
Intel® Xeon Phi™
programming

September 22nd-23rd 2015

University of Copenhagen,
Denmark

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core, VTune, and Cilk are
trademarks of Intel Corporation in the U.S. and other countries.

Legal Disclaimer & Optimization
Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Multiple levels of parallelism

• Dimensions of parallelism
• Across multiple applications (program)

• Across multiple processes (process)

• Across multiple threads (thread)

• Across multiple instructions (SIMD, or “vector”)

• Single Instruction Multiple Data (SIMD)
• Performance gains because a single instruction performs more

work

• Data parallelism

SIMD vectorization

Intel® Xeon Phi™, Knights Corner (KNC)

Vectorization of code

• Transform sequential code to exploit SIMD processing

capabilities of Intel® processors

• Calling a vectorized library

• Automatically by tools like a compiler

• Manually by explicit syntax

9/18/2015

for(i = 0; i <= MAX; i++)
c[i] = a[i] + b[i];

+

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

=

History of SIMD ISA extensions*

MMX™ (1997)

Intel® Streaming SIMD Extensions (Intel® SSE in 1999 to Intel® SSE4.2 in 2008)

Intel® Advanced Vector Extensions (Intel® AVX in 2011 and Intel® AVX2 in 2013)

Intel Many Integrated Core Architecture (Intel® MIC Architecture in 2013), Intel® AVX-512 in 2015

Intel® Pentium® processor (1993)

* Illustrated with the number of 32-bit data elements that are processed by one “packed” instruction.

Vectorization software architecture

Intel® Math Kernel Library

Array Notation: Fortran,
Intel® Cilk™ Plus

Auto vectorization

Semi-auto vectorization:
#pragma (vector, ivdep, simd)

OpenCL*

C/C++ Vector Classes
(F32vec16, F64vec8)

Intrinsics

Ease of use

Fine control

Vector Options

Overview of vector code types

• Auto-Vectorization
for (int i = 0; i < N; ++i) {

A[i] = B[i] + C[i];
}

• Array notation
A(:) = B(:) + C(:)

• OpenMP SIMD construct
#pragma omp simd
for (int i = 0; i < N; ++i) {

A[i] = B[i] + C[i];
}

• OpenMP SIMD function
#pragma omp declare simd
float ef(float a, float b) {

return a + b;
}
#pragma omp simd
for (int i = 0; i < N; ++i)

A[i] = ef(B[i], C[i]);

Automatic vectorization

• The vectorizer for Intel® MIC architecture works just
like for SSE, AVX or AVX2 on the host (C/C++, Fortran)
• Enabled by default at optimization level -O2

• Data alignment to 64 bytes

• Vector masks, gather/scatter instructions and fused multiply-add
(FMA) enable better vectorization of code

• Vectorized loops may be recognized by

• Compiler vectorization and optimization reports
-qopt-report-phase=vec –qopt-report-level=n

• Looking at the assembly code, -S

• Using Intel® VTune™ or Advisor XE

Begin optimization report for: not_vectorizable(float *, float *, float *, int *)

Report from: Interprocedural optimizations [ipo]

INLINE REPORT: (not_vectorizable(float *, float *, float *, int *)) [1] vectorize.cc(4,63)

Report from: Loop nest, Vector & Auto-parallelization optimizations [loop, vec, par]

LOOP BEGIN at vectorize.cc(5,9)
remark #15344: loop was not vectorized: vector dependence prevents vectorization. First

dependence is shown below. Use level 5 report for details
remark #15346: vector dependence: assumed ANTI dependence between line 7 and line 7
remark #25439: unrolled with remainder by 2

LOOP END

LOOP BEGIN at vectorize.cc(5,9)
<Remainder>
LOOP END

Compiler optimization report

Reasons why automatic vectorization fails

• Compiler prioritizes code correctness

• Compiler heuristics to estimate vectorization efficiency

• Vectorization could lead to incorrect or inefficient code
due to
• Data dependencies

• Alignment

• Function calls in loop block

• Complex control flow / conditional branches

• Mixed data types

• Non-unit stride between elements

• Loop body too complex (register pressure)

• ...

Preparing code for SIMD
Identify Hotspots

Integer
or FP?

Can
convert
to SP?

Change to SP

Re-layout data for SIMD efficiency

Align data structures

Convert code to SIMD form

Follow SIMD coding guidelines

Optimize memory access patterns
and prefetch (if appropriate)

Further optimization

IntegerFP

Yes

No

Precision is
important:
impacts the
SIMD width.

Data Layout – why it is important

• Instruction-Level
• Hardware is optimized for contiguous loads/stores

• Support for non-contiguous accesses differs with hardware
(e.g., AVX2/KNC gather)

• Memory-Level
• Contiguous memory accesses are cache-friendly

• Number of memory streams can place pressure on prefetchers

Data layout – common layouts

Array-of-Structs (AoS)

• Pros:
Good locality of

{x, y, z},

1 memory stream

• Cons:
Potential for

gather/scatter

Struct-of-Arrays (SoA)

• Pros:
Contiguous load/store

• Cons:
Poor locality of

{x, y, z},

3 memory streams

Hybrid (AoSoA)

• Pros:
Contiguous load/store,

1 memory stream

• Cons:
Not a “normal” layout

x x xx x x

y y yy y y

z z zz z z

x x

x x

x x

y y

y y

y y

z z

z z

z z

x x

x x

x x

yy

yy

yy

z z

z z

z z

Data alignment – why it is important

0 1 2 3 … … 6 7 8 9 … … … … … …

Cache Line 0 Cache Line 1

0 1 2 3 6 7 8 9

Aligned Load
 Address is aligned
 One cache line
 One instruction

Unaligned Load
 Address is not aligned
 Potentially multiple cache lines
 Potentially multiple instructions

Data alignment – sample applications

• 1) Align Memory
• _mm_malloc(bytes, 64) / !dir$ attributes align:64

• 2) Access Memory in an Aligned Way
• for (i = 0; i < N; i++) { array[i] … }

• 3) Tell the Compiler
• #pragma vector aligned / !dir$ vector aligned

• __assume_aligned(p, 16) / !dir$ assume_aligned (p, 16)

• __assume(i % 16 == 0) / !dir$ assume (mod(i,16) .eq. 0)

Data alignment – real-life applications

0 1 2 3 4 5 6 7

8 9 …

Data

Data alignment – real-life applications

0 1 2 3 4 5 6 7

8 9 …

Data

Data alignment – real-life applications
0 1 2 3 4 5 6 7

8 9 …

Data

Halo

Data alignment – real-life applications
0 1 2 3 4 5 6 7

8 9 …

Data

Halo

Data alignment – real-life applications
0 1 2 3 4 5 6 7 8 9 …

Not strictly
necessary…

Data

Halo

Padding

Data alignment – real-life applications
0 1 2 3 4 5 6 7 8 9 …

Not strictly
necessary…

Data

Halo

Padding

OpenMP 4.0 SIMD

Intel® Xeon Phi™, Knights Corner (KNC)

OpenMP API

• De-facto standard, OpenMP 4.0 out since July
2013

• API for C/C++ and Fortran for shared-memory
parallel programming

• Based on directives

• Portable across vendors and platforms

• Supports various types of parallelism

Cluster Group of computers
communicating through fast interconnect

Coprocessors/Accelerators Special compute devices
attached to the local node through special interconnect

Node Group of processors
communicating through shared memory

Socket Group of cores
communicating through shared cache

Core Group of functional units
communicating through registers

Hyper-Threads Group of thread contexts sharing functional units

Superscalar Group of instructions sharing functional units

Pipeline Sequence of instructions sharing functional units

Vector Single instruction using multiple functional units

Levels of parallelism in OpenMP 4.0

OpenMP 4.0 SIMD

OpenMP 4.0 for Devices

OpenMP 4.0 AffinityOpenMP 4.0 AffinityOpenMP 4.0 AffinityOpenMP 4.0 Affinity

Explicit vectorization

• Compiler Responsibilities
• Allow programmer to declare that code can and should be run in

SIMD

• Generate the code the programmer asked for

• Programmer Responsibilities
• Correctness (e.g., no dependencies, no invalid memory accesses)

• Efficiency (e.g., alignment, loop order, masking)

Explicit vectorization: example

• The two += operators have different meaning from each other

• The programmer should be able to express those differently

• The compiler has to generate different code

• The variables i, p and step have different “meaning” from each other

float sum = 0.0f;
float *p = a;
int step = 4;

#pragma omp simd reduction(+:sum) linear(p:step)
for (int i = 0; i < N; ++i) {

sum += *p;
p += step;

}

Explicit vectorization: example

• mandel() function is called from a loop over X/Y points

• We would like to vectorize that outer loop

• Compiler creates a vectorized function that acts on a vector of N values of c

#pragma omp declare simd simdlen(16)
uint32_t mandel(fcomplex c)
{

uint32_t count = 1; fcomplex z = c;
for (int32_t i = 0; i < max_iter; i += 1) {

z = z * z + c; int t = cabsf(z) < 2.0f;
count += t;
if (!t) { break; }

}
return count;

}

Before OpenMP 4.0 SIMD

• Programmers had to rely on auto-vectorization…

• … or to use vendor-specific extensions
• Programming models (e.g., Intel® Cilk™ Plus)

• Compiler pragmas (e.g., #pragma vector)

• Low-level constructs (e.g., _mm_add_pd())

#pragma omp parallel for
#pragma vector always
#pragma ivdep

for (int i = 0; i < N; i++) {
a[i] = b[i] + ...;

}

You need to trust the
compiler to do the “right”

thing.

You need to trust the
compiler to do the “right”

thing.

OpenMP SIMD Loop Construct

• Vector parallelism is decribed with simd construct
• Cut loop into chunks that fit a SIMD vector register

• No parallelization of the loop body

• Syntax (C/C++)
#pragma omp simd [clause[[,] clause],…]
for-loops

• Syntax (Fortran)
!$omp simd [clause[[,] clause],…]
do-loops

OpenMP SIMD: example

void ssum(int n, double *a, double *b, double *c) {
#pragma omp simd
for (int k=0; k<n; k++)
c[k] = a[k] * b[k];

}

a[k]
+

b[k]
=

c[k]

0 8 16 24

OpenMP SIMD loop clauses

• private(var-list):

Uninitialized vectors for variables in var-list

• firstprivate(var-list):

Initialized vectors for variables in var-list

• reduction(op:var-list):

Create private variables for var-list and apply reduction operator op at the
end of the construct

42x: ?? ?? ?? ??

42x: 4242 4242 4242 4242

42x:1212 55 88 1717

OpenMP SIMD loop clauses

• safelen (length)

• Maximum number of iterations that can run concurrently without
breaking a dependence

• in practice, maximum vector length

• linear (list[:linear-step])

• The variable’s value is in relationship with the iteration number

xi = xorig + i * linear-step

• aligned (list[:alignment])

• Specifies that the list items have a given alignment

• Default is alignment for the architecture

• collapse(n)

• Combine the iteration space of the next n loops

OpenMP SIMD worksharing construct

• Parallelize and vectorize a loop nest
• Distribute a loop’s iteration space across a thread team

• Subdivide loop chunks to fit a SIMD vector register

• Syntax (C/C++)
#pragma omp for simd [clause[[,] clause],…]
for-loops

• Syntax (Fortran)
!$omp do simd [clause[[,] clause],…]
do-loops

OpenMP SIMD workshare: example

void ssum(int n, double *a, double *b, double *c) {
#pragma omp for simd
for (int k=0; k<n; k++)
c[k] = a[k] * b[k];

}

a[k]
+

b[k]
=

c[k]

0 8 16 24

Thread 0 Thread 1

SIMD Function vectorization
float min(float a, float b) {

return a < b ? a : b;
}

float distsq(float x, float y) {
return (x - y) * (x - y);

}

void example() {

#pragma omp parallel for simd

for (i=0; i<N; i++) {
d[i] = min(distsq(a[i], b[i]), c[i]);

}
}

SIMD function vectorization

• Declare one or more functions to be compiled for
calls from a SIMD-parallel loop

• Syntax (C/C++):
#pragma omp declare simd [clause[[,] clause],…]
[#pragma omp declare simd [clause[[,] clause],…]]
[…]
function-definition-or-declaration

• Syntax (Fortran):
!$omp declare simd ! Within function body
!$omp declare simd(proc-name-list) ! At call site

SIMD Function vectorization
float min(float a, float b) {

return a < b ? a : b;
}

float distsq(float x, float y) {
return (x - y) * (x - y);

}

void example() {

#pragma omp parallel for simd

for (i=0; i<N; i++) {
d[i] = min(distsq(a[i], b[i]), c[i]);

}
}

vec16 min_v(vec16 a, vec16 b) {
return a < b ? a : b;

}

vec16 distsq_v(vec16 x, vec16 y){
return (x - y) * (x - y);

}

vd = min_v(distsq_v(va, vb, vc))

SIMD function vectorization clauses

• simdlen (length)

• Generate function to support a given vector length

• uniform (argument-list)

• Argument has a constant value between the iterations of a given loop

• inbranch

• Function always called from inside an if statement

• notinbranch

• Function never called from inside an if statement

• linear(argument-list[:linear-step])

• aligned(argument-list[:alignment])

• reduction(operator:list)
Same as in SIMD

Explicit Vectorization – performance
impact

M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and X. Martorell, “Extending OpenMP with Vector Constructs
for Modern Multicore SIMD Architectures. In Proc. of the Intl. Workshop on OpenMP”, pages 59-72, Rome, Italy,
June 2012. LNCS 7312.

3,66x

2,04x 2,13x

4,34x

1,47x

2,40x

0,00x

0,50x

1,00x

1,50x

2,00x

2,50x

3,00x

3,50x

4,00x

4,50x

5,00x

Mandelbrot Volume Rendering BlackScholes Fast Walsh Perlin Noise SGpp

R
e

la
ti

ve
 S

p
e

e
d

-u
p

(h
ig

h
e

r
is

 b
e

tt
e

r)

ICC auto-vec

ICC SIMD directive

OpenMP threading

Intel® Xeon Phi™, Knights Corner (KNC)

OpenMP threading in a nutshell

• In OpenMP, the description of parallelism and
worksharing treated as separate entities

• Thread parallelism is decribed with parallel construct
C/C++: #pragma omp parallel [clauses]
Fortran: !$omp parallel [clauses]

• Loop worksharing is described with loop construct
C/C++: #pragma omp for [clauses]
Fortran: !$omp do [clauses]

• Task worksharing is described with task construct
C/C++: #pragma omp task [clauses]
Fortran: !$omp task [clauses]

OpenMP parallel: example

#pragma omp parallel

{

#pragma omp for

for (i = 0; i<N; i++)

{…}

#pragma omp for

for (i = 0; i< N; i++)

{…}

} join

distribute work

distribute work

barrier

fork

barrier

Team of threads is created (forked)

Work is distributed among the team

Threads are synchronized

Threads are synchronized

Team of threads is destroyed (joined)

Work is distributed among the team

OpenMP parallel for: example

double a[N];
double l, s = 0.0;
#pragma omp parallel for \
reduction(+:s) \
private(l) \
schedule(static,4)

for (i = 0; i<N; i++)
{

l = log(a[i]);
s += l;

}
join

create variables

fork

barrier

distribute work

reduce variables

Team of threads is created (forked)

Private variables are created

Work is distributed among the team

Threads are synchronized

Team of threads is destroyed (joined)

Reduction is computed

OpenMP task: example

#pragma omp parallel
#pragma omp single
for(e = l->first;

e != NULL;
e = e->next)
#pragma omp task
{

process(e);
}

join

fork

barrier

single thread
executes

create task

Team of threads is created (forked)

Region is executed by a single thread

Tasks are created to the task pool

Threads idle until single thread has
executed the region

Team of threads is destroyed (joined)

Idle threads pick up tasks from the task
pool

Non-uniform memory access

• Nearly all multi-socket
compute servers are Non-
Uniform Memory Access
(NUMA) systems

• Different access latencies for
different memory locations

• Different bandwidth
observed for different
memory locations

Example: Intel® Xeon E5-2600v2
Series processor

Xeon® E5-2600v2 Xeon® E5-2600v2

Thread affinity matters

Thread affinity – processor binding

Binding strategies depend on the machine and the
application!

• Putting threads far, i.e. on different packages
• (May) improve the aggregated memory bandwidth

• (May) improve the combined cache size

• (May) decrease performance of synchronization constructs

• Putting threads close together, i.e. on two
adjacent cores which possible share the cache
• (May) improve performance of synchronization constructs

• (May) decrease the available memory bandwidth and cache size (per
thread)

Thread affinity in OpenMP* 4.0

• OpenMP 4.0 introduces the concept of places…
• set of threads running on one or more processors

• can be defined by the user

• pre-defined places available:

• threads one place per hyper-thread

• cores one place exists per physical core

• sockets one place per processor package

• … and affinity policies…
• spread spread OpenMP threads evenly among the places

• close pack OpenMP threads near master thread

• master collocate OpenMP thread with master thread

• … and means to control these settings
• Environment variables OMP_PLACES and OMP_PROC_BIND

• clause proc_bind for parallel regions

Thread affinity: example

• Example (Intel® Xeon Phi™):
Distribute outer region, keep inner regions close
OMP_PLACES=cores(8)

#pragma omp parallel proc_bind(spread)
#pragma omp parallel proc_bind(close)

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

Conclusions

• With Intel® Xeon Phi™, vectorization and
multithreading a the keys to for good
performance

• Application may have to be modified to improve
vectorization and threading properties

• OpenMP 4.0 is a standardized way to program
vectorized and multithreaded programs

