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Agenda 

• Image Segmentation & Applications 

 

• Energy based Active Contour (Snakes) 

• Using Edge-Detectors 

• Limitations 

• Level-Set Functions (𝜙 – formalism) 

• Edge-Free Segmentation (Chan-Vese) 

 

• Statistical Interpretation 

 

• Extension to Multi-phase and Vector Images 
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Image Segmentation 

• Part of image processing workflows 

• Identify objects within an image 

• Separate objects from background / clutter 

 

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

 

3 
* Erythrocyte, Courtesy of Dr. Alexander Barbul, Medicine, TAU 



Problems 

• Not an easy task at all 

• Many models were developed over the years 

 

• No single method that works best in all cases 

• Can make it automatically? 
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Applications 

• Geometry processing 

• Feature extraction – Object learning & classification 

• Computer vision 

• Not limited to 2D 

• … 

 

• Extract properties of observed phenomena: 

• Intensity variation or other statistics 

• Curvature or other geometrical properties 
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ACTIVE CONTOUR (SNAKES) 

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

 

6 



Active Contour 

• One approach for segmentation 

• An initial contour is placed around objects to be segmented 
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Active Contour (Cont.) 

• Contour evolves toward objects’ boundaries 

• Propagation is stopped when a criteria is met 

• E.g. contour didn’t change much from previous iteration 

 

• What forces the contour to move toward objects? 

• “Balloon” forces, for example:  

• Low  high gradients 

• Gray-level curvature 

 

• Classical approaches: Geometric/Geodesic Active Contours 
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Gradient Forces 

• Denote observed image as 𝐼0 𝑥, 𝑦  

• 𝐼 for intensity / gray-level 

 

• A typical edge-detector: 

𝑔 𝛻𝐼0 =
1

1 + 𝛻𝐺𝜎 ∗ 𝐼0
𝑝         𝑝 ≥ 1 

• Term in denominator represents a smoother image 

• An example for 𝑔: 
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Energy Functional 

• Denote 𝐶 𝑠  a parametrized curve 

 

• The energy to minimize: 

𝐸 𝐶 =  𝛼 𝐶′ 𝑠 2 + 𝛽 𝐶′′ 𝑠 2 + 𝜆 ⋅ 𝑔2 𝑑𝑠 

• Searching: 
inf
𝐶
𝐸 𝐶  

• Terms: 

1. First two are internal energy, control curve 
smoothness/curvature/rigidity 

2. Third is external energy, attracting curve toward objects 
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Minimization 

• Using variational calculus and gradient-descent 

 

• Minimization by Euler-Lagrange leads to curve evolution: 
d𝐶

𝑑𝑡
= −

𝛿𝐸

𝛿𝐶
= 0 

• 𝑡 is an artificial “time”, just used to advance simulation 

 

• ℒ is the integrand, s.t. 𝐸 = ∫ ℒ𝑑𝑠 

• And the variation of 𝐸 can be transformed to ℒ by the chain-
rule 
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Limitation #1 

• Gradients are susceptible to noise 

• But, smoothing an image can remove important information 

 

• Example (desired, but most gradient methods fail): 
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* Pascal Getreuer, Chan-Vese Segmentation, IPOL (2012) 



Limitation #2 

• Hard to detect interior objects 

• Initial contour matters 
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Limitation #3 

• Sometimes gradient information is not enough 

• Glow or halo 

• Many realistic scenarios 
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* www.dpic.org 

* SDO Fe XVIII 940nm, Nov 09, 2015 



Limitations #4 + 

• Hard to represent contours in discrete world 

• Through anchor points and interpolate? 

• Not always working 

 

• Hard to handle topological changes 

• Same for merge/split contour while evolving 

 

• Level-set functions comes to rescue 

• Elegant contour representation 

• Automatic handling of topological changes 
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LEVEL-SET FUNCTIONS 
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𝜙 - formalism 

• Used by Osher & Sethian [1988] 

• Solving phase/front evolution in chemical reactions 

 

• 𝜙 is a level-set function 

• Contour is now represented by zero level-set of 𝜙 

• 𝐶 𝑠  can be obtained by 𝜙 = 0 

 

• Requirements on 𝜙: 

• Piecewise-continuous 

• At least 𝐶1 
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Useful Constructs 

• With 𝜙 as level-set function 

 

• Important constructs / terminology: 

• 𝐶 → 𝜙 = 0 

• 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶 → 𝜙 > 0 

• 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝐶 → 𝜙 < 0 

 

• 𝐻 will be the familiar Heaviside function 

• 𝛿 is the familiar Dirac delta function 

 

• Also note (change of variables): 

𝛻𝐻 𝜙 = 𝛿 𝜙 𝛻𝜙 

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

 

18 



Curve Evolution 

• Using previous energy functional 

• 𝐸 is minimized as before with respect to 𝜙 

 

• In terms of 𝜙 (instead of 𝐶): 

𝜕𝜙

𝜕𝑡
= 𝑔 𝛻𝐼0 ⋅ 𝛻𝜙 ⋅ div

𝛻𝜙

𝛻𝜙
+ 𝜆  

 

• First term in brackets is the curvature 

• 𝜆 controls the external energy as before 
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Example 

• Any function satisfying previous constraints can serve as 𝜙 

 

• A common choice is check-board or egg-pattern (𝐶∞): 

𝜙 𝑥, 𝑦 = sin
𝜋 ⋅ 𝑥

30
⋅ sin

𝜋 ⋅ 𝑦

40
 

• Where 𝑥, 𝑦 are in pixel coordinates 
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Example (Cont.) 

• A 3D view of 𝜙: 
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Example (Cont.) 

• Zero level-set of 𝜙: 
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Example (Cont.) 

• Shifting 𝜙 to 0.5 level-set 
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Up Until Now… 

• Solved contour representation issues 

• Level-set functions are very easy to work with 

 

• Would like to overcome gradient limitations 
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CHAN-VESE SEGMENTATION 

Towards edge-free segmentation 
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Two-Phase Model 

• Chan & Vese [2001] considered segmentation as minimal 
partitioning problem 

• Limit discussion to 2-phase model, aka: 

• 𝑐1 - gray color of objects to detect 

• 𝑐2 - gray color of background 

• Don’t be mislead by the simplicity 
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Two-Phase Model (Cont.) 

• The functional: 
𝐸 𝑐1, 𝑐2, 𝐶 = 𝜇 ⋅ 𝐿𝑒𝑛𝑔𝑡ℎ 𝐶 𝑝 +

𝜈 ⋅ 𝐴𝑟𝑒𝑎 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶 +

𝜆1 𝐼0 − 𝑐1
2𝑑𝑥𝑑𝑦

𝑖𝑛𝑠𝑖𝑑𝑒 𝐶

+

𝜆2 𝐼0 − 𝑐2
2𝑑𝑥𝑑𝑦

𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝐶

 

• 𝜇, 𝜈, 𝜆1, 𝜆2 are external constants, controlling term significance 
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Two-Phase Model (Cont.) 

• Minimization problem is: 
inf
𝑐1,𝑐2,𝐶

𝐸 𝑐1, 𝑐2, 𝐶  

• Existence was proved by Mumford & Shah [1989] 

 

• Clearly, minimal 𝐸 is obtained only when contour surrounds 
relevant objects (correct gray levels) 

• In any other option energy is higher -> not minimum 
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Chan-Vese Functional 

• With level-set the functional becomes: 

𝐸 𝑐1, 𝑐2, 𝜙 =  

𝜇 ⋅ 𝛿 𝛻𝜙 +

𝜈 ⋅ 𝐻 +
𝜆1 ⋅ 𝐼0 − 𝑐1

2 ⋅ 𝐻 +

𝜆2 ⋅ 𝐼0 − 𝑐2
2 ⋅ 1 − 𝐻

𝑑𝑥𝑑𝑦 

 

• Can analytically minimize 𝐸 with respect to 𝑐1, 𝑐2 

• They simply denote the average intensity levels in/outside 𝐶 

• Same as the interpretation we gave before 
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Curve Evolution Equation 

• The gradient-descent equation for 𝜙: 
𝑑𝜙

𝑑𝑡
= −

𝛿𝐸

𝛿𝜙
 

 

• Finally: 
𝜕𝜙

𝜕𝑡
= 𝛿 𝜙 𝜇 div

𝛻𝜙

𝛻𝜙
− 𝜈 − 𝜆1 𝑢0 − 𝑐1

2 + 𝜆2 𝑢0 − 𝑐2
2  

 

• Note the 𝛿 𝜙  term (zero level-set revisited) 

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

 

30 



Curve Evolution (Cont.) 

• After each 𝑑𝑡: 

• 𝑐1, 𝑐2 are estimated and fed to next iteration 

 

• Considerations: 

• Numerical implementations use (semi-)explicit scheme 

• Watch for stability issues 

• 𝛿 is usually omitted following Rosen’s gradient projection 
method 

• Other regularizations exist as well, same for 𝐻 
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Advantages 

• Very robust method 

• Fast convergence 

• No strict dependence on initial contour! 

• Easy handling geometric/topological variations 

 

• And many more… 

 

• But, coefficients need be fit based on experience and 
application 

• Not that hard to figure or compute semi-automatically 
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Few Examples 
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* Pascal Getreuer, Chan-Vese Segmentation, IPOL (2012) (See companion demo website) 



STATISTICAL INTERPRETATION 
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Introducing Priors 

• Cremers, Rousson & Deriche [2007] formulated Chan-Vese 
segmentation using statistical inference 

• What do 𝜆1, 𝜆2 mean? 

 

• Giving statistical interpretation in image processing or 
computer vision is now a very common approach 

• Sometimes interpreting previous results by statistical means 

 

• Helps overcome ill-posed/defined problems 

• When vision problems are partially known or easily formulated 

• Replace ‘vision’ with ‘physics’ 
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Priors Derivation 

• First, let 𝑃 Ω  express an optimal partition of 𝐼0 

 

• Our goal is now to maximize the MAP:  
𝑝 𝑃 Ω 𝐼0  

 

• Following simple Bayesian inference: 

𝑝 𝑃 Ω 𝐼0 ∝ 𝑝 𝐼0 𝑃 Ω ⋅ 𝑝 𝑃 Ω  

• Recall that 𝑝 𝐼0 = 1 by definition 

 

• This separates image partitioning (1st) from geometrical 
properties of partition (2nd) 
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Geometry Prior 

• An example for such a prior: 

𝑝 P Ω ∝ 𝑒−𝜇 𝐶 = 𝑒− ∫ 𝜇 𝛻𝐻  

• This favors contours of shorter length 

 

• Or: 

𝑝 P Ω ∝ 𝑒− ∫ 𝜈𝐻 

• Which favors regions of smaller area 

 

• Which a priori knowledge is more of less likely? 
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Image Prior 

• Let us assume that different regions are spatially disconnected 

• In addition, pixels within each region are i.i.d 

 

• Assume that pixels are drawn from a Gaussian distribution: 

𝑝 𝐼0, 𝑐𝑖 , 𝜎𝑖 =
1

2𝜋𝜎𝑖
2

exp −
𝐼0 − 𝑐𝑖

2

2𝜎𝑖
2  

 

• After plugging this in 𝐸 and minimizing it analytically with 
respect to 𝜎𝑖: 

𝜆𝑖 = 1 2𝜎𝑖
2  

• This can be re-evaluated in each optimization iteration 
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EXTENSIONS 
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Advanced Segmentation 

• Chan-Vese extended their model to support multi-phase 
images (multi gray levels) 

• Very elegant, need only log2𝑁 level-set functions for 𝑁 phases 

 

• Also possible to segment vector (color) valued images 
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Advanced Segmentation (Cont.) 

• Probabilistic formulation can be used to identify: 

• Textures 

• Shapes! 

• Motion 

• All other applicable prior knowledge 

 

• Image need not only be considered as intensity 

• Each “pixel” can contain complex features (tensor, spatio-
temporal info and so) 
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Final Remarks 

• Segmentation helps extract geometry and statistical 
information 

• Still an active research (and very rich) domain 

• Solutions evolve with increasing complexity of needs 

 

• 𝜙 formalism is very elegant and powerful 

• Apply many differential geometry operators and concepts 

 

• Statistical approaches can be used to insert prior knowledge 
into physical observations 

• Or study statistical properties of observed objects 
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Questions? 
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Thank You  
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