Energy based Active-Contour Methods for Scientific Image Segmentation

Mordechai ("Moti") Butrashvily

Schools of Geophysics, Physics & Astrophysics, Applied Math.

Tel-Aviv University (TAU), Israel

Agenda

- Image Segmentation & Applications
- Energy based Active Contour (Snakes)
 - Using Edge-Detectors
 - Limitations
 - Level-Set Functions (ϕ formalism)
 - Edge-Free Segmentation (Chan-Vese)
- Statistical Interpretation
- Extension to Multi-phase and Vector Images

SolarCast-1, November 2015

Image Segmentation

- Part of image processing workflows
- Identify objects within an image
- Separate objects from background / clutter

* Erythrocyte, Courtesy of Dr. Alexander Barbul, Medicine, TAU

Problems

- Not an easy task at all
- Many models were developed over the years
- No single method that works best in all cases
- Can make it automatically?

Applications

- Geometry processing
- Feature extraction Object learning & classification
- Computer vision
- Not limited to 2D

- Extract properties of observed phenomena:
 - Intensity variation or other statistics
 - Curvature or other geometrical properties

ACTIVE CONTOUR (SNAKES)

Active Contour

- One approach for segmentation
- An initial contour is placed around objects to be segmented

Active Contour (Cont.)

- Contour evolves toward objects' boundaries
- Propagation is stopped when a criteria is met
 - E.g. contour didn't change much from previous iteration
- What forces the contour to move toward objects?
- "Balloon" forces, for example:
 - Low \rightarrow high gradients
 - Gray-level curvature
- Classical approaches: Geometric/Geodesic Active Contours

Gradient Forces

- Denote observed image as $I_0(x, y)$
 - I for intensity / gray-level
- A typical edge-detector:

$$g(\left|\vec{\nabla}I_{0}\right|) = \frac{1}{1 + \left|\vec{\nabla}G_{\sigma} * I_{0}\right|^{p}} \qquad p \ge 1$$

- Term in denominator represents a smoother image
- An example for *g*:

Energy Functional

- Denote C(s) a parametrized curve
- The energy to minimize:

$$E(C) = \int [\alpha |C'(s)|^2 + \beta |C''(s)|^2 + \lambda \cdot g^2] ds$$

• Searching:

 $\inf_{C} E(C)$

- Terms:
 - 1. First two are <u>internal energy</u>, control curve smoothness/curvature/rigidity
 - 2. Third is <u>external energy</u>, attracting curve toward objects

Minimization

- Using variational calculus and gradient-descent
- Minimization by Euler-Lagrange leads to curve evolution: $dC \qquad \delta E$

$$\frac{dC}{dt} = -\frac{\delta L}{\delta C} = 0$$

- *t* is an **artificial** "time", just used to advance simulation
- \mathcal{L} is the integrand, s.t. $E = \int \mathcal{L} ds$
- And the variation of E can be transformed to L by the chainrule

Limitation #1

- Gradients are susceptible to noise
 - But, smoothing an image can remove important information
- Example (desired, but most gradient methods fail):

* Pascal Getreuer, Chan-Vese Segmentation, IPOL (2012)

12

Limitation #2

- Hard to detect interior objects
- Initial contour matters

Limitation #3

- Sometimes gradient information is not enough
 - Glow or halo
 - Many realistic scenarios

* www.dpic.org

* SDO Fe XVIII 940nm, Nov 09, 2015

Limitations #4 +

- Hard to represent contours in discrete world
- Through anchor points and interpolate?
 - Not always working
- Hard to handle topological changes
- Same for merge/split contour while evolving
- Level-set functions comes to rescue
 - Elegant contour representation
 - Automatic handling of topological changes

16

ϕ - formalism

- Used by Osher & Sethian [1988]
- Solving phase/front evolution in chemical reactions
- ϕ is a level-set function
- Contour is now represented by zero level-set of ϕ
 - C(s) can be obtained by $\phi = 0$
- Requirements on ϕ :
 - Piecewise-continuous
 - At least C¹

Useful Constructs

- With ϕ as level-set function
- Important constructs / terminology:
 - $C \rightarrow \phi = 0$
 - $inside(C) \rightarrow \phi > 0$
 - $outside(C) \rightarrow \phi < 0$
 - *H* will be the familiar Heaviside function
 - δ is the familiar Dirac delta function
 - Also note (change of variables): $\vec{\nabla}H(\phi) = \delta(\phi)\vec{\nabla}\phi$

Curve Evolution

- Using previous energy functional
- *E* is minimized as before with respect to ϕ
- In terms of ϕ (instead of C):

$$\frac{\partial \phi}{\partial t} = g(\left|\vec{\nabla}I_0\right|) \cdot \left|\vec{\nabla}\phi\right| \cdot \operatorname{div}\left(\frac{\vec{\nabla}\phi}{\left|\vec{\nabla}\phi\right|} + \lambda\right)$$

- First term in brackets is the curvature
- λ controls the external energy as before

Example

- Any function satisfying previous constraints can serve as ϕ
- A common choice is check-board or egg-pattern (C^{∞}): $\phi(x, y) = \sin\left(\frac{\pi \cdot x}{30}\right) \cdot \sin\left(\frac{\pi \cdot y}{40}\right)$
- Where *x*, *y* are in pixel coordinates

Example (Cont.)

• A 3D view of ϕ :

Example (Cont.)

• Zero level-set of ϕ :

22

Example (Cont.)

• Shifting ϕ to 0.5 level-set

23

Up Until Now...

- Solved contour representation issues
- Level-set functions are very easy to work with
- Would like to overcome gradient limitations

Towards edge-free segmentation

CHAN-VESE SEGMENTATION

Two-Phase Model

- Chan & Vese [2001] considered segmentation as minimal partitioning problem
- Limit discussion to 2-phase model, aka:
 - c_1 gray color of objects to detect
 - c_2 gray color of background
- **Don't** be mislead by the simplicity

Two-Phase Model (Cont.)

• The functional:

 $E(c_{1}, c_{2}, C) = \mu \cdot [Length(C)]^{p} + v \cdot Area(inside(C)) + \lambda_{1} \int_{inside(C)} |I_{0} - c_{1}|^{2} dx dy + \lambda_{2} \int_{outside(C)} |I_{0} - c_{2}|^{2} dx dy$

• μ , ν , λ_1 , λ_2 are external constants, controlling term significance

Two-Phase Model (Cont.)

• Minimization problem is:

$$\inf_{c_1, c_2, C} E(c_1, c_2, C)$$

- Existence was proved by Mumford & Shah [1989]
- Clearly, minimal *E* is obtained only when contour surrounds relevant objects (correct gray levels)
- In any other option energy is higher -> not minimum

Chan-Vese Functional

• With level-set the functional becomes:

$$E(c_1, c_2, \phi) = \int \begin{bmatrix} \mu \cdot \delta | \vec{\nabla} \phi | + \\ \nu \cdot H + \\ \lambda_1 \cdot |I_0 - c_1|^2 \cdot H + \\ \lambda_2 \cdot |I_0 - c_2|^2 \cdot (1 - H) \end{bmatrix} dxdy$$

- Can analytically minimize E with respect to c_1, c_2
- They simply denote the average intensity levels in/outside C
- Same as the interpretation we gave before

SolarCast-1, November 2015

Curve Evolution Equation

• The gradient-descent equation for ϕ :

$$\frac{d\phi}{dt} = -\frac{\delta E}{\delta \phi}$$

• Finally:

$$\frac{\partial \phi}{\partial t} = \delta(\phi) \left[\mu \operatorname{div} \left(\frac{\nabla \phi}{|\nabla \phi|} \right) - \nu - \lambda_1 (u_0 - c_1)^2 + \lambda_2 (u_0 - c_2)^2 \right]$$

• Note the $\delta(\phi)$ term (zero level-set revisited)

Curve Evolution (Cont.)

- After each *dt*:
 - c_1, c_2 are estimated and fed to next iteration
- Considerations:
 - Numerical implementations use (semi-)explicit scheme
 - Watch for stability issues
 - δ is usually omitted following Rosen's gradient projection method
 - Other regularizations exist as well, same for H

Advantages

- Very robust method
- Fast convergence
- No strict dependence on initial contour!
- Easy handling geometric/topological variations
- And many more...
- But, coefficients need be fit based on experience and application
- Not that hard to figure or compute semi-automatically

Few Examples

* Pascal Getreuer, Chan-Vese Segmentation, IPOL (2012) (See companion demo website)

33

STATISTICAL INTERPRETATION

Introducing Priors

- Cremers, Rousson & Deriche [2007] formulated Chan-Vese segmentation using statistical inference
- What do λ_1 , λ_2 mean?
- Giving statistical interpretation in image processing or computer vision is now a very common approach
- Sometimes interpreting previous results by statistical means
- Helps overcome ill-posed/defined problems
 - When vision problems are partially known or easily formulated
 - Replace 'vision' with 'physics'

Priors Derivation

- First, let $P(\Omega)$ express an optimal partition of I_0
- Our goal is now to maximize the MAP: $p(P(\Omega)|I_0)$
- Following simple Bayesian inference: $p(P(\Omega)|I_0) \propto p(I_0|P(\Omega)) \cdot p(P(\Omega))$
- Recall that $p(I_0) = 1$ by definition
- This separates image partitioning (1st) from geometrical properties of partition (2nd)

SolarCast-1, November 2015

Geometry Prior

• An example for such a prior:

$$p(\mathbf{P}(\Omega)) \propto e^{-\mu|C|} = e^{-\int \mu |\vec{\nabla}H|}$$

- This favors contours of shorter length
- Or:

$$p(\mathbf{P}(\Omega)) \propto e^{-\int v H}$$

- Which favors regions of smaller area
- Which a priori knowledge is more of less likely?

Image Prior

- Let us assume that different regions are spatially disconnected
- In addition, pixels within each region are i.i.d
- Assume that pixels are drawn from a Gaussian distribution:

$$p(I_0, c_i, \sigma_i) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{(I_0 - c_i)^2}{2\sigma_i^2}\right)$$

• After plugging this in E and minimizing it analytically with respect to σ_i :

$$\lambda_i = 1/2\sigma_i^2$$

• This can be re-evaluated in each optimization iteration

EXTENSIONS

39

Advanced Segmentation

- Chan-Vese extended their model to support multi-phase images (multi gray levels)
 - Very elegant, need only $\log_2 N$ level-set functions for N phases
- Also possible to segment vector (color) valued images

Advanced Segmentation (Cont.)

- Probabilistic formulation can be used to identify:
 - Textures
 - Shapes!
 - Motion
 - All other applicable prior knowledge
- Image need not only be considered as intensity
- Each "pixel" can contain complex features (tensor, spatiotemporal info and so)

Final Remarks

- Segmentation helps extract geometry and statistical information
- Still an active research (and very rich) domain
- Solutions evolve with increasing complexity of needs
- ϕ formalism is very elegant and powerful
- Apply many differential geometry operators and concepts
- Statistical approaches can be used to insert prior knowledge into physical observations
- Or study statistical properties of observed objects

Questions?

43

Thank You 😳

