

Particle acceleration in coronal and interplanetary shocks: quasi-linear and hybrid-Vlasov simulations

<u>R. Vainio</u>, A. Afanasiev, M. Battarbee, University of Turku, Finland

U. Ganse, University of Helsinki, Finland **M. Palmroth, Y. Kempf** Finnish Meteorological Institute, Helsinki, Finland **S. von Alfthan** CSC – IT Centre for Science, Espoo, Finland

Solar Energetic Particle (SEP) events: Directly detected accelerated particles

1-AU observations from ACE and SOHO spacecraft (Lario 2005)

Impulsive events:

- Electron and heavy-ion rich
- Duration up to a day
- Low ion intensities and max. energies (100 MeV)
- Related to impulsive flares

Gradual events:

Electron-poor, nominal ion abundances

98

Duration up to a week

97

2000

shock

shock

ions

electrons

High ion intensities and max. energies (10 GeV) _

99

Related to fast coronal mass ejections

12.00

Sources of particle radiation

Flare

In tenuous space plasmas, large-scale electric field

 $\mathbf{E} = -\mathbf{V}_{e} \times \mathbf{B}$

 \mathbf{V}_{e} = electron bulk velocity

To be accelerated by the large-scale field, particles have to be able to propagate across the magnetic field.

Current sheets and shocks

Current sheet

Effect of heliolongitude (gradual events)

How do shocks accelerate particles? Diffusive shock acceleration

Repeated shock crossings produce a power-law in momentum

How do shocks accelerate particles? Diffusive shock acceleration

Main problem of standard DSA for SEP events

Radial distance from the Sun *r*

Solution: protons generate their own magnetic fluctuations

Alfvén speed profile

Streaming limit and Energetic Storm Particle (ESP) peaks

Spectral density of fluctuations

Earth's bow shock

SIMULATION MODELLING

Coronal Shock Acceleration (CSA) code

Ion and Wave Distributions

Distance of the shock from the Sun = 14 – 22 R_{\odot}

Proton spectra at the shock

Vainio et al. (2014)

Cut-off momentum

DSA theory over-predicts p_c by an order of magnitude if the steady-state value of D_{nn} (Bell 1978) at the shock is used.

Vainio et al. (2014)

SOLar Particle Acceleration in Coronal Shocks (SOLPACS) model

Simulation setup

Goal: To explore the effect of the resonance condition

We assume:

·Constant background plasma (n_0, B_0, u_{sw} parameters)

·Anti-sunward propagating Alfvén waves with the initial spectrum $~I_{
m w} \propto k^{-q_0}$

 \cdot Particle injection at shock at constant rate $\,Q=\epsilon_{
m inj}n_0u_1$

• Exponential velocity spectrum of injected protons:

$$rac{dN_{
m inj}}{dv} \propto \exp\Bigl(-rac{v-u_1}{v_1}\Bigr)$$

Coronal shock simulation parameters: Magnetic field $B_0 = 3.4 \times 10^{-5}$ T Plasma density $n_0 = 3.6 \times 10^6$ cm⁻³ Solar-wind speed $u_{sw} = 12.4$ km s⁻¹ Shock speed $V_{shock} = 1500$ km s⁻¹ Scattering-centre compression ratio $r_c = 4$ Simulation box length $L_{box} = 1R_{\odot}$ Initial wave-spectral index $q_0 = 3/2$ Simulation time $t_{sim} = 580$ s

Proton spectrum at a coronal shock

for different injection strengths ϵ_{inj} (at t = 580 s)

Corresponding spectrum of waves

for $\epsilon_{inj} = 1.62 \times 10^{-5}$ (strongest injection), t = 580 s

The SOLPACS spectrum is smoother and less intense at low wavenumbers than the CSA one (corresponds to the lower particle cut-off energy E_c).

Note also the differences in the high-k spectrum

Distribution of protons in the foreshock

Bell's steady-state theory (1-D): $I(x,p) \propto \frac{x_0}{x+x_0}, \ x_0 = x_0(p)$

Proton mean free path in the foreshock

SOLPACS produces a mean free path increasing a function of energy.

The CSA mean free path reaches a steady state, but the SOLPACS one does not.

Future: beyond quasi-linear physics?

Example: Vlasiator

- Hybrid-Vlasov model, 2D+3V
- Developed at FMI for Earth's magnetosphere (Palmroth et al. 2012)
- Vlasov eq. for protons
- Neutralizing cold electron fluid
- Ampère's, Faraday's and Hall-MHD Ohm's laws

Interplanetary shock case using SOLPACS

 $\epsilon_{inj} = 10^{-3}$

Comparison of SOLPACS to a Vlasiator simulation

Run setup

- 5-D run (XY ecliptic plane, 3-D velocity space)
- Resolution: 227 km (ordinary space) 30 km s⁻¹ (velocity space)
- Inner magnetospheric boundary at 5 R_E
- IMF: magnitude 5 nT, radial (cone angle 5°)
- Solar wind velocity: 600 km s⁻¹
- Density: 3.3 cm⁻³
- Maxwellian velocity distribution of SW protons with T = 0.5 MK.

Comparison of SOLPACS to a Vlasiator simulation

Conclusions on Quasi-linear modeling

- The evolution timescale of particles and waves in DSA cannot be neglected!
- The full quasi-linear resonance condition yields less efficient particle acceleration than the simplified one (cf. the plot ⇒)
- Moreover, it provides a mean free path increasing with energy in contrast to Bell's steady-state theory
- The k⁻² asymptotic Alfvén wave spectrum agrees with kinetic (hybrid-Vlasov) simulations

Beyond quasi-linear physics?

Very turbulent downstream (unexplored transport conditions)

> Rippled shock (shock-normal angle "random variable")

Coherent compressional waves driven by reflected ion beam (unexplored transport conditions)

B

IP shock simulation / Vlasiator

Conclusions and outlook

- CME-driven shocks are the best candidate to account for the majority of proton fluence in large gradual events beyond 10-MeV energies.
- Acceleration is strongest in the corona but continues in the interplanetary medium
- DSA in solar eruptions is much more complicated than simple, 1D steadystate modelling can account for
 - Time evolution of foreshock
 - Complicated shock structures, both global and local
 - Quasi-linear treatment of DSA may be invalid, at least at supra-thermal energies
- Future modelling efforts should combine local fully kinetic simulations with global Monte Carlo simulations
 - Code Coupling probably not efficient enough (time scale limitation)
 - Statistical analysis of kinetic models with test-particle trajectories may provide the way ahead.