

The ALICE FMD Shift Training — 1st Session

Motivation

An overview of the FMD

Shifter Responsibilities

The System

Control

Taking Data

Data Quality

Motivation

An overview of the FMD

Shifter Responsibilities

The System

Control

Taking Data

Data Quality

Measure $\frac{1}{N} \, \frac{\mathrm{d}N_\mathrm{ch}}{\mathrm{d}\eta}$ in forward directions

- ► Only $N_{\rm ch}$
- ▶ No \vec{p} or PID
- ► Also
 - $ightharpoonup P(N_{
 m ch})$
 - $\triangleright v_n$
 - ► h

Motivation

An overview of the FMD

Shifter Responsibilities

The System

Control

Taking Data

Data Quality

Placement

- ► 3 sub-detectors: FMD1,2,3
- ▶ 2 type rings: inner & outer
- ► Si-strip
- ► 51,200 read-out channels

Some numbers

Sub-detector/ Ring	Azimuthal sectors	Radial strips	z [cm]	rrange [cm]		CO	η coverage		
FMD1i	20	512	320	4.2	_	17.2	3.68	_	5.03
FMD2i	20	512	83.4	4.2	_	17.2	2.28	_	3.68
FMD2o	40	256	75.2	15.4	_	28.4	1.70	-	2.29
FMD3i	20	512	-75.2	4.2	_	17.2	-2.29	_	-1.70
FMD3o	40	256	-83.4	15.4	-	28.4	-3.40	-	-2.01

$$\eta = -\log\left[\tan\left(\frac{\vartheta}{2}\right)\right]$$

Motivation

An overview of the FMD

Shifter Responsibilities

The System

Control

Taking Data

Data Quality

Shifter Responsibilities

The shifter must at all time ensure smooth operation of the FMD, and ensure that quality of the recorded data is as good as it can be.

In bullets

- Register shift
- Know current run plan
- Know current status of FMD
- Deal with problems

- ▶ Daily report to RC
- Keep record in log-book
- Assert run quality
- ► Take calibration runs
- Monitor data

This session will give you the background to fulfill these tasks.

Motivation

An overview of the FMD

Shifter Responsibilities

The System

Control

Taking Data

Data Quality

In Blobs

The path of the Data

- Signal in sensor
- Pre-amp.'d in hybrid
- Digitized on FMDD
- ► Send to RCU
- Via DDL to DAQ

Sensors & Hybrids

- ► Si-strip
- High-voltage (70–130V) over sensor front/back
- Each strip bonded to Hybrid
- 128 strips pre-amp.'d by one VA1 pre-amp.
- Pre-amp.s take 4 Low Voltages (from FMDD)
- ▶ 128 strips multi-plexed into one (analogue) data line

Digitizer Card — FMDD

- 4/8 Analogue signals from hybrid to ALTROs (ADC)
- Receive trigger information
- ► Digitize signal and store
- Data handed off on request
- Asserts busy during signal processing

- Board Controller (BC) monitors currents, voltages, temperatures
- BC regulates voltage to pre-amp.s
- Specialized calibration circuit
- ► Configuration needed

Read-out Control Unit — RCU

- Handles triggers
- Collects digitized data from ALTROs
- Data pushed to DAQ over optical fibre.
- ▶ Facilitates comm. to/from

- digitizer to outside world.
- Embedded Computer (custom Linux) provides access from Detector Control System
- Needs configuration

Other systems

Cooling

- Active electronics generate heat
- ► RCUs and FMDDs cooled
- Leach on TPC cooling plant

Power Crate

- Allows control of power supplies
- One part in CR4 w/High Voltage modules
- One part in gallery in pit w/Low Voltage

Motivation

An overview of the FMD

Shifter Responsibilities

The System

Control

Taking Data

Data Quality

Detector Control System

- Hierarchical control
- ► Control Cooling, LV, HV, FEE (RCU & FMDD)
- State-machine to ensure safe operation and procedures
- Does configuration of FFF

The State Diagram

- ► Physics only in READY (all is on)
- BEAM_TUNNING is safe stand—by state

(most LV is on, HV is off)

- OFF is super-safe stand-by state (all is off)
- ERROR state possible from any state

(try RESET before panicking)

Configuration

3 types:

Pedestal	Gain
	No subtraction
No subtraction	► No
	suppression
► No	Special
suppression	settings for FMDD
No beam required	No beam required
	No subtractionNo suppressionNo beam

Selected at top-level when CONFIGURE

The User Interface

Motivation

An overview of the FMD

Shifter Responsibilities

The System

Control

Taking Data

Data Quality

Taking data with the FMD (alone)

- Through Experiment Control System (ECS)
- Controls DAQ and Trigger
- Ensures detector in proper state
- (access a bit convoluted, covered at later session)

3 types of runs

ECS	DCS	Beam	Description		
type	Conf.	OK?			
STANDALONE	PHYSICS	yes	Testing chain		
PEDESTAL_EVALUATION	PEDESTAL	no!	Evalute baseline and store		
GAIN_EVALUATION	GAIN	no!	Evalute strip gain (ADC/MIP) and store		

- ► PEDESTAL at least once every 3 days
- ► GAIN at lease once a week
- ► Follow by STANDALONE to ensure quality
- ► (will perhaps be automatised)

Motivation

An overview of the FMD

Shifter Responsibilities

The System

Control

Taking Data

Data Quality

Monitor data for quality

Two modes:

On-line

- Done centrally (DQM shifter)
- FMD shifter should also check-in
- Uses clients in DAQ network (access a bit convoluted, dealt with later)

Post-Run

- Through DAQ WWW log-book
- FMD shifter must assert run quality for PHYSICS runs longer than 10min within 24hours.

Monitor Data plots

- ► Energy loss
- ► Fits to distributions
- ▶ Read—out errors
- ► Look for
 - ► Too many read-out errors
 - ► Too large 'sharing' region

Monitor Calibration plots

- Not updated immediately
- ► Must do STANDALONE first.
- Check for abnormal patterns

Motivation

An overview of the FMD

Shifter Responsibilities

The System

Control

Taking Data

Data Quality

How to get to the controls

- Open your Remote Desktop Client (rdesktop on Linux)
- Log in to cernts.cern.ch using your CERN credentials (remember domain is CERN)
- Now open Remote Desktop Client on cernts.cern.ch
- Log into alidcsgw001.cern.ch using your CERN credentials (remember

domain is CERN)

- ► Again, open the Remote Desktop Client on alidcsgw001.cern.ch
- ► Log into alifmdon001.cern.ch using your CERN credentials (remember domain is CERN)
- ► Select entry

 Programs→WinCC→Project

 →User Interface from
 the 'Start' menu.

Take Control

- Click key icon and type in your CERN user name and 'top secret' password
- Normally control taken by central shifter — call shift leader if you need it