SGS Modeling for Fast MHD Magnetic Reconnection

Fabien Widmer^{1,2}, Jörg Büchner^{1,2}, Nobumitsu Yokoi³

¹Max-Planck-Institut for Solar System Research
 ²University of Göttingen
 ³Institute of Industrial Science, University of Tokyo

11.11.2015

Turbulence

Magnetic Reconnection in the Corona, Turbulent Approach

- Corona realm of MHD and reconnection a key process
- Diffusive timescale $t_{diff} = L^2/\eta$
- Resistive MHD (Spitzer 1962) not fast enough for solar flare:
 t_{diff} ≈ 0.3years, t_{obs} ≈ 100s
- Turbulent diffusivity assumed
 - ⇒ Model to account for turbulence

Turbulence

Magnetic Reconnection

- Magnetic Reconnection
 - Change in field lines topology and connectivity
 - Magnetic energy converted to heat and kinetic energy
- Reconnection Rate
 - Speed at which magnetic field lines are carried towards the 'X' point
 - Ratio inflow to outflow

Turbulence

Reynolds Averaged Navier-Stokes (RANS) Modeling

Induction equation, resistive MHD

$$\partial_t \boldsymbol{B} =
abla imes (\boldsymbol{U} imes \boldsymbol{B} - \eta \boldsymbol{J})$$

• Mean field turbulent model

$$f = \overline{f} + f', \ \overline{f} \equiv \langle f \rangle$$

 $\partial_t \overline{B} = \nabla \times (\overline{U} \times \overline{B} + \langle u' \times b' \rangle - \eta \overline{J})$

EMF ⟨u' × b'⟩ needs to be modelled
 ⟨...⟩ obeys Reynolds' rules

Mean Field Turbulent Model Set Up Mean Field Model Mean stress and turbulence Guide Field Effects Plasmoid Instability

$$eta-\gamma$$
 Model

(Yokoi 2013):
$$\pmb{EMF} = -\beta \pmb{J} + \gamma \pmb{\Omega}$$

•
$$\beta = C_{\beta} \tau_t K$$
 • $\gamma = C_{\gamma} \tau_t W$

- $K = \frac{1}{2} \left\langle \boldsymbol{u}^{\prime 2} + \boldsymbol{b}^{\prime 2} \right\rangle$ $W = \left\langle \boldsymbol{u}^{\prime} \cdot \boldsymbol{b}^{\prime} \right\rangle$
- K: turbulent energy

• W: turbulent cross-helicity

 τ_t : turbulent timescale System closed by evolution equations

Mean Field Turbulent Model Set Up Mean Field Model Mean stress and turbulence Guide Field Effects Plasmoid Instability

MHD Equations, RANS Model

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\nabla \cdot (\rho U) \\ \frac{\partial \rho U}{\partial t} &= -\nabla \cdot \left[\rho U \otimes U + \frac{1}{2} (\rho + B^2) I - B \otimes B \right] + \chi \nabla^2 (\rho U) \\ \frac{\partial B}{\partial t} &= \nabla \times (U \times B) - (\nabla (\eta + \beta)) \times J + (\eta + \beta) \nabla^2 B \\ &+ \nabla \times (\gamma \sqrt{\rho} \Omega) \\ \frac{\partial h}{\partial t} &= -\nabla \cdot (hU) + \frac{\gamma - 1}{\gamma h^{\gamma - 1}} (\eta J^2 + \frac{\rho K}{\tau_t}) + \chi \nabla^2 h \\ \frac{\partial K}{\partial t} &= -U \cdot \nabla K + C_\beta \tau_t K \frac{J^2}{\rho} - C_\gamma \tau_t W \frac{\Omega \cdot J}{\sqrt{\rho}} + \frac{B}{\rho} \cdot \nabla W - \frac{K}{\tau_t} \\ \frac{\partial W}{\partial t} &= -U \cdot \nabla W + C_\beta \tau_t K \frac{\Omega \cdot J}{\sqrt{\rho}} - C_\gamma \tau_t W \Omega^2 + \frac{B}{\sqrt{\rho}} \cdot \nabla K - C_W \frac{W}{\tau_t} \end{aligned}$$

Mean Field Turbulent Model Set Up Mean Field Model Mean stress and turbulence Guide Field Effects Plasmoid Instability

Current Sheet Equilibrium Tested

• Harris equilibrium

- Pressure equilibrium across the current sheet
- Not realistic for the Solar Corona

- Force free equilibrium with out of plane guide field *b*_g
 - No initial Lorentz force: $\boldsymbol{J} \times \boldsymbol{B} = 0$
 - More realistic for the Solar Corona

Mean Field Turbulent Model Set Up Mean Field Model Mean stress and turbulence Guide Field Effects Plasmoid Instability

Spatial Distribution: Mean Current density J, turbulent energy K

Mean Field Turbulent Model Set Up Mean Field Model Mean stress and turbulence Guide Field Effects Plasmoid Instability

Spatial Distribution: Mean Current vorticity Ω , turbulent cross-helicity W

Mean Field Turbulent Model Set Up Mean Field Model Mean stress and turbulence Guide Field Effects Plasmoid Instability

RANS Reconnection Regimes, Harris and Force Free

SGS Modeling for Fast MHD Magnetic Reconnection

Mean Field Turbulent Model Set Up Mean Field Model Mean stress and turbulence Guide Field Effects Plasmoid Instability

Kinetic Energy Transfer for Different Timescale

Mean Field Turbulent Model Set Up Mean Field Model Mean stress and turbulence Guide Field Effects Plasmoid Instability

Magnetic Energy Transfer for Different Timescale

Mean Field Turbulent Model Set Up Mean Field Model Mean stress and turbulence Guide Field Effects Plasmoid Instability

Averaged Energy Transfer in Time for Different Resistivity

Mean Field Turbulent Model Set Up Mean Field Model Mean stress and turbulence Guide Field Effects Plasmoid Instability

Gradients and turbulence

• Mean field inhomogeneities $\frac{|\mathbf{\Omega}|}{J} \cong \frac{U}{\delta B} \frac{\Delta}{L} \cong \left(\aleph \frac{W}{K} \right)^{-1} M_A$

Fabien Widmer, SolarCast-1, NBIA 2015

Mean Field Turbulent Model Set Up Mean Field Model Mean stress and turbulence Guide Field Effects Plasmoid Instability

Maximum Reconnection Rate

Fabien Widmer, SolarCast-1, NBIA 2015

SGS Modeling for Fast MHD Magnetic Reconnection

Mean Field Turbulent Model Set Up Mean Field Model Mean stress and turbulence Guide Field Effects Plasmoid Instability

Dimensional Analysis of the Reconnection Rate

Figure : Current Sheet

- Resistive MHD $M_0^2 = \left(\frac{V_i}{V_o}\right)^2 = \eta$
- RANS without guide field $M^{2} = \eta + \beta \left(1 + \frac{|\gamma|}{\beta} \eta^{3/2}\right)$
- RANS with guide field $M^{2} = \eta + \beta \left(1 + \frac{|\gamma|}{\beta} \eta^{3/2}\right) - \alpha \sqrt{\eta}$

Mean Field Turbulent Model Set Up Mean Field Model Mean stress and turbulence Guide Field Effects Plasmoid Instability

Turbulent Magnetic Helicity $\alpha = \mathbf{J} \cdot \mathbf{B}$

Fabien Widmer, SolarCast-1, NBIA 2015

SGS Modeling for Fast MHD Magnetic Reconnection

Mean Field Turbulent Model Set Up Mean Field Model Mean stress and turbulence Guide Field Effects Plasmoid Instability

Reconnection rates

• Reconnection rate from the model

$$M_{\mathcal{A}} = rac{|\mathbf{\Omega}|}{|\mathbf{J}|} \left(rac{\aleph|W|}{\kappa}
ight)$$

Mean Field Turbulent Model Set Up Mean Field Model Mean stress and turbulence Guide Field Effects Plasmoid Instability

Solar Wind Test

Figure : Yokoi and Hamba (PoP 2007)

- (—) RANS Model
- $(\cdots)\,$ RANS with enhance strain
 - (•) (Helios, Voyager) spacecraft observations D.A.Roberts et al. (1987)
 - (-) Zhou and Matthaeus (1990)
 - (- -) Tu and Marsch (1993)

- Turbulence Regimes
 - \bullet Controlled by τ
 - $\bullet\ \tau$ related to the amount of energy transfered to smaller scales
- Small η enhance the process
- (Widmer et al.) submitted to PoP
- Open Questions
 - Relation between gradients of the system, turbulence and reconnection
 - 2 Relation between guide field effects and magnetic helicity

- More investigation of the relation between gradients of the system, turbulence and reconnection (upcoming paper)
- Characterization of guide field effects by (magnetic) Helicity (upcoming paper)
- **③** Equation for the turbulence timescale
- **④** 3D simulations and α related term

Questions

Acknowledgment

Thank you for listening