
Accelerated k-means
Clustering on

Multi-Core CPU & GPGPU
Mordechai (“Moti”) Butrashvily

Schools of Geophysics, Physics & Astrophysics, Applied Math.

Tel-Aviv University (TAU), Israel

List of additional contributors follows…

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

1

Brief History of Project

• Started during PRACE Summer of HPC 2013

• Hosted here @ NBI

• PRACE Acknowledgement:

“The project was supported through the PRACE-3IP Summer of HPC
programme under EC grant agreement number RI-283493”

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

2

Contributors

• Lukas Maly

• VŠB-TUO: Technical University of Ostrava, Czech-Republic

• Dr. Jacob Trier Frederiksen

• Niels Bohr Institute (NBI), Copenhagen, Denmark

• Dr. Mads Ruben Burgdorff Kristensen

• Niels Bohr Institute (eScience@NBI), Copenhagen, Denmark

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

3

Agenda

• Simulation Challenges in Plasma Physics (PIC Codes)

• Introduction to k-means Clustering

• Accelerating k-means

• CPU & GPU

• Performance Results & Conclusions

• Future Work

• Few Side Notes (if time permits)

• Fortran & C/C++ Interoperability

• K-means Convergence Testing

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

4

PLASMA PHYSICS & CHALLENGES

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

5

Simulating Plasma Processes

• Accurate physical modeling =>

• Represent system as close to reality

• Intractable for many-particle systems:

1. Number of initial particles is large (e.g. sun ~ 1057)

2. Collision/scattering generates more particles with time

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

6

CUOS @ UMICH

Particle-in-Cell Codes

• A common tool

• In simple words:

• Decompose space into “independent” volumes (Debye length…)

• Apply dynamics and advance simulation

• Physical reasoning:

• Effect of distant charges is shielded by localized charges

• Still, cannot accommodate for fast (exponential) particle
increase

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

7

Challenges Summary

• Accurately model systems with many particles

• Handle fast particle increase

• Remedy:

• Represent many particles compactly

• In other words: compression/clustering

• Assign weight to new “mega-particles”

• Upside – saves memory + computation time

• Downside – information is lost + statistical properties

• Hopefully keep physics as reliable and close to reality

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

8

K-MEANS CLUSTERING

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

9

K-means in Simple Words

• A class of clustering methods (many varieties & many others)

• Very intuitive geometrical interpretation and understanding

• Similar but slightly reduced version of k-nearest neighbors

• Typically:

• Take an initial set of N points = dataset

• Group them into k < N clusters = centers / “mega-particles”

• The cluster’s center represents all member points (mean)

• Member point = minimum distance to this center

• One has freedom to choose different distance metrics (𝐿1,2…)

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

10

K-means Formally

arg min
𝑺
 𝑥 − 𝜇𝑖

2

𝑥 ∈𝑆𝑖

𝑘

𝑖=1

• 𝑺 = 𝑆1, 𝑆2, … , 𝑆3

• 𝜇𝑖 is mean of points in 𝑆𝑖

• 𝑥 is any point belonging to dataset 𝑺

• Taking 𝐿2 norm (Euclidean metric)

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

11

Clustering Example

Original Dataset (10K pts) Using 5 Clusters

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

12

Problems With k-means

• Managed with physics, but work only begins

• K-means clustering is NP-hard to solve exactly

• Finding an optimum is not trivial (non-convex problem)

• x100 more points => 100𝑘 ⋅ log 100 more work

• Exponential increase

• Alternative, use heuristic algorithms:

• Lloyd’s Algorithm (naïve)

• Improve by KD-Tree Decomposition

• Faster computation time

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

13

Lloyd’s Algorithm

1. Heuristic:

• Pick k points at random from dataset => potential clusters

2. For every point in dataset:

1. Compute distance to each cluster

2. Assign to cluster with minimal distance

3. Compute new clusters’ mean => updated clusters

4. Did clusters change significantly? (See side note #2)

1. Yes go to step 2 for refinement

2. Otherwise stop

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

14

Step 2 is the
most intensive

Lloyd’s Algorithm (Cont.)

• Advantages:

• Good and converges fast (10’s of iterations normally suffice)

• Pitfalls:

• High complexity 𝑂 𝑁 ⋅ 𝑘 ⋅ 𝑑

• 𝑁 = # dataset points, 𝑘 = # clusters and 𝑑 = vector dimension

• Has to traverse all points and clusters in each iteration

• Key observations:

• Computing distances is a dot product and independent

• Can vectorize products using SIMD

• Can parallelize distance computations (OpenMP etc.)

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

15

Short reassessment break #1

• Consider a PIC setting:
• 𝑁 ~ 1M particles

• 𝑘 ~ 0.7 * 𝑁 (700,000 clusters / ”mega-particles”)

• 𝑑 = 6 (3 space, 3 momentum)

• Computing distance between a single particle-cluster pair:
• Roughly 18 FLOPS (excluding memory I/O etc.)

• For 1 optimization iteration:
• Bounded below by ~37.8 TFLOPS (1 CPU core ~ 40 GFLOPS)

• But usually x10 worse due to inherent overhead

• Conclusion: clustering takes HOURS

• Simply parallelizing & SIMD Lloyd’s on CPU is not enough

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

16

KD-Tree Approach

• Special data structure based on a binary tree

• Each dimension’s/coordinate median helps organize points in
subdomain

• Extra time is necessary to sort and build the tree

• But tree doesn’t change between iterations!

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

17

KD-Tree Approach (Cont.)

• Algorithm remains similar to Lloyd’s

• But, in step 2 we don’t go over all points

• A KD-Tree space decomposition eliminates farther points

• Now, complexity reduces to about 𝑘 ⋅ 𝑑 ⋅ log𝑁

• Major improvement!

• NOTE:

• This is an approximated approach to solve k-means

• It is possible to miss close points considered to reside in “far”
subdomains

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

18

Short Performance Analysis

• Runtime has improved by a factor of
N

log 𝑁

• Still unsatisfying?...

• Unfortunately:

• Cannot use SIMD anymore – distance is accumulated during tree
traversal

• Cannot easily parallelize tree traversal using conventional OpenMP

• Complex data structure representation

• No guarantee for balanced representation

• However:

• Can use dynamic task creation in OpenMP as needed

• Leads to very good results (…)

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

19

Novelties

• Most previous works have parallelized tree construction

• In PIC scenarios this is negligible

• First time KD-Tree traversal is parallelized in elegant and
satisfying degree

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

20

Short reassessment break #2

• Revisiting Lloyd’s naïve algorithm

• A rough analysis led to ~37.8 TFLOPS per iteration

• CPUs cannot handle such workloads in reasonable time

• Solved by employing KD-Tree decomposition

• On the other hand – GPUs can

• A high-end GPU can deliver 5 TFLOPS

• Or 1.7 TFLOPS back in 2013

• Why wasn’t considered earlier?

• Prevalent hypothesis of CPU unfeasibility

• Until making simple calculations

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

21

GPGPU Environment

• Using NBI Manjula cluster

• GPU: AMD Radeon HD7850 (Consumer)

• #Cores: 1024

• RAM: 2 GB

• Bandwidth: 153.6 GB/s

• Computation: 1.76 TFLOPS

• Using OpenCL™ 1.2

• Why?

• Cross-vendor/platform/OS/device

• AMD GPUs only support OpenCL

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

22

Manjula is Apu’s wife in “The Simpsons”, Image courtesy of https://simpsonswiki.com/

https://simpsonswiki.com/
https://simpsonswiki.com/

GPGPU Challenges

1. Implementing KD-Tree on GPU is difficult

• Mostly fits computations with static execution problem size

• Recent generations allow dynamic work generation

• Preferred to stay with Lloyd’s naïve approach

2. GPUs still have limited RAM capacity

• COTS/consumer hardware have 2-3 GB

• High-end devices (e.g. Tesla/FirePro) can have up to 12 GB

• Can accommodate between 38M – 230M particles

• Beyond that host I/O increases

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

23

GPGPU Implementation

• Based on Lloyd’s naïve algorithm:

1. Initially copying dataset and 𝑘 clusters into GPU

2. Using OpenCL for distance computations and comparisons

• Taking advantage of special GPU features (increased constant
memory)

3. Results are uploaded to CPU for computing new clusters

4. Repeating 2-3 until convergence is reached

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

24

GPGPU Implementation (Cont.)

• Utilizing 1 GPU per instance

• Can solve multiple clustering with OpenMP or MPI

• Support for more particles than GPU RAM accommodates

• Using host shared memory to eliminate data I/O

• Dynamic memory balancing & allocation:

• Depending on GPU RAM

• Points / clusters ratio

• Reduction computations performed on CPU

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

25

RESULTS & CONCLUSIONS

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

26

Benchmark Environment

• Performance metrics were collected using Manjula cluster

• GPU: AMD Radeon HD7850

• CPU: AMD Opteron 6272

• 16 cores

• 2.1 GHz

• Core L2 cache: 1 MB (2 MB shared between 2 cores)

• CPU L3 cache: 16 MB

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

27

Timing for 100K Points

• Performance graphs and discussion

Logarithmic scale!
Two extreme CPU core setups.

28

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

Compare Accelerated Methods

Logarithmic scale!
Varying # of CPU cores in KMPP.

29

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

GPU Performance 100K Points

ComputeDistance Total

Copy centers D2D Total

Copy Centers H2D Total

Copy Centers Weights H2D Total

Copy Dataset H2D Total

Copy Dataset Weights H2D Total

Copy New Centers H2D Total

Copy New Centers Weights H2D Total

SetBuffer_f32 Total

SetBuffer_u32 Total

90K Centers!
Time spent on I/O is negligible.

30

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

Comparison for 2.4M Points

31

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

ComputeDistance Total

Copy centers D2D Total

Copy Centers H2D Total

Copy Centers Weights H2D Total

Copy Dataset H2D Total

Copy Dataset Weights H2D Total

Copy New Centers H2D Total

Copy New Centers Weights H2D Total

SetBuffer_f32 Total

SetBuffer_u32 Total

GPU Performance 2.4M Points

1M Centers!
Time spent on I/O is not even a fraction.

32

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

Conclusions

• Both implementations outperform existing algorithms

• x100 – x1000 speedup

• If GPU exists, can consider Lloyd’s naïve algorithm

• Simpler to maintain

• Can perform even better than KD-Tree, depending on problem
configuration

• I/O is surprisingly not an issue

• KD-tree is preferred with larger datasets

• Benefits higher CPU cache

• And more CPU cores 33

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

Conclusions (Cont.)

• The GPU can outperform CPU even in non-trivial cases

• HW is improving both for GPUs and CPUs

• Though the GPU is not good for solving every problem

• Convergence tests are better to implement on CPU

• Increased I/O didn’t add much

34

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

Implications

1. From 300,000 processors to ~300

2. Increase physics accuracy using similar resources

• E.g. by adding much more particles

35

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

Future Work

• Add support for double precision (currently)

• Collect updated performance data on recent HW

• Better accounting for particle weights

• Which platform would win the CPU-GPU rival?

36

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

Side Note #1: Fortran & C/C++

• For many years Fortran & C/C++ could not interface in
standard ways

• With ISO_C_BINDING extension of Fortran 2003/2008 it is
now possible

• Mainly:

1. Define a Fortran function that binds to a C function

2. Better type matching/conversion

• Helps integrate C and Fortran, cross-platform/compiler

• Especially when complex libraries and data structures are
easier to implement in C (e.g. KD-trees) 37

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

Side Note #1: Example 1

• Define Fortran signature for function implemented in C

• Taken from OpenCL API

integer(c_int32_t) function clGetPlatformIDs(num_entries, &

 platforms, num_platforms) &

 BIND(C, NAME='clGetPlatformIDs')

 USE ISO_C_BINDING

 integer(c_int32_t), value, intent(in) :: num_entries

 type(c_ptr), value, intent(in) :: platforms

 integer(c_int32_t), intent(out) :: num_platforms

end function

38

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

Side Note #1: Example 2

• Scalar and structure definitions:
integer(c_int64_t) :: num = 1

integer(c_size_t) :: ptr = 12

type, BIND(C) :: particle

 integer(c_int32_t) :: id

 real(c_float) :: coords(3)

 real(c_float) :: momentum(3)

 real(c_float) :: weight

end type

• And there are much more standard definitions to ease life
39

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

Side Note #2: Convergence

• Convergence for k-means clustering iterations

• Using Loss Quality Error

• An acceptable measure in clustering theory

1. Normalize the sum of distances from a center by the number of
points that belong to it (denoted 𝑁𝑘)

2. Then sum normalized valued over all centers

1

𝑁𝑘
⋅ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑡, 𝑘)

𝑁𝑘

1

𝑘

2

40

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

Questions?

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

41

Thank You

So
la

rC
as

t-
1

, N
o

ve
m

b
er

 2
0

1
5

42

