
Intel® Xeon Phi™
basics and
architecture

September 22nd-23rd 2015

University of Copenhagen,
Denmark

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core, VTune, and Cilk are
trademarks of Intel Corporation in the U.S. and other countries.

Legal Disclaimer & Optimization
Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Intel Technologies for HPC

Network
& Fabric

Software
& Services

Processors
Intel® Xeon® Processor

Coprocessor
Intel® Many Integrated Core

I/O &
Storage

Intel®

Cluster
Ready

3D
Tri-
Gate

Hi-K
Metal
Gate

Executing to Moore’s Law

Predictable Silicon Track Record – well and alive at
Intel.
Enabling new devices with higher performance and
functionality while controlling power, cost, and size

14nm

2014
10nm

2017
plannedFuture options subject to change without notice.

7nm

R&D

Transforming the economics of HPC

Enabled by Leading Edge Process Technologies

Driving innovation and integration

Integrated Today Coming in the near Future

Based on Intel® Many Integrated Core (MIC)
Architecture

Intel® Xeon Phi™ Coprocessor Product
Family

Per Intel’s announced products or planning process for future products

2013
Knights Corner
Intel® Xeon Phi™ x100
product family
• 22 nm process

• Coprocessor

• Over 1 TF DP Peak

• Up to 61 Cores

• Up to 16GB GDDR5

2016
Knights
Landing
The processor version
of the next generation
Intel Xeon Phi product
family
• 14 nm process

• Processor & Coprocessor

• Over 3 TF DP Peak

• Up to 72 Cores

• On Package High-Bandwidth

Memory

• 3x single-thread performance

• Out-of-order core

• Integrated Intel® Omni-Path

Knights Landing

Knights Landing
with Fabric

FUTURE

Knights Hill

Next generation of

Intel® MIC Architecture

Product Line
• 10 nm process

• 2nd Generation Integrated

Intel® Omni-Path

• In planning –

Hardware architecture

Intel® Xeon Phi™, Knights Corner (KNC)

Architectural overview

• Up to 61 cores

• 8-16 GB GDDR5 memory (ECC)

• PCIe Gen2 (client) x16 per dir.

• Hardware cache coherency

• 8 memory controllers
• 16 GDDR5 channels

• Up to 5.5GT/s

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

GDDR MC

…

…

…

…GDDR MC

GDDR MC

GDDR MC

TD TD TD TD

TD TD TD TD

PCIe

Intel® Xeon Phi™ Core (KNC)

• Pentium (P54C) scalar
instruction set (X87)

• In order-operation

• 64bit addressing

• 512bit vector unit

• 4 HW threads/core

• Two pipelines:
• Scalar

• Vector/Scalar

Scalar
unit

Vector
unit

Scalar
registers

Vector
registers

L1 Instr. 32K

L1 Data 32K

L2 512K

Instruction Decode

Intel® Xeon Phi™ Core (KNC)

• 2 issue (1 scalar/1
vector)

• 2 cycle decoder: no-
back to back cycle
issue from the same
context (thread)

• At least two HW contexts
(thread/proc) to fully
utilize the core

• Most vector instructions
have 4 clock latency

Scalar
unit

Vector
unit

Scalar
registers

Vector
registers

L1 Instr. 32K

L1 Data 32K

L2 512K

Instruction Decode

Intel® Xeon Phi™ Core (KNC)

• L1 caches
• 32K I-cache per core

• 32K D-cache per core

• 8 way associative

• 3 cycle access latency

• Up to 8 outstanding
requests

• 64byte cache line

• Fully coherent (MESI)

Scalar
unit

Vector
unit

Scalar
registers

Vector
registers

L1 Instr. 32K

L1 Data 32K

L2 512K

Instruction Decode

Intel® Xeon Phi™ Core (KNC)

• L2 cache
• 512K Unified per core

• 8 way associative
• 11 cycle raw access

latency
• Up to 32 outstanding

requests
• Streaming HW

prefetcher
• Fully coherent (MESI)

Scalar
unit

Vector
unit

Scalar
registers

Vector
registers

L1 Instr. 32K

L1 Data 32K

L2 512K

Instruction Decode

Cache coherency

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

…

…

…

…

TD TD TD TD

TD TD TD TD

Data

Data

Command
Address

Coherence

Command
Address

Coherence

Tag directories track the
cache line in all L2
caches

TAG Core Valid Mask State

TAG Core Valid Mask State

TAG Core Valid Mask State

Distributed tag directories updated via ring interconnect

Intel® Xeon Phi™ Core (KNC)

• Vector unit width 512 bits

• 32 512-bit vector registers per
context

• 16 floats or 8 doubles

• 8 vector mask registers for per lane
conditional operations

• ALU support for
• int32/float32 operations, float64 arithmetic,

int64 logic ops

• Ternary ops including Fused-Multiply-Add

• Broadcast/swizzle support, float16 up-
convert

• Most ops: 4-cycle latency 1-cycle
throughput

• Matches 4-cycle round robin of integer unit

• Mostly IEEE 754 2008 compliant

Scalar
unit

Vector
unit

Scalar
registers

Vector
registers

L1 Instr. 32K

L1 Data 32K

L2 512K

Instruction Decode

Architectural comparison

• General instruction
streams

• High single-thread perf.
• High memory capacity

• Core/memory aggr. via
sockets and nodes

• Instruction set extensions
• SIMD e.g., Intel®

AVX/AVX2
• Virtualization, AES, etc.

• General instruction
streams

• Highly parallel workloads

• High memory bandwidth

• Up to 61 cores/die, aggr.
via PCIe and nodes

• SIMD (512-bit registers)
• Gather/scatter, FMA,

masked instructions

Intel® Xeon® Intel® Xeon Phi™

Intel Xeon Phi is a coprocessor for highly parallel workloads.

Architectural comparison (in numbers)

Intel® Xeon® E5-2670 v3 Intel® Xeon Phi™ 7120

Cores 12 61

Clock rate (Ghz) 2.3 (3.1 with turbo) 1.24 (1.3 with turbo)

Memory (GB) 32 (typical), 768 (maximum) 16

Cache (L1,L2,L3) 32kB, 256kB, 30Mb (shared) 32kB, 512kB, -

Peak perf (DP
Gflops)

441.6 1210.24

Memory BW
(GB/sec)

68 352

Highly Parallel Applications

• Efficient…
• Vectorization

• Threading

• Parallel execution

• …drives higher performance
for suitable scalable
applications

Theoretical acceleration of a highly parallel processor over a Intel® Xeon® parallel
processor (<1: Intel® Xeon® faster) – For illustration only

Network interface

Network

PCIe 8 GB/sec
Intel® Xeon®

Coprocessor system topology today

Intel® Xeon®

Intel® Xeon Phi™

GDDR5

350 GB/sec

QPI 2 x 38.4 GB/sec

68 GB/sec

DDR4

68 GB/sec

DDR4
PCIe bus creates a potential performance bottleneck

Outlook on future hardware
architecture

Intel® Xeon Phi™, Knights Landing (KNL)

Bootable
host

processor…

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Future Intel® Xeon Phi™ Processor:
Knights Landing

• Unconstrained by
PCIe*offload bottlenecks

• Up to 72 cores (Silvermont
based)

• 3x single thread performance
over KNC

• Excellent compute density
and power efficiency

• >3 Tflops peak DP
performance

• Integrated high bandwidth
memory and fabric

Intel® Xeon Phi™ Core (KNL)

• Silvermont based core
• Out-of-order architecture

• Binary compatible with Intel®
Xeon® (AVX-512)

• 4 HW threads/core

• AVX-512 vector instructions
• Prefetch instructions

• Conflict Detection instructions

• Exponential and Reciprocal
instructions

• Advanced branch prediction
in hardware

• 2D mesh architecture

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

…

…

.
.

.

.
.

.

Integrated Fabric

Processor Package

Knights
Landing

…

KNL integrated on-package memory

• Up to 5x STREAM bandwidth
over DDR4 (>400GB/sec)

• Cache model
• Hardware automatically

manages the integrated on-
package memory as cache

• Flat model
• Programmer manages the

integrated on-package memory
and external DDR for peak
performance

• Hybrid model

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.
Diagram is for conceptual purposes only and only illustrates a CPU and memory – it is not to scale, and is not representative of actual component layout.

Intel® IMCI (Intel® Initial Many
Core Instructions)

Intel® Xeon Phi™, Knights Corner (KNC)

Vector Instruction Format

• 3 operand form with explicit destination register
instruction destination, source1, source2

•  Source registers are not destroyed

•  Very compact code

• (Most) MIC instructions can be masked
instruction destination {mask}, source1, source2

•  Result of masking is non-destructive, i.e. destination is
preserved

• Example: vaddps zmm1{k1},zmm2,zmm3

dest mask source1 source2

Examples of Intel® IMCI

• Ternary Operands
• vop zmm1, zmm2, zmm3 , zmm1 = zmm2:::vop:::zmm3
• vop zmm1, zmm2, [ptr] , zmm1 = zmm2::: vop:::MEM[ptr]

• Fused operation Multiply-Add, Multiply-subtract
• vfmadd132ps zmm1, zmm2, zmm3 , zmm1=zmm1*zmm3+zmm2
• vfmadd213ps zmm1, zmm2, zmm3 , zmm1=zmm2*zmm1+zmm3
• vfmadd231ps zmm1, zmm2, zmm3 , zmm1=zmm2*zmm3+zmm1
• Standard IEEE 754-2008R 0.5 ulps not 1 upls as two operations

• Prefetching
• Memory Prefetching minimize the likelihood of L1, L2 cache misses
• Intel® Xeon Phi Coprocessor has a hardware prefetcher
• L1 prefetch: vprefetch1 ptr, hint
• L2 prefetch: vprefetch2 ptr, hint

Extended Math Unit (EMU)

• Single precision transcendental
functions via minmax quadratic
polynomial approximation

• Elementary functions
• Reciprocal: 1/x

• Reciprocal square root: 1/sqrt(x)

• Logarithm: log2(x)

• Exponential: exp2(x)

• Derived functions
• Power: x^y=exp2(y*log2(x))

• Square root: sqrt(x)=x*1/sqrt(x)

• Division div(x/y)=x*1/y

• Natural logarithm
ln(x)=log2(x)*1/log2(e)

Function Latency Throughput

exp2() 8 2

log2() 4 1

rcp() 4 1

rsqrt() 4 1

sqrt() 8 2

pow() 16 4

div() 8 2

ln() 8 2

System architecture

Intel® Xeon Phi™, Knights Corner (KNC)

Intel tools, libraries and parallel models extend to multicore, many-core and heterogeneous
computing

Enabling and advancing parallelism

Code
Cluster

Multicore
Cluster

Multicore &
Manycore
cluster

Many-core

Multicore
CPU

Intel® Xeon
Phi™
coprocessor

Multicore

Multicore
CPU

Compiler
Libraries

Parallel Models

Compiler
Libraries

Parallel Models

Develop & parallelize today for maximum performance

System architecture overview

Linux* OS

User code

Offload libraries, user-level driver, user-
accessible APIs and libraries

Offload libraries, user-accessible
APIs and libraries

Intel® MIC Architecture
support libraries, tools, and

drivers

Coprocessor OS

PCIe Bus PCIe Bus

Intel® MIC Architecture
communication and application-

launching support

User code

Intel® Xeon Phi™ CoprocessorLinux or Windows Host

System-level code System-level code

User-level codeUser-level code

Host-side application Target-side application

Card OS

Detailed system architecture overview

Intel® Xeon Phi™ infrastructure

• Operating System (OS)
• Embedded Linux* based on Conjure/Yocto (very few

customizations)

• You can assume at least a BusyBox environment

• Other infrastructure
• Intel® Manycore Platform Software Stack (Intel® MPSS)

• Intel® Coprocessor Offload Infrastructure (Intel® COI)

• Intel® Symmetric Communications Infrastructure (Intel®

SCI)

Programming environment

Intel® Xeon Phi™, Knights Corner (KNC)

Development environment

• Standard Intel® development environment is available:
• Intel® Composer: C, C++ and Fortran Compilers

• Standard runtime libraries, including pthreads*

• OpenMP*

• Intel® MPI Library support for the Intel® Xeon Phi™ Coprocessor

• Parallel Programming Models
• Intel® Threading Building Blocks (Intel® TBB)

• Intel® Cilk™ Plus

• Tools
• Intel support for gdb, Intel® VTune™ Amplifier XE

• Intel Performance Libraries (e.g. Intel Math Kernel Library)
• Three versions: host-only, coprocessor-only, heterogeneous

Programming models

Native

• Target Code:

Highly parallel

(threaded and

vectorized)

throughout

• Potential Bottleneck:

Serial/scalar code

Offload

• Target Code:

Mostly serial, but with

expensive parallel

regions

• Potential Bottleneck:

PCIe data transfers

Symmetric

• Target Code:

Highly parallel and

performs well on both

platforms

• Potential Bottleneck:

Load imbalance

Programming models

• MPI
• Used for “native” and “symmetric” execution

• Can launch ranks across processors and coprocessors

• OpenMP
• Used for “native”, “offload” and “symmetric” execution

• OpenMP 4.0 standard supports device constructs for offloading

• Many real-life HPC codes use a native MPI/OpenMP
hybrid

• Balance task granularity by tuning combination of ranks/threads
(e.g.16 MPI ranks x 15 OpenMP threads)

Standards and existing code

• Existing source code
• In most cases, code can be simply recompiled

• All IA/x86 assumptions hold incl. legacy instructions

• Cross-compiled code can be used in offload section e.g.,
Intel® Threading Building Blocks

• Targeting Intel® Xeon Phi™ does not
waste effort

• Tuning takes effort, but leverages existing standards

• Optimizations usually lead to improved performance on Intel®
Xeon®

Intel® Parallel Studio XE 2016

Composer Edition Professional Edition Cluster Edition

Intel® C++ Compiler

Intel® Fortran Compiler

Intel® Data Analytics Acceleration Library

Intel® Threading Building Blocks

Intel® Integrated Performance Primitives

Intel® Math Kernel Library

Intel® Cilk™ Plus & Intel® OpenMP*

Intel® C++ Compiler

Intel® Fortran Compiler

Intel® Data Analytics Acceleration Library

Intel® Threading Building Blocks

Intel® Integrated Performance Primitives

Intel® Math Kernel Library

Intel® Cilk™ Plus & Intel® OpenMP*

Intel® C++ Compiler

Intel® Fortran Compiler

Intel® Data Analytics Acceleration Library

Intel® Threading Building Blocks

Intel® Integrated Performance Primitives

Intel® Math Kernel Library

Intel® Cilk™ Plus & Intel® OpenMP*

Intel® Advisor XE

Intel® Inspector XE

Intel® VTune™ Amplifier XE

Intel® Advisor XE

Intel® Inspector XE

Intel® VTune™ Amplifier XE

Intel® MPI Library

Intel® Trace Analyzer and Collector

Bundle or Add-on:

Rogue Wave IMSL* Library

Add-on:

Rogue Wave IMSL* Library

Add-on:

Rogue Wave IMSL* Library

Additional configurations including, floating and academic, are available at: http://intel.ly/perf-tools

Software architecture

Intel® Math Kernel
Library MPI*

Intel® Threading
Building Blocks

Intel® Cilk™ Plus

OpenMP*

Pthreads*

Intel® Math Kernel Library

Array Notation: Fortran,
Intel® Cilk™ Plus

Auto vectorization

Semi-auto vectorization:
#pragma (vector, ivdep, simd)

OpenCL*

C/C++ Vector Classes
(F32vec16, F64vec8)

Intrinsics

Ease of use

Fine control

Multicore Options Vector Options

Execution models

• Intel MKL Automatic Offload (AO)
• Transparent data transfer and execution management

• Limited to key functions (sufficient FLOP/Byte ratio)

• Automatically uses host and (multiple) targets

• No code changes required

• Compiler Assisted Offload (CAO)
• Explicit control of data transfer / persistence

• Intel Compiler offload pragmas/directives

• Language Extension for Offload (LEO)

• OpenMP* 4.0 device constructs

• Can be used together with Automatic Offload

• Native Execution
• Coprocessors used as independent nodes

Intel® Math Kernel Library (Intel® MKL)

• Single -and multi-threaded libraries

• Cluster support for important domains

• Support for large problem sizes (ILP)

• Conditional Numerical Reproducibility (CNR)

• Support for Intel® Xeon Phi™ coprocessors

• Automatic offload, and compiler-assisted offload

• Manycore-hosted execution, cluster support, etc.

• Enabled early for future hardware

• KLN support: AVX-512 instruction set

Intel® Math Kernel Library (Intel® MKL)

Linear Algebra

• BLAS
• LAPACK
• ScaLAPACK
• Sparse BLAS
• Sparse Solvers
• Iterative
• PARDISO* SMP &

Cluster

Fast Fourier
Transforms

• Multidimensional
• FFTW interfaces
• Cluster FFT

Vector Math

• Trigonometric
• Hyperbolic
• Exponential
• Log
• Power
• Root

Vector RNGs

• Congruential
• Wichmann-Hill
• Mersenne

Twister
• Sobol
• Neiderreiter
• Non-

deterministic

Summary Statistics

• Kurtosis
• Variation

coefficient
• Order statistics
• Min/max
• Variance-

covariance

And More…

• Splines
• Interpolation
• Trust Region
• Fast Poisson

Solver

Intel® MKL Automatic Offload (AO)

• Control automatic offload (hybrid execution!)

• Environment variable: MKL_MIC_ENABLE=1

• Remember: sufficient problem size needed (Byte/FLOP ratio)

• Service functions take precedence (work division, etc.)

• Supported functions

• BLAS level 3: xGEMM, xTRMM, xTRSM

• LAPACK: Cholesky, LU, QR

• Offload report (also applies to CAO)

• OFFLOAD_REPORT=<0|1|2>, or call

• mkl_mic_set_offload_report(…)

Programmability and
performance

Intel® Xeon Phi™, Knights Corner (KNC)

How and where to optimize?

1. Choose a library that
solves the problem
or

2. Choose an appropriate
algorithm and optimize
your own code

a) Across SIMD lanes

b) Across multiple threads

c) Across multiple nodes

for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
c[i*K+j] = 0;
for (int k = 0; k < K; ++k) {
c[i*K+j] += a[i*N+k]

* b[k*K+j];
}

}
}

Intel Performance Library!

Multithreading: Amdahl’s law

• Speedup with n threads is limited by the parallelizable fraction P
of the program

 � � =
�

��� �
�

�

• Up to 240 threads
may be needed by
Intel® Xeon Phi™!

Performance

• xGEMM, STREAM, and SMP Linpack
http://www.intel.com/content/www/us/en/benchmarks/xeon-phi-product-family-performance-
brief.html

• xGEMM, Cholesky / LU / QR Decomposition, SMP Linpack, etc.
http://software.intel.com/en-us/intel-mkl#pid-12768-1295

• Example:

http://www.intel.com/content/www/us/en/benchmarks/xeon-phi-product-family-performance-brief.html
http://www.intel.com/content/www/us/en/benchmarks/xeon-phi-product-family-performance-brief.html
http://software.intel.com/en-us/intel-mkl

Real application performance

• A number of real applications have reported a
speedup on Intel® Xeon Phi™

• For references, see Intel® Xeon Phi™ Coprocessor
– Applications and Solutions Catalog
https://software.intel.com/en-us/articles/intel-
xeon-phi-coprocessor-applications-and-solutions-
catalog

Conclusions

• Vectorization and thread parallelism are keys to
good performance on an Intel® Xeon Phi™

• Code modernization benefits both the processor
and the coprocessor

• Some of the limitations of the current
coprocessor generation will be removed with
Knight’s Landing

References

• James Jeffers, James Reinders, ”Intel® Xeon Phi™
Coprocessor High Performance Programming”,
Morgan Kaufmann, 2013.

• Alexander Supalov, Andrey Semin, Michael Klemm, Chris
Dahnken, “Optimizing HPC Applications with Intel®
Cluster Tools”, Apress Open, 2015.

• PRACE Xeon Phi Best Practice Guide
http://www.prace-ri.eu/Best-Practice-Guide-Intel-Xeon-Phi-HTML

• Xeon Phi Developer’s Quick Start Guide
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-
developers-quick-start-guide

http://www.prace-ri.eu/Best-Practice-Guide-Intel-Xeon-Phi-HTML
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-developers-quick-start-guide
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-developers-quick-start-guide

References

• James Jeffers, James Reinders, “High Performance
Parallelism Pearls Volume One, 1st Edition.
Multicore and Many-core Programming Approaches”,
Morgan Kaufmann, 2014.

• James Jeffers, James Reinders, “High Performance
Parallelism Pearls Volume Two, 1st Edition.
Multicore and Many-core Programming Approaches”,
Morgan Kaufmann, 2015.

