information of a QFT and the geometry of its gravity dual.

• We conjectured the holographic formula of information metric

(using a hard-wall approximation) . 

cf. Susskind’s conjecture:

The volume is dual to complexity.

Any connection to our results ?

• We also computed the information metric purely in CFTs 

which nicely agree with our holographic formula.

⇒ is universal for any CFT TFD states.



A connection to the tensor network description



Future problems

• CFTs on compact spaces   

⇒ no universal behavior and  the results depend on the  

spectrum of CFTs. Can we use large N limit ?

• More time-dependent examples of gravity duals, 

such as quantum quenches,  local quenches etc.

• More direct connection to tensor networks (cMERA)..


