Accelerated k-means Clustering on Multi-Core CPU & GPGPU

Mordechai (“Moti”) Butrashvily
Tel-Aviv University (TAU), Israel

List of additional contributors follows...
Brief History of Project

• Started during PRACE Summer of HPC 2013
• Hosted here @ NBI

• PRACE Acknowledgement:
 “The project was supported through the PRACE-3IP Summer of HPC programme under EC grant agreement number RI-283493”
Contributors

• **Lukas Maly**
 • VŠB-TUO: Technical University of Ostrava, Czech-Republic

• **Dr. Jacob Trier Frederiksen**
 • Niels Bohr Institute (NBI), Copenhagen, Denmark

• **Dr. Mads Ruben Burgdorff Kristensen**
 • Niels Bohr Institute (eScience@NBI), Copenhagen, Denmark
Agenda

• Simulation Challenges in Plasma Physics (PIC Codes)
• Introduction to k-means Clustering

• Accelerating k-means
 • CPU & GPU
• Performance Results & Conclusions
• Future Work

• Few Side Notes (if time permits)
 • Fortran & C/C++ Interoperability
 • K-means Convergence Testing
PLASMA PHYSICS & CHALLENGES
Simulating Plasma Processes

- Accurate physical modeling =>
 - Represent system as close to reality

- Intractable for many-particle systems:
 1. Number of initial particles is large (e.g. sun $\sim 10^{57}$)
 2. Collision/scattering generates more particles with time
Particle-in-Cell Codes

• A common tool

• In simple words:
 • Decompose space into “independent” volumes (Debye length...)
 • Apply dynamics and advance simulation

• Physical reasoning:
 • Effect of distant charges is shielded by localized charges

• Still, cannot accommodate for fast (exponential) particle increase
Challenges Summary

• Accurately model systems with many particles
• Handle fast particle increase

• Remedy:
 • Represent many particles compactly
 • In other words: compression/clustering
 • Assign weight to new “mega-particles”

• Upside – saves memory + computation time
• Downside – information is lost + statistical properties

• Hopefully keep physics as reliable and close to reality
K-MEANS CLUSTERING
K-means in Simple Words

• A class of clustering methods (many varieties & many others)
• Very intuitive geometrical interpretation and understanding
• Similar but slightly reduced version of k-nearest neighbors

• Typically:
 • Take an initial set of N points = dataset
 • Group them into $k < N$ clusters = centers / “mega-particles”

• The cluster’s center represents all member points (mean)
• Member point = minimum distance to this center

• One has freedom to choose different distance metrics ($L_{1,2,...}$)
K-means Formally

$$\arg\min_S \sum_{i=1}^{k} \sum_{\hat{x} \in S_i} ||\hat{x} - \mu_i||^2$$

- $S = \{S_1, S_2, ..., S_3\}$
- μ_i is mean of points in S_i
- \hat{x} is any point belonging to dataset S
- Taking L_2 norm (Euclidean metric)
Clustering Example

Original Dataset (10K pts) Using 5 Clusters
Problems With k-means

• Managed with physics, but **work only begins**

• K-means clustering is NP-hard to solve exactly
 • Finding an optimum is not trivial (non-convex problem)
 • x_{100} more points $\Rightarrow 100^k \cdot \log 100$ more work
 • Exponential increase 😞

• Alternative, use heuristic algorithms:
 • Lloyd’s Algorithm (naïve)
 • Improve by KD-Tree Decomposition
• Faster computation time
Lloyd’s Algorithm

1. Heuristic:
 • Pick \(k \) points at random from dataset \(\Rightarrow \text{potential clusters} \)

2. For every point in dataset:
 1. Compute distance to each cluster
 2. Assign to cluster with minimal distance

3. Compute new clusters’ mean \(\Rightarrow \text{updated clusters} \)

4. Did clusters change significantly? (See side note #2)
 1. Yes \(\Rightarrow \text{go to step 2 for refinement} \)
 2. Otherwise \(\Rightarrow \text{stop} \)

Step 2 is the most intensive
Lloyd’s Algorithm (Cont.)

• Advantages:
 • Good and converges fast (10’s of iterations normally suffice)

• Pitfalls:
 • High complexity $O(N \cdot k \cdot d)$
 • $N = \#$ dataset points, $k = \#$ clusters and $d = \#$ vector dimension
 • Has to traverse all points and clusters in each iteration

• Key observations:
 • Computing distances is a dot product and independent
 • Can vectorize products using SIMD
 • Can parallelize distance computations (OpenMP etc.)
Short reassessment break #1

• Consider a PIC setting:
 • $N \sim 1\text{M particles}$
 • $k \sim 0.7 \times N$ (700,000 clusters / ”mega-particles”)
 • $d = 6$ (3 space, 3 momentum)

• Computing distance between a single particle-cluster pair:
 • Roughly 18 FLOPS (excluding memory I/O etc.)
• For 1 optimization iteration:
 • Bounded below by ~ 37.8 TFLOPS (1 CPU core ~ 40 GFLOPS)
 • But usually x10 worse due to inherent overhead

• **Conclusion:** clustering takes HOURS
• Simply parallelizing & SIMD Lloyd’s on CPU is not enough
KD-Tree Approach

- Special data structure based on a binary tree
- Each dimension’s/coordinate median helps organize points in subdomain

- Extra time is necessary to sort and build the tree
- But tree doesn’t change between iterations!
KD-Tree Approach (Cont.)

- Algorithm remains similar to Lloyd’s
- **But**, in step 2 we don’t go over all points
- A KD-Tree space decomposition eliminates farther points

- Now, complexity reduces to about $k \cdot d \cdot \log N$
- Major improvement!

NOTE:
- This is an approximated approach to solve k-means
- It is possible to miss close points considered to reside in “far” subdomains
Short Performance Analysis

• Runtime has improved by a factor of $\frac{N}{\log N}$
• Still unsatisfying?...

• Unfortunately:
 • Cannot use SIMD anymore – distance is accumulated during tree traversal
 • Cannot easily parallelize tree traversal using conventional OpenMP
 • Complex data structure representation
 • No guarantee for balanced representation

• However:
 • Can use dynamic task creation in OpenMP as needed 😊
 • Leads to very good results (…)

SolarCast-1, November 2015
Novelties

• Most previous works have parallelized tree construction
• In PIC scenarios this is negligible

• First time KD-Tree traversal is parallelized in elegant and satisfying degree
Short reassessment break #2

• Revisiting Lloyd’s naïve algorithm
• A rough analysis led to \(\sim 37.8 \) TFLOPS per iteration
• CPUs cannot handle such workloads in reasonable time
 • Solved by employing KD-Tree decomposition

• On the other hand – GPUs can
• A high-end GPU can deliver 5 TFLOPS
 • Or 1.7 TFLOPS back in 2013

• Why wasn’t considered earlier?
 • Prevalent hypothesis of CPU unfeasibility
 • Until making simple calculations
GPGPU Environment

- Using NBI Manjula cluster
- GPU: AMD Radeon HD7850 (Consumer)
 - #Cores: 1024
 - RAM: 2 GB
 - Bandwidth: 153.6 GB/s
 - Computation: 1.76 TFLOPS

- Using OpenCL™ 1.2
- Why?
 - Cross-vendor/platform/OS/device
 - AMD GPUs only support OpenCL
GPGPU Challenges

1. Implementing KD-Tree on GPU is difficult
 • Mostly fits computations with static execution problem size
 • Recent generations allow dynamic work generation
 • Preferred to stay with Lloyd’s naïve approach

2. GPUs still have limited RAM capacity
 • COTS/consumer hardware have 2-3 GB
 • High-end devices (e.g. Tesla/FirePro) can have up to 12 GB
 • Can accommodate between 38M – 230M particles
 • Beyond that host I/O increases
GPGPU Implementation

• Based on Lloyd’s naïve algorithm:
 1. Initially copying dataset and k clusters into GPU
 2. Using OpenCL for distance computations and comparisons
 • Taking advantage of special GPU features (increased constant memory)
 3. Results are uploaded to CPU for computing new clusters
 4. Repeating 2-3 until convergence is reached
GPGPU Implementation (Cont.)

- Utilizing 1 GPU per instance
- Can solve multiple clustering with OpenMP or MPI

- Support for more particles than GPU RAM accommodates
- Using host shared memory to eliminate data I/O
- Dynamic memory balancing & allocation:
 - Depending on GPU RAM
 - Points / clusters ratio

- Reduction computations performed on CPU
RESULTS & CONCLUSIONS
Benchmark Environment

- Performance metrics were collected using Manjula cluster
- GPU: AMD Radeon HD7850
- CPU: AMD Opteron 6272
 - 16 cores
 - 2.1 GHz
 - Core L2 cache: 1 MB (2 MB shared between 2 cores)
 - CPU L3 cache: 16 MB
Timing for 100K Points

- Performance graphs and discussion

Logarithmic scale!
Two extreme CPU core setups.
Compare Accelerated Methods

Logarithmic scale!
Varying # of CPU cores in KMPP.
GPU Performance 100K Points

90K Centers!
Time spent on I/O is negligible.
Comparison for 2.4M Points
GPU Performance 2.4M Points

1M Centers!
Time spent on I/O is not even a fraction.
Conclusions

• Both implementations outperform existing algorithms
 • x100 – x1000 speedup

• If GPU exists, can consider Lloyd’s naïve algorithm
 • Simpler to maintain
 • Can perform even better than KD-Tree, depending on problem configuration
 • I/O is surprisingly not an issue

• KD-tree is preferred with larger datasets
 • Benefits higher CPU cache
 • And more CPU cores
Conclusions (Cont.)

• The GPU can outperform CPU even in non-trivial cases
• HW is improving both for GPUs and CPUs

• Though the GPU is not good for solving every problem
 • Convergence tests are better to implement on CPU
 • Increased I/O didn’t add much
Implications

1. From 300,000 processors to ~300
2. Increase physics accuracy using similar resources
 - E.g. by adding much more particles
Future Work

• Add support for double precision (currently)
• Collect updated performance data on recent HW
• Better accounting for particle weights

• Which platform would win the CPU-GPU rival?
Side Note #1: Fortran & C/C++

- For many years Fortran & C/C++ could not interface in standard ways

- With ISO_C_BINDING extension of Fortran 2003/2008 it is now possible

- Mainly:
 1. Define a Fortran function that binds to a C function
 2. Better type matching/conversion

- Helps integrate C and Fortran, cross-platform/compiler
- Especially when complex libraries and data structures are easier to implement in C (e.g. KD-trees)
Side Note #1: Example 1

- Define Fortran signature for function implemented in C
- Taken from OpenCL API

```fortran
integer(c_int32_t) function clGetPlatformIDs(num_entries, &
   platforms, num_platforms) &
BIND(C, NAME='clGetPlatformIDs')
USE ISO_C_BINDING

integer(c_int32_t), value, intent(in) :: num_entries
type(c_ptr), value, intent(in) :: platforms
integer(c_int32_t), intent(out) :: num_platforms
end function
```
Side Note #1: Example 2

• Scalar and structure definitions:

 \[\text{integer}(c_int64_t) \;:\; \text{num} = 1\]
 \[\text{integer}(c_size_t) \;:\; \text{ptr} = 12\]

 \text{type, BIND(C)} \;:\; \text{particle}
 \[\text{integer}(c_int32_t) \;:\; \text{id}\]
 \[\text{real}(c_float) \;:\; \text{coords}(3)\]
 \[\text{real}(c_float) \;:\; \text{momentum}(3)\]
 \[\text{real}(c_float) \;:\; \text{weight}\]

 \text{end type}

• And there are much more standard definitions to ease life
Side Note #2: Convergence

• Convergence for k-means clustering iterations
• Using Loss Quality Error

• An acceptable measure in clustering theory
 1. Normalize the sum of distances from a center by the number of points that belong to it (denoted N_k)
 2. Then sum normalized valued over all centers

\[
\sum_k \frac{1}{|N_k|} \cdot \sum_{N_k} \text{distance}(pt, k)
\]
Questions?
Thank You 😊