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Coronal Mass Ejection

@ Coronal plasma and magnetic field
@ Speed: ~ 450 km/s

@ Speed range: 100 to 3000 km/s

@ Space Weather impact

@ Three components structure
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Ejection of Flux Rope

The ejection of a flux rope is believed to be the progenitor of CMEs.
It is also a component of the flare standard model.

Cheng et al., 2011



Flux Ropes in the solar corona

Habbal et al, 2010
Romano et al., 2014

AlA 304




Life of flux Rope: formation

Patsourakos et al., 2013

@ Formation of flux rope: accumulation of free magnetic energy

Flux rope formation

@ Slow formation: days or weeks
@ Quasi-static evolution. (t >> 74y)
@ Magnetic evolution: 8 << 1 everywhere




Life of flux Rope: ejection

@ Flux rope ejection: release of energy

Flux rope ejection

@ Fast ejection: flux rope travels out of the corona in ~ 2 hours
@ Highly dynamic evolution. (t ~ 7a)
@ Full MHD: plasma is locally compressed. (5 > 1)



Boundary conditions of Space Weather

@ At ~ 4 Ry CME are blown in the solar
wind

@ Magnetized plasmoid

@ the Solar Wind can deflect the ICME

@ The CME plasmoid can rotate

@ The "Bz” component of the magnetic
field (perpendicular to ecliptic) is

crucial for the impact of the ICME on
the Earth-magneosphere

Space Weather forecast: arrival time and properties of CMEs

For Space Weather forecast, we need:

@ efficiency on computation
@ accuracy on the injection of the CME in the solar wind




Strategy: Pagano et al.,2013. We couple two models.

Model the life span of Flux Rope

Global Non-Linear Force Free Field (GNLFFF)
evolution model

Flux I’Ope formation GNLFFF variables MHD variables
@ Decribes a magnetically dominated u
evolution
@ Models the evolution of corona for weeks n
@ Computationally efficient:
magnetofrictional technique

MHD Simulation with the MPI-AMRVAC code -0

Flux rope ejection
@ Accounts for plasma and magnetic field
@ Models multi-3 domain

pterpolation




Formation of a flux rope

Global Non-Linear Force-Free Field Model
Mackay & van Ballegooijen, 2006.
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Ejection of the flux rope: 3D MHD Simulation

MPI-AMRVAC: KU Leuven
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Eruptive magnetic configuration: Pagano et al., 2013

@ it is possible to couple the GNLFFF
model with the MHD AMRVAC code

@ we follow the life span of a flux rope
from formation to ejection

@ the stress accumulated during the
formation justifies a flux rope ejection

Initial Condition
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Step 2: exploration of parameters space
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@ A set of MHD simulation shows under which conditions the coronal
atmosphere favours the ejection

@ Ideal MHD + Gravity



3D Non-ideal MHD Simulation: density and temperature distribution

(a) p profile
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MHD evolution

2D plane through the centre of the bipoles

t=0.00m 1=0.00m

= N\
e

@ Flux rope ejection: dense and cold plasma expelled
@ Ejection reaches 4 Ry: it turns into a CME
@ The flux rope is ejected towards the null-point.



MHD evolution

(o)

p at the center of the flux rope

(o) p profile
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@ A front at constant density if formed
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@ The flux rope always presents a density excess and a temperature dip
@ The density of the flux rope decreases by about 4 order of magnitudes
@ The temperature of the flux rope initially increases to 1 MK and then it

cools down to 10° K



AlA emission synthesis

—131A(T=10%%, T=107, and T=10"%)
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@ EMp.(n, T) = r¢(T)en.
@ ((T)on. is given from the AIA SSW tool

@ Compute EM.,. (n, T) from each plasma element and integrate along the
line of sight.

@ Flux rope at 24° from plane of sky



Step 3: Non-ideal MHD and forward modelling

Oblique view Flux rope
AA 3044 (T=1024.7 MK)

1Rg

@ Synthesised images match AlA
observed flux rope ejections

@ Flux rope ejection visible in 304A and

Oblique view Flux rope

171A AR 335 (T=106.4 K)

1Re

@ Heating highlighted in 3354 and 94A

Oblique view Flux rope
AA 1714 (T=105.8 K)

1Rg

Oblique view Flux rope
AIA 944 (T=106.8 K)

1Ry




CME MHD simulation of the global corona

Towards a Space Weather application

Coupling MHD simulation with Global code

@ The Global code uses a series of
Magnetograms as boundary
conditions

@ Accounts for flux emergence and flux
cancellation at the solar surface

@ Predicts the formation of most flux

ropes




Global Model

Non-Potential Model for the °menns: May-Aug 1999
Coronal Magnetic Field

+ Long Term simulations (months ~ years).
- Build up free magnetic energy

+  Two coupled components:

Photosphere: Data Driven Flux Transport Model
- accurately reproduces B, obs. on Sun.
- includes flux emergence (+/- ve helicity).

Corona : Magnetofrictional Relaxation
- quasi-static evolution
- non-linear force-free states, j x B=0
- transport of helicity across the Sun
- development of sheared fields along PIL
(van Ballegooijen and Martens 1989)

* Development and Application:
van Ballegooijen et al 2000;
Mackay and van Ballegooijen 2006a,b;
Yeates etal. 2007. 2008a.b, 2009a.b.




Global Model

Formation of Flux Ropes

. Evolution for 3.5 solar rotations (96 days).
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- Number of flux ropes : 28-48.
- Sustained by new flux emergence.
- Number has little dependence on helicity of emerging bipoles.

- Size, formation rate depends on emerging helicity.




Global Model

Ejection of Flux Ropes

. Ejections: 96-108 days
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Global Model

Comparison with Observations !

*  Yeates et al. 2010: comparison of flux rope ejections and CME source locations
from EIT EUV events.

4.5 months : 330 CMEs (Lasco), only 98 identified in EIT 195 A events.

MereRt9S—

Comparison problematic.

Outcome : +ve correlation
0.49
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+  Two classes of CMEs:
V5 - gradual flux rope formation (outside AR, single events).
V2 - recurrent CMEs in AR (short timescale).

»  Multiple CME mechanisms operate on different time/spatial scales.
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@ Continuous simulation of the global corona during formation and ejection
of flux ropes.

@ Couple the two models either ways.
@ Computational efficiency of the GNLFFF model
@ Accuracy and generality of MPI-AMRVAC MHD simulations



L~ 0.0005
CPU

From magnetograms to GNLFFF From GNLFFF to MHD

Feasible approach for Space Weather Forecast.
GNLFFF ~ 30K more efficient than MHD




A vec formulation

° MHIg is solved in terms of A A MHD
eV-B=0
@ Communication with theoretical

— + V- (pV) =0,
at
models better defined in terms of A
GNLFFF variables
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MHD Global Simulation

& va —
@ 256 x 256 x 512 points or Y xExB=0
e r=1-25R; ;+6-[(e+p)ﬂ:ﬂ§-i
@ B splitting v . B—o

@ By spherical harmonics




Initial Condition

B, ot the lower boundary
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Different flux rope
structures are on the
solar disk

The Lorentz force
excess underneath
leads to upward
motions



Initial Condition
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Initial Condition




V, ot r=1.03Rg

—5.00e+06




Evolution

r—momentum
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Evolution
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Conclusions

@ MHD simulation of flux rope ejections

@ The coupling of GNLFFF and MPI-AMRVAC is a reliable technique to model
the life span of a single flux rope

e This model is able to reproduce the main features of a flux rope ejection
(time scale, shape)

o We idenfied a parameter space where the ejections are favoured

e Using also Non-Ideal term in the MHD simulation we can reproduce
AIA/SDO observations of flux rope ejections

@ MHD simulation of flux rope ejection in the global corona

@ The mutual coupling of GNLFFF and MPI-AMRVAC will lead to a feasible

way to provide Space Weather models with accurate and realistic boundary
conditions.



Get operative

@ Automatization of flux emergence

@ Recognition of ejection criteria for flux rope

@ Automatization of coupling Global Model to AMRVAC
@ Couple back AMRVAC to the Global Model



@ Outlook
e Gobal simulations of the solar corona
e Study on the ionization state of the plasma during flux rope ejections
e Simulation of specific events (02-08-2011)
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