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Agenda

* Image Segmentation & Applications
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* Energy based Active Contour (Snakes)
* Using Edge-Detectors
* Limitations
* Level-Set Functions (¢ — formalism)
* Edge-Free Segmentation (Chan-Vese)

Statistical Interpretation

Extension to Multi-phase and Vector Images




Image Segmentation

* Part of image processing workflows
* |dentify objects within an image
* Separate objects from background / clutter
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* Erythrocyte, Courtesy of Dr. Alexander Barbul, Medicine, TAU




Problems

Not an easy task at all
Many models were developed over the years
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No single method that works best in all cases

Can make it automatically?




Applications

* Geometry processing
Feature extraction — Object learning & classification
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Computer vision
Not limited to 2D

Extract properties of observed phenomena:
* Intensity variation or other statistics
* Curvature or other geometrical properties
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ACTIVE CONTOUR (SNAKES)




Active Contour

One approach for segmentation
An initial contour is placed around objects to be segmented
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Active Contour (Cont.)

* Contour evolves toward objects’ boundaries

* Propagation is stopped when a criteria is met
e E.g. contour didn’t change much from previous iteration
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What forces the contour to move toward objects?

“Balloon” forces, for example:
* Low -2 high gradients
* Gray-level curvature

Classical approaches: Geometric/Geodesic Active Contours




Gradient Forces

Denote observed image as I, (x, y)
« [ for intensity / gray-level
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A typical edge-detector:

R 1
9(IV1o]) =

1+|ﬁGO-*IOp

Term in denominator represents a smoother image

p=1

An example for g:




Energy Functional

Denote C(s) a parametrized curve
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The energy to minimize:

E(C) = f[aw'(snz FBIC ()12 + 1+ g?)ds

Searching:
1r61fE(C)
* Terms:

1. First two are internal energy, control curve
smoothness/curvature/rigidity

2. Third is external energy, attracting curve toward objects




Minimization

Using variational calculus and gradient-descent
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Minimization by Euler-Lagrange leads to curve evolution:
dC OF

- — = O
dt oC
t is an artificial “time”, just used to advance simulation

Lis the integrand, s.t. E = [ Lds

And the variation of E can be transformed to L by the chain-
rule




Limitation #1

* Gradients are susceptible to noise
* But, smoothing an image can remove important information
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* Example (desired, but most gradient methods fail):
3000 iterations
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* Pascal Getreuer, Chan-Vese Segmentation, IPOL (2012)




Limitation #2

* Hard to detect interior objects
* Initial contour matters
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Limitation #3

* Sometimes gradient information is not enough

* Glow or halo
* Many realistic scenarios
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* www.dpic.org

* SDO Fe XVIII 940nm, Nov 09, 2015




Limitations #4 +

Hard to represent contours in discrete world

Through anchor points and interpolate?
* Not always working
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Hard to handle topological changes
Same for merge/split contour while evolving

Level-set functions comes to rescue
* Elegant contour representation
* Automatic handling of topological changes
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LEVEL-SET FUNCTIONS




¢ - formalism

* Used by Osher & Sethian [1988]
Solving phase/front evolution in chemical reactions
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¢ is a level-set function

Contour is now represented by zero level-set of ¢
* C(s) can be obtainedby ¢ =0

* Requirements on ¢:
* Piecewise-continuous
At least C1




Useful Constructs

* With ¢ as level-set function
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* Important constructs / terminology:
c C->¢p=0

inside(C) > ¢ >0

outside(C) » ¢ <0

H will be the familiar Heaviside function

0 is the familiar Dirac delta function

Also note (change of variables):

VH(¢p) = 8(p)V




Curve Evolution

Using previous energy functional

E is minimized as before with respect to ¢
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In terms of ¢ (instead of C):

9% _ (|7 L
3= (|w0|).|v¢|.dw<|ﬁ¢|ﬂ)

First term in brackets is the curvature

A controls the external energy as before




Example

* Any function satisfying previous constraints can serve as ¢
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* A common choice is check-board or egg-pattern (C*):
¢(x,y) = sin (u) - sin (u)
Y 30 40

* Where x, y are in pixel coordinates




Example (Cont.)

* A 3D view of ¢:




Example (Cont.)

* Zero level-set of ¢:

LN
—
o
o
S
(O]
0
=
(]
>
(@]
=2
o
i
(%]
©
O
—
©
(]
(%)

a00

450

400

350

300

250

200

150

100

a0

| | | | | 1
&0 o0 180 200 250 300 3500 400 450 500




Example (Cont.)

* Shifting ¢ to 0.5 level-set
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Up Until Now...

* Solved contour representation issues
* Level-set functions are very easy to work with
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* Would like to overcome gradient limitations
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Towards edge-free segmentation

CHAN-VESE SEGMENTATION




Two-Phase Model

Chan & Vese [2001] considered segmentation as minimal
partitioning problem

LN
—
o
N
—
)
Q
S
)
>
o
=z
=
i
[%2]
©
O
—_
©
o
n

Limit discussion to 2-phase model, aka:
* ¢4 - gray color of objects to detect
* ¢, - gray color of background

Don’t be mislead by the simplicity




Two-Phase Model (Cont.)

* The functional:
E(cq,c,,C) = u - [Length(C)]P +

V- Area(inside(C)) +

Alj Iy — c1|?dxdy +
inside(C)
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Azj Iy — c;|*dxdy
outside(C)

* u,v,A4,, are external constants, controlling term significance




Two-Phase Model (Cont.)

Minimization problem is:
inf E(cq,c,,C)

C1,C2,C

Existence was proved by Mumford & Shah [1989]
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Clearly, minimal E is obtained only when contour surrounds
relevant objects (correct gray levels)

In any other option energy is higher -> not minimum




Chan-Vese Functional

With level-set the functional becomes:

w-8|Ve| +
H+
E = v
(C1;C21¢) J Al . |IO _ C1|2 - H i
-AZ : |IO - C2|2 . (1 _H)_

dxdy

Can analytically minimize E with respect to ¢4, ¢y

They simply denote the average intensity levels in/outside C

Same as the interpretation we gave before
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Curve Evolution Equation

* The gradient-descent equation for ¢:
do OFE

dt 8¢
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* Finally:

J0)
6_ = 5(¢) [.U dlv(|‘7¢|> —v—A;(up — C1)2 + Az (up — Cz)zl

* Note the §(¢) term (zero level-set revisited)




Curve Evolution (Cont.)

 After each dt:
* (4, C, are estimated and fed to next iteration
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* Considerations:
* Numerical implementations use (semi-)explicit scheme

* Watch for stability issues

* § is usually omitted following Rosen’s gradient projection
method

* Other regularizations exist as well, same for H




Advantages

* Very robust method
* Fast convergence
* No strict dependence on initial contour!
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* Easy handling geometric/topological variations

* And many more...

* But, coefficients need be fit based on experience and
application
* Not that hard to figure or compute semi-automatically
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* Pascal Getreuer, Chan-Vese Segmentation, IPOL (2012) (See companion demo website)

Few Examples
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STATISTICAL INTERPRETATION




Introducing Priors

* Cremers, Rousson & Deriche [2007] formulated Chan-Vese
segmentation using statistical inference

* What do 44,1, mean?
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* @Giving statistical interpretation in image processing or
computer vision is now a very common approach

* Sometimes interpreting previous results by statistical means

* Helps overcome ill-posed/defined problems
* When vision problems are partially known or easily formulated

* Replace ‘vision’ with ‘physics’




Priors Derivation

First, let P(£)) express an optimal partition of I
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Our goal is now to maximize the MAP:
p(P(Q)]lp)

Following simple Bayesian inference:
p(P(D)lp) < p(Io|P(D) - p(P(D))
Recall that p(I,) = 1 by definition

This separates image partitioning (1) from geometrical
properties of partition (2"9)




Geometry Prior

An example for such a prior:
p(P(Q)) x e HICl = e~ | 1I7H

This favors contours of shorter length
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* Or:
p(P(Q)) eIV

Which favors regions of smaller area

Which a priori knowledge is more of less likely?




Image Prior

Let us assume that different regions are spatially disconnected

In addition, pixels within each region are i.i.d
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Assume that pixels are drawn from a Gaussian distribution:

1 (I — ¢;)?
p(IO, Ci) O-l') = exp <_ 2 2l )
2 i

21 0; ‘

After plugging this in E and minimizing it analytically with
respect to o;:
).i = 1/20-1.2

This can be re-evaluated in each optimization iteration
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EXTENSIONS




Advanced Segmentation

* Chan-Vese extended their model to support multi-phase
images (multi gray levels)
* Very elegant, need only log, N level-set functions for N phases
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* Also possible to segment vector (color) valued images




Advanced Segmentation (Cont.)

* Probabilistic formulation can be used to identify:
* Textures
e Shapes!
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* Motion
* All other applicable prior knowledge

* Image need not only be considered as intensity

* Each “pixel” can contain complex features (tensor, spatio-
temporal info and so)




Final Remarks

* Segmentation helps extract geometry and statistical
information

Still an active research (and very rich) domain
Solutions evolve with increasing complexity of needs
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¢ formalism is very elegant and powerful
Apply many differential geometry operators and concepts

Statistical approaches can be used to insert prior knowledge
into physical observations

* Or study statistical properties of observed objects




Questions?




Thank You ©




