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| . Data Assimilation

. consists in steering the evolution of a model through comparison with
observations [Welch & Bishop, 2001; Kalman, 1960]

* is commonplace in domains where observations are available at multiple
locations in the system, i.e. ionosphere [Schunk et al., 2003], electrons
dynamics in the radiation belts [Kondrashov et al., 2007; Rigler et al., 2004],
atmospheric and oceanic studies [Ghil and Malanotte-Rizzoli, 1991], ...

* is rarely applied to the heliosphere for relative lack of observations; [Schrijver
& DeRosa, 2003] is an exception



|. Kalman filter algorithms for system identification
purposes

the state Xx:

time index state noise state noise covariance

| l l
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state value, unknown system identification: time evolution matrix A=l  state noise distribution

the observations z:

observations measurement noise Mmeasurement noise covariance
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2. € R 2 = Hxy, + vy, p(v) = N(0, R)

T

relation between observations z and state x measurement noise distribution



|. Kalman filter algorithms for system identification
purposes

prediction phase ; correction phase

a priori state estimate Kalman gain

| -

o) x@ - Ki=P HT (HP H” + R)™

: “innovation”: difference between observations
a posteriori state estimate : and ‘pseudo-observations’ generated with the a

priori estimate
a priori error covariance
l QAj‘k — aAjl; —+ Kk (@»
B~ R+
a posteriori error covariance Pk — (I — Kk H) Pk_

if A!=| (the method is not used for system identification, the state evolve in time) the prediction phase
includes time evolution; the correction phase is unaltered



2.Application of Kalman filtering to a solar wind
forecasting model

We applied Kalman filtering techniques to a baseline empirical model for the
forecast of solar wind parameters (proton density n, magnetic field magnitude B,
proton temperature T, proton velocity v)

The aim is to understand if Data Assimilation can be of benefit to solar wind
forecasting models; we started with an extremely simple one and tried to push
its limits

[Innocenti et al, 201 1]



2.1.The baseline model

An empirical model...

The baseline model exploits the well-known connection between Coronal Holes,
High Speed Streams and Solar Wind dynamics

GOES-12 observations of CH | -day resolution nowcast/
area in the meridional slice of Linear relations with coefficients forecast of SW parameters at |
the sun statistically determined from ACE AU with different lead times

measurements (LMS analysis of CH

coverage and ACE measurements
from DQOYs 25-125, year 2005)

iy H o)

CH observations and SW
forecasts are related by time lags
which differ with the quantity to

forecast

Levine77, Sheeley81, Nolte76, Robbins06,Vrsnak07



2.1.The baseline model

... with a strong physical background
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2. The assimilation method

Kalkan filtering techniques have been applied in a rather unconventional way to exploit a very
convenient characteristic of the baseline model, i.e. the time delayed correlation between the
observables

IN: solar observation x, and time-lagged

At,

ACE observation z |,

OUT: improved solar observation %, used

forecast for forecasting the “later” quantity

PAR: tunable filter parameter: process noise
covariance (a measure of the model to

_ + — )
today — At, today + At, — At measurements confidence ratio)
f N ouT
AR
the different time lags between GOESI2  k+At,
observations and the forecasts allow to correct the .
fractional CH area with “earlier” quantities and g
than forecast “later” quantities with the improved

state

PAR



2. Comparison of forecast quality with alternative
forecasting methods

Mean Absolute Error (MAE) for the year 2005 (panel a) and 2006 (panel b) for the forecast of the
proton velocity with assimilation of the proton temperature.
The MAEs are as a function of the tunable filter parameter, the process noise covariance OcH area

forecast with the baseline method
forecast with Data Assimilation
i.e., use the current value as forecast; it often outperforms more “refined”
models and is often used as benchmark for new forecasting models, see the CISM website

(a) forecast 1 davy(s) in advance of the velocity, year 2005 (b) forecast 1 day(s) in advance of the velocity, vear 2006
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CH observations are CH observations are NOT CH observations are CH observations are NOT
considered reliable considered reliable considered reliable considered reliable

The model with DA outperforms both the baseline and the persistence method for years 2005 and 2006,

with the baseline model coefficients being calculated for a fraction of year 2005 (performances are evaluated
with the Mean Absolute Error - MAE)



2. Performance during periods of geomagnetic activity

On paper; one of the advantages of DA is to include in a system processes not included in the baseline model
through assimilation of observation; we tested this with CME activity (the baseline model covers HSS, not CMEs)

year 2005
ACE measurement of proton velocity
forecast of the proton velocity with the baseline model (-4 days)
forecast of the proton velocity with assimilation of proton temperature (-1 day)

A CE measurements
forecast, no 2

100 150 =0 =ad
Oy 2005

The model with DA improves the quality of the forecast during the period of moderate geomagnetic activity
on January 7-27 (successive flares, several halo CME emitted, fast halo CME emitted on January 20)

Du08, Foullon07
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2. Robustness towards corrupted inputs

We tested the robustness of the model with DA by feeding it with “corrupted inputs”, i.e. superposing a normally
distributed noise (with prescript mean and standard deviation) to the observed CH covarage

MAE for the forecast of the solar wind speed for the year 2005 with corrupted CH inputs,
classified according to the mean and standard deviation of the normally distributed noise
superimposed to the input (with respect to original values)

forecast with DA of T forecast with baseline method
MAE with polluted CH area, DA of T MAE with polluted CH area, no DA
x x x o x X pu0.14 2X X X X X » & w05
\ | | , ~ MMo0.45
) 4 ) ¢ x ) 4 ) § ) § ! X X X X X ) ) 1 I
15 -~ 10.135 1.57 © 0.4
I\ ot X X X X X X x
- 10.35
< g . | 1013 T 0 ox X X X X Xl
o o ;.( ) 4 4 4 x X X X [0-25
0.5 0.125 0.57 0.2
® ® bt ) 1 o - x X X X
0.15
T x w1 X 1
0 * s g Ll 0.5 1 15 2
M/A
non-corrupted input non-corrupted input

O: the current method with corrupted inputs outperforms the persistence method (PM) with
uncorrupted inputs (MAE= 0.1342)
X: the current method with corrupted inputs performs less than the PM
— the assimilation of T measurements grants a high tolerance of the forecast to input corruption



2. Performance outside of the period of applicability

We tested the performance of the method in periods of the cycle where the baseline model does not capture
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Conclusions of part 2

We have applied Kalman filtering techniques to a very simple empirical model for the
forecast of solar wind parameters.The aim is to understand if solar wind models can benefit
from Data Assimilation.VVe have relied chiefly on the very strong (and time-delayed)
connection between ion T and v in the solar wind. Less strong correlation have been
explored and can be exploited.We have obtained that

» the model with DA always outperforms the baseline model; it outperforms the persistence
model as well when the baseline model is more physically grounded (declining phase of the
cycle) = DA is not effective per se, a good baseline model is needed

* processes not included in the baseline model (i.e., CMEs) are included in the forecast with
DA thanks to the assimilation; this is the main result of the test

* DA improves the robustness of the baseline model to corrupted inputs (e.g., instrument
noise)

Caveats: the baseline model used is very simple and very prone to improvements. Also, the
assimilation technique used relies on a particular characteristics of the model (the time-
delayed correlation between observables) which may not be available for other models



3. Preliminary study of DA benefits for an MHD model
for the simulation of the heliosphere

Heliospheric models usually rely on boundary conditions at the source surface,
which constitutes a major source of model errors. We used the ensemble
method [Evensen09] to
|. understand how sensitive the model is to input variation through the analysis

of ensemble variances.
In practice: how far from reality will my model go if there is an error (i.e.,
instrumental noise) in the boundary conditions at the source surface?

2. identify optimal locations for DA through the representer analysis
In practice: where should my spacecraft be to get the best out of the
assimilation of an observable? Which observable should | assimilate!?

[Skandrani et al, 2014]



3.The baseline model

FLIP-MHD [Brackbill 1991] is used as baseline model for the simulation of
the background solar wind from the source surface to | AU
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3.Analysis of the domain of influence

The representer analysis allows to calculate the “domain of influence” of an observation: meaning the areas in the
system where assimilation of an observation at a particular location gives a result closer (doi>0) or further away

(doi <0) from ‘reality’, where ‘reality’ is calculated from the ensemble
The math behind the doi is heavy, refer to [Skandrani 2014]
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Conclusions of part 2

We have applied ensemble techniques to an MHD model for the propagation of background
solar wind from the source surface to | AU. The aim is again to understand if solar wind
models can benefit from Data Assimilation.Very slight variation of the boundary conditions
at the source surface are used to produce the instances of the ensemble.

* from the analysis of the ensemble variance, we have understood that quite small variations
of the source surface input produce large variations in the behaviour of the ensemble
members. For example, reconnection happen at very different locations. Accurate inputs
are then needed

* from the analysis of the domain of influence, we have understood that velocity
observations are better candidate for assimilation than magnetic field. For assimilation of
velocity observations, benefits in the state can be expected quite far from the assimilation
location, not so for assimilation of magnetic field observations



General conclusions

We have tried to assess the impact of Data Assimilation on solar wind
forecasting models using two rather different approaches.

Both advocate for more extensive use of Data Assimilation in heliospheric
modelling

References

M. E. Innocenti, G. Lapenta, B. Vrsnak, F. Crespon, C. Skandrani, M. Temmer, A. Veronig, L.
Bettarini, S. Markidis, and M. Skender. Improved forecasts of solar wind parameters using
the Kalman filter. Space Weather, 9(10), 10 2011.

C. Skandrani, M. E. Innocenti, L. Bettarini, F. Crespon, J. Lamouroux, and G. Lapenta. FLIP-
MHD-based model sensitivity analysis. Nonlinear Processes in Geophysics, 21(2):539-553,
2014.



