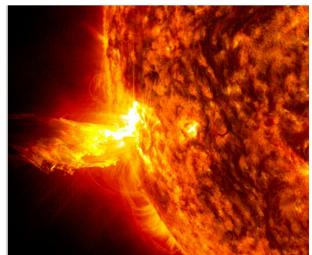
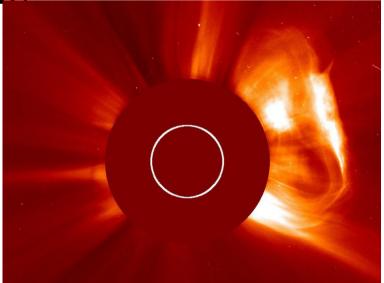

Data Driven Modelling

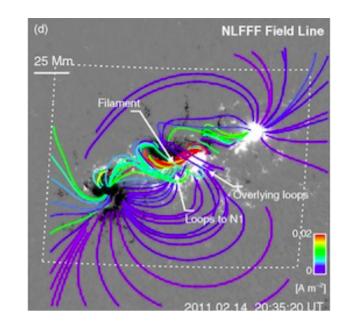
Klaus Galsgaard Niels Bohr Institute

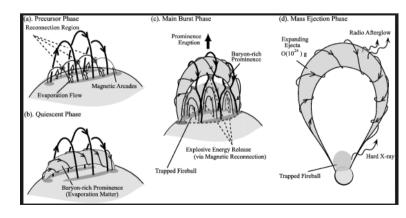



Content

- AR Modelling
- What does it takes to do it?
- Which methods/approaches to choose?
- An example

Introduction


- Space Weather
 - Need more precise models of the initiation
 - Flares and CMEs
 - Needed for realistic tracking further out in the system..... (Jens yesterday...)
 - How to do this?



Realistic modelling of flares and CMEs

- Requirements:
 - Realistic magnetic model
 - Based on magnetic information observations
 - Realistic atmospheric model
 - Energy equation
 - Realistic driving of the system
 - Based on observational data
 - Realistic treatment of particles
 - PIC or like

How to get these data?

Observations of

- Surface magnetic field

• Various magnetic information, large scale

- Coronal structural information

• Large scale information, AIA observations at different wavelengths

- Boundary driving

- Emergence
- Shearing
- Various magnetic information, large scale, long time scales

Requirements for a magnetic model

- Analytical models

- Simple models typically
- Various large scale models

- Relaxation

- Based on large scale modelling
 - Talk by Paolo PAGANO Wednesday

- Extrapolations

- Potential, constant alpha, non linear force free
 - Thomas Weigelmann

NLFFF Limitations

- Vector magnetic field
 - Limited spacial, time and strength resolution
- Flux balance of the region
 - Only possible in active regions...
- One current component
 - Component perpendicular to the surface
- No guarantee for a unique solution

Atmospheric model

- How complicated an energy equation?
 - How important is the energy flow
 - Radiation, conduction, particles, spectral lines
- Important for direct comparisons
- Important for real dynamics?

Driving

- How do we get realistic information to stress the magnetic field system?
 - Ball tracking
 - Potts et al. A&A 424, 253-262 (2004)
 - Local Correlation Tracking
 - Walsch et al. ApJ, 610, 1148 (2004)
 - Differential Affine Velocity Estimator (DAVE)
 - Schuck, P. W. ApJ, 683, 1134-1152 (2008)
 - PTD-Doppler-FLCT Ideal
 - Kazachenko et al. ApJ, 795, 19 (2014)

Ball tracking

Potts et al. A&A 424, 253-262 (2004) Error distribution Balltrack vs. LCT velocities Velocity from balltrack (pixels/min) 7000 0.15 6000 0.1 5000 D.05 4000 D 3000 -0.05 2000 -0.1 1000 nefit in-1.010, g=0.0126 -0.1 -0.1-0.05 0 0.05 0.1 0 0.05 0.1 -0.05 velocity difference $|V_{lcl} - V_{balltrack}|$ (pixels/min) Fig. 1. One of Velocity from LCT (pixels/min) surface. As the evolve, they pu Flow field - LCT Flow field - Balltrack 200 200 0.6" MDI pixels pixels. 160 120 6" MDI 80 D 40 n n 40 40 80 0.6" MDI pixels 0.6" MDI pixels with under-

Fig. 3. Cross s etrates the sur $(aprox, 150 \times 150'')$ frames taken at one minute intervals.

ILCT

Walsch et al. ApJ, 610, 1148 (2004)

- Combine the Induction equation with LCT
- Vector magnetograms
- LCT
 - Proper motion due to changes in intensity features
 - Gauss bell function with given sigma
 - FFT approach for deriving flow speed

Induction Equation

 $\frac{\partial \mathbf{B}}{\partial t} = \nabla X(\mathbf{v} X \mathbf{B}) \quad \rightarrow \text{ normal component}$

$$\frac{\partial B_n}{\partial t} = \nabla_t \cdot (v_n B_t - B_n v_t)$$

LCT speed and normal component

$$\delta B_n / \delta t = -\nabla_t (\boldsymbol{u} \,\overline{B_n}) \approx -\nabla_t \cdot [\boldsymbol{u}^{LCT} \,\overline{B_n}]$$

v parallel to B has no effect on IE

 $\mathbf{v} \cdot \mathbf{B} = 0$

Ideal Ohms law

$$\boldsymbol{E} = -\boldsymbol{v} \boldsymbol{X} \boldsymbol{B}$$

Boundary condition for MHD experiments

$$\boldsymbol{v}_{t} = \boldsymbol{U}^{LCT} - \frac{\boldsymbol{U}^{LCT} \cdot \boldsymbol{B}_{t}}{|\boldsymbol{B}^{2}|} \boldsymbol{B}_{t}$$
$$\boldsymbol{v}_{n} = -\frac{\boldsymbol{B}_{n}}{|\boldsymbol{B}^{2}|} |\boldsymbol{U}^{LCT} \cdot \boldsymbol{B}_{t}|$$

Corrected LCT flow speed:

NBI space weather

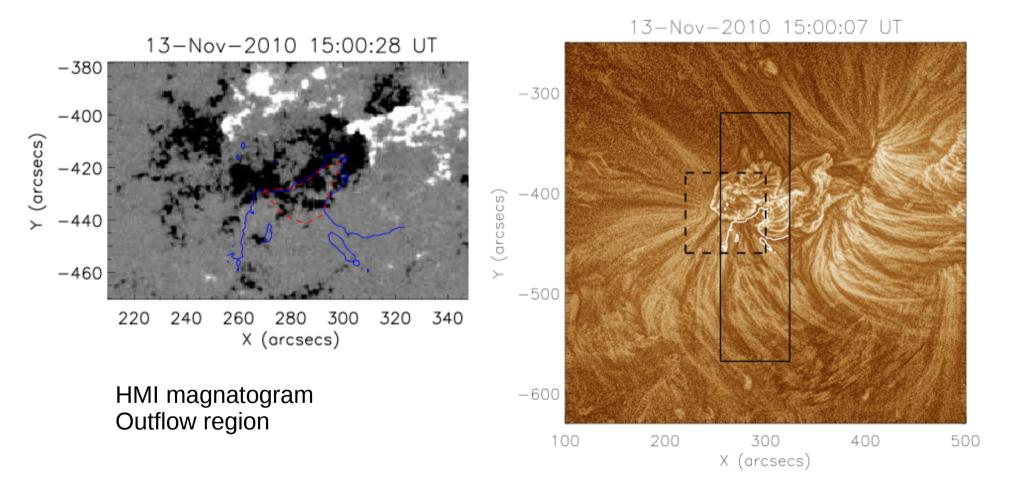
Dave/Dave4VM

Schuck, P. W. ApJ, 683, 1134-1152, (2008)

- Vector magnetograms
- Assumes a horizontal flow velocity
 - Solved for that together with the rest
 - Coordinate axis compared to some others that are field aligned.

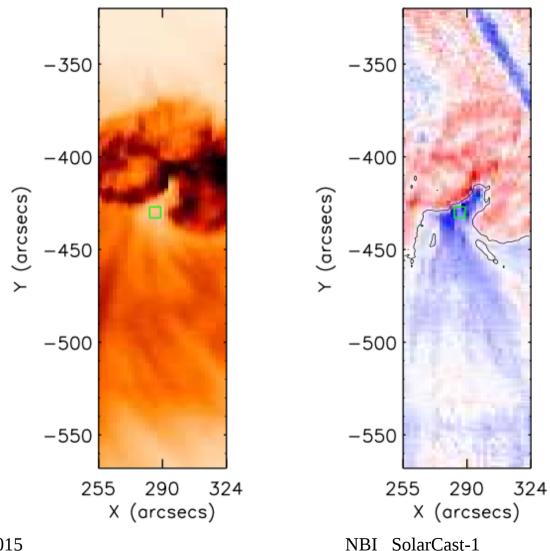
Nomal component based models...

Welsch et al. (2007)


- In fact none of the pure line-of-sight methods— LMSAL's LCT, FLCT, or the DAVE—estimated these fluxes reliably, reproducing (at best)
- respectively 11%, 9%, and 23% of the helicity rate
- respectively 6%, 11%, and 22% of the power injected through the surface.

•PTD-Doppler-FLCT Ideal

Kazachenko et al. ApJ, 795, 19 (2014)


- Vector magnetograms
- Doubler velocity information
- Electric field vector at the boundary
- Strongly dependent on quality of observations

Observations

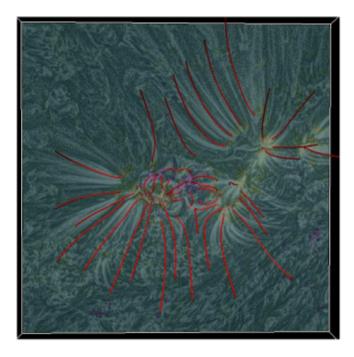
AIA 198 Å MGN enhanced

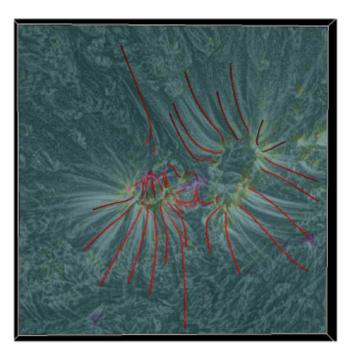
Density and Flows

Left, EIS Fe XII 195.12 Å **Right Doppler velocity** Two flow components 1-20 km/s president over 3.5 hours 105 km/s contribution Flows only observed above Chromospheric

What drives these flows?

Temperatures

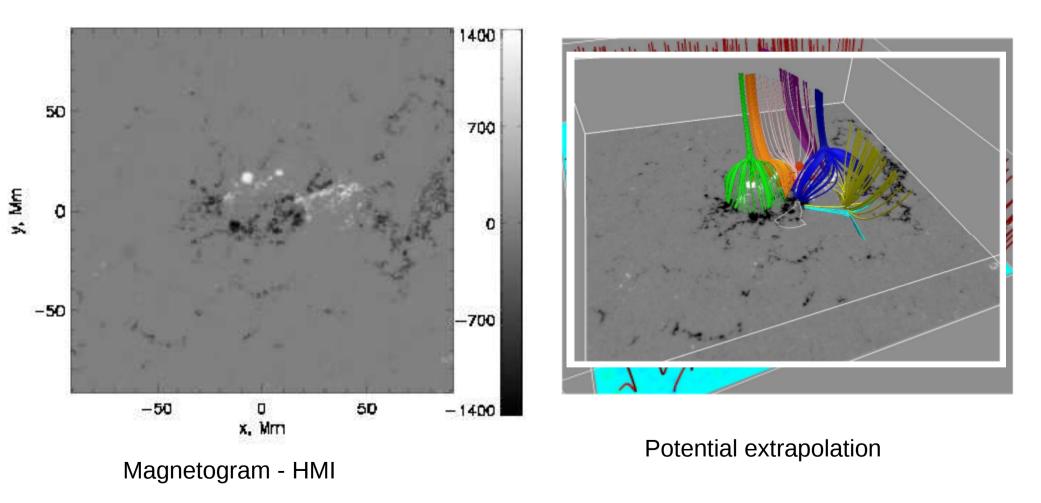

20


0

-20

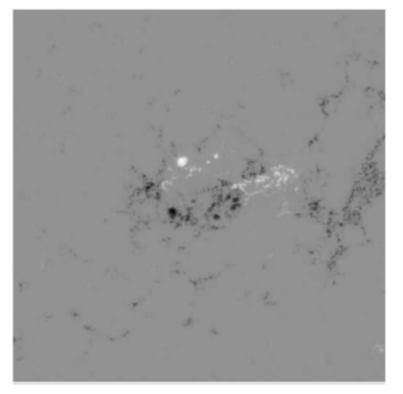
Doppler velocity (km/s)

Field model

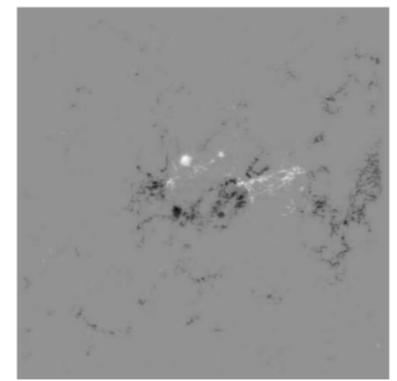


One day apart in time,

potential field model


Model example

Galsgaard et al. 2015 in press

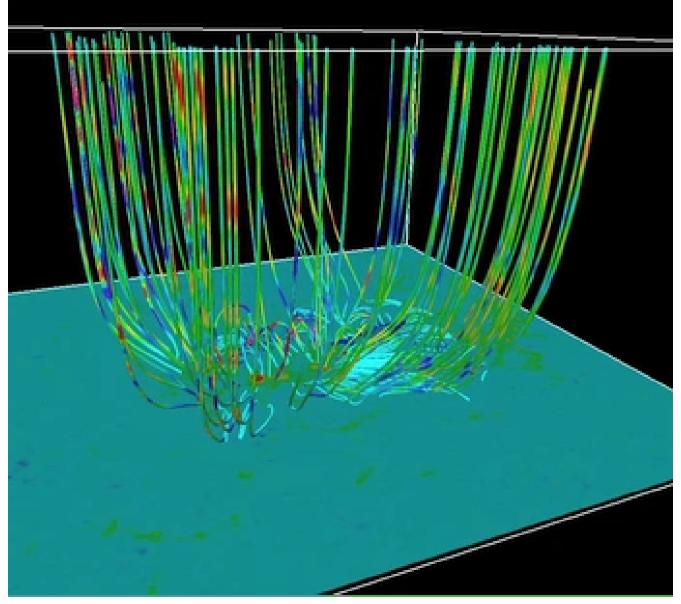


Model driving

- LCT velocity field defined from 45 s HMI data
- After 193.5 min Misses the fine details

Observations

LCT advanced B field


Model Induced flows

Wave propagation

Compression/ Decompression along field lines

Imposed by the boundary driving

Nothing interesting takes place in this case...

Conclusion

- Not easy to make realistic data driven models
- Need GOOD observations
 - Calibrated, derotated, scaled,.....
 - Long time series
 - High resolution
 - Reliable methods to provide initial conditions
 - Extrapolations
 - Boundary driving
- Possible to use available data when carefull!