
Intel® Xeon Phi™
programming

September 22nd-23rd 2015

University of Copenhagen,
Denmark

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core, VTune, and Cilk are
trademarks of Intel Corporation in the U.S. and other countries.

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Intel® Xeon Phi™ offloading

• Usually the most straightforward way efficiently utilize
use Intel® Xeon Phi™ coprocessor is to use the offload
programming model
• Allows incremental porting of application to the coprocessor

• Speedup of the computations must offset the data transfer costs!

• Programming models for Intel® Xeon Phi™ offload
• OpenMP * 4.0 device constructs

• Intel® Language Extensions for Offload (LEO)

• OpenCL*

• pyMIC

OpenMP 4.0 offloading

Intel® Xeon Phi™, Knights Corner (KNC)

OpenMP 4.0 device model

• OpenMP 4.0 supports accelerators/coprocessors

• Device model
• One host

• Multiple accelerators/coprocessors of the same kind

HostCoprocessors

Execution model

• Transfer of control, data movement and
parallelism must be defined separately
• Host-centric execution model with device target regions

Host Device

map(from:result)

#pragma omp targethost_compute();
#pragma omp target \

map(from:result)
{
device_compute(result);

}
host_visualize(result);

device_compute(result);

Data environment model

• Data environment is lexically scoped
• Data environment is destroyed at the end of the scope

• Buffers/data allocated by OpenMP runtime are automatically
released

Host Device

map(alloc:…)

map(from:…)

map(to:…)

pA

#pragma omp target data \
map(alloc:...) \
map(to:...) \
map(from:...)

{ ... }

OpenMP target construct

• Create a device data environment and execute the
construct on the same device

• Transfer of control is sequential and synchronous

• The transfer clauses control direction of data flow

• Syntax (C/C++)
#pragma omp target [clause[[,] clause],…]
structured-block

• Syntax (Fortran)
!$omp target [clause[[,] clause],…]
structured-block
!$omp end target

OpenMP target data construct

• Create a device data environment for the extent of the
region

• Does not include a transfer of control

• The map clauses control the direction of the data flow

• Syntax (C/C++)
#pragma omp target data [clause[[,] clause],…]
structured-block

• Syntax (Fortran)
!$omp target data [clause[[,] clause],…]
structured-block
!$omp end target data

OpenMP target [data] clauses

• map([<alloc|from|to|tofrom>:]list)

Map data between the host and the device. Any mapped elements must
be bitwise copyable. List items are allowed to be array sections
• map(alloc: list)

On entry to the device region, each new corresponding list item has an undefined initial value

• map(to: list)
On entry to the device region, each new corresponding list item is initialized with the value of the
original list item

• map(from: list)
On exit from the device region, the value of the corresponding list item is assigned to each original
list item

• map(tofrom: list)
On entry to the device region, behave as in from. On exit from the device region, behave as in to.
Default if no map-type is specified

• device(n)
Execute the target or target data region on device n

OpenMP array sections

• An OpenMP array section designates the elements in an
array to map
• Array sections must be contiguous in memory

• Syntax (C/C++)
array[lower-bound:length]

alternatively
array[:length], array[lower-bound:], array[:]

• Syntax (Fortran)
array(start:end)

or alternatively any contiguous Fortran array section

OpenMP target: example

#pragma omp target \
map(to:a[0:N]) \
map(from:b[0:N])

{
#pragma omp parallel for
for (i = 0; i<N; i++)
{

b[i]=a[i]*a[i];
}

}

Team of threads is created (forked)

Work is distributed among the team

Threads are synchronized

Team of threads is destroyed (joined)

join

distribute work

barrier

fork

Host Coprocessor

transfer data

offload begin

offload end

transfer data

Data is transferred from host to device

Offload kernel is launched

Offload kernel is terminated

Data is transferred from device to host

OpenMP target data: example

#pragma omp target data \
map(alloc:tmp[0:N]) \
map(tofrom:a[0:N]) \

{
#pragma omp target
#pragma omp parallel for
for (i = 1; i<N-1; i++)
{
tmp[i]=(a[i-1]+a[i]+

a[i+1])/3;
}
#pragma omp target
#pragma omp parallel for
for (i = 1; i<N-1; i++)
{
a[i]=(tmp[i+1]+tmp[i])/2;

}
}

Offload computation is performed
Offload kernel is terminated

Host Coprocessor

transfer data

transfer data

Data is transferred from host to device
Offload kernel is launched

Data is transferred from device to host

offload begin

offload end

offload begin

offload end

Offload computation is performed
Offload kernel is terminated

Offload kernel is launched

OpenMP declare target construct

• Specify that variables and functions are mapped to a
device

• Syntax (C/C++)
#pragma omp declare target [clause[[,] clause],…]
definition-seq
#pragma omd end declare target

• Syntax (Fortran)
For variables and functions/subroutines
!$omp declare target(list)

or for functions/subroutines, in the declarations part
!$omp declare target

OpenMP declare target construct

• Static data and functions mapped to device exist
• For the host (like normally)

• For the the target device (to be referenced to and invoked from the
offload code)

#pragma omp declare target

float nested_computation(float value)

{
/* ... Implementation omitted ... */

}

float computation(float value, int n)

{

for(int i=0; i<n; i++)
value = nested_computation(value);

return value;

}

static float * data;

#pragma omp end declare target

Host functions

nested_computation:

...

computation:
...

data:
...

Device functions

__offload_entry_nested_computation_offload_...:
...

__offload_entry_computation_offload_...:
...

data_8d777f385d3dfec8815d20f7496026dc_...:
...

OpenMP declare target: example

#pragma omp declare target
void computation(float *a, int n);
#pragma omp end declare target

#pragma omp target \
map(tofrom:a[0:N]) \

{
for (int i=0; i<N; i++)
computation(a, i);

}

Host Coprocessor

Data is transferred from host to device
Offload kernel is launched

Data is transferred from device to host

transfer data

transfer data

offload begin

offload end
Offload computation is performed

Offload kernel is terminated

OpenMP target update directive

• Make the corresponding list items in the device data
environment consistent with their original list items

• Request data transfers from within a target data region

• Motion clauses control direction of data flow

• Syntax (C/C++)
#pragma omp target update [clause[[,] clause],…]

• Syntax (Fortran)
!$omp target update [clause[[,] clause],…]

OpenMP target update clauses

• from(list)
For each list item in a from clause the value of the corresponding list
item is assigned to the original list item

• to(list)
For each list item in a to clause the value of the original list item is
assigned to the corresponding list item

• device(n)
Use the device n to update the list items with

OpenMP target update: example

#pragma omp declare target
void computation(float *a, int n);
#pragma omp end declare target

#pragma omp target data \
map(tofrom:a[0:N]) \

{
#pragma omp target
for (int i=0; i<N; i++)
computation(a, i);

#pragma omp update from(a[0:N])
visualize(a, N);

#pragma omp target
for (int i=0; i<N; i++)
computation(a, i);

}

Host Coprocessor

Data is transferred from host to device
Offload kernel is launched

Data is transferred from device to host
Host calls a function with updated data

Offload kernel is launched

transfer data

transfer data

offload begin

offload end

Offload computation is performed
Offload kernel is terminated

offload begin

offload end

transfer data

Offload computation is performed
Offload kernel is terminated

Data is transferred from device to host

Asynchronous offloading

• With OpenMP 4.0, asynchronous offloading can
be implemented by using OpenMP tasks
• Requires at least 2 host threads to be active

• Synchronization of tasks with taskwait or barrier

• NOTE: Using tasks works, but does not guarantee
simultaneous execution of the offload region

Host computation is
performed

Asynchronous offloading: example

#pragma omp parallel sections \
num_threads(2)

{
#pragma omp task
{
#pragma omp target \

map(tofrom:a[0:N]) \
{
device_compute(a, N);

}
}
#pragma omp task
{
host_compute(a, N);

}
#pragma omp taskwait

}

Host Coprocessor

Data is transferred
Offload kernel is

launched

Data is transferred
from device to host

transfer data

transfer data

Offload
computation is

performed
Offload kernel is

terminated

Thread 1 Thread 1

join

Threads are synchronized and joined

fork

offload begin

offload end

barrier

Threads are forked

OpenMP 4.1 offloading

Intel® Xeon Phi™, Knights Corner (KNC)

OpenMP 4.1 for devices

• Transfer control [and data] from the host to the device

• Syntax (C/C++)
#pragma omp target [data] [clause[[,] clause],…]
structured-block

• Syntax (Fortran)
!$omp target [data] [clause[[,] clause],…]
structured-block
!$omp end target [data]

• General clauses (since OpenMP 4.0)
device(scalar-integer-expression)
map([alloc | to | from | tofrom:] list)
if(scalar-expr)

• Clauses for asynchronous offloading (also supported by target update)
nowait
depend(dependency-type:list)

Asynchronous offloading

• With OpenMP 4.1, asynchronous offloading can
be implemented by using nowait clause

• Current task may resume while the target region executes

• Synchronization with barrier

#pragma omp target map(tofrom:a[0:N]) nowait
{

device_compute(a, N);
}
host_compute(a, N);

#pragma omp barrier

Creating and destroying device data

• Manage data without being bound to scoping rules

• Syntax (C/C++)
#pragma omp target enter data [clause[[,] clause],…]
#pragma omp target exit data [clause[[,] clause],…]

• Syntax (Fortran)
!$omp target enter data [clause[[,] clause],…]
!$omp target exit data [clause[[,] clause],…]

• Clauses
device(scalar-integer-expression)
map([alloc | delete | to | from | tofrom:] list)
if(scalar-expr)
depend(dependency-type:list)
nowait

Creating and destroying device data

struct DeviceBuffer {

// ...

DeviceBuffer(int dev, size_t sz) {

#pragma omp target enter data device(dev) map(alloc:buffer[:sz])

}

~DeviceBuffer() {

#pragma omp target exit data device(dev) map(delete:buffer[:sz])

}

}

void example() {

DeviceBuffer *buf1 = new DeviceBuffer(0, 1024);

compute_a_lot_using_offloading(buf1);

DeviceBuffer *buf2 = new DeviceBuffer(0, 2048);

compute_some_more_using_offloading(buf1, buf2);

delete buf1;

compute_evenmore_using_offloading(buf2);

delete buf2;

}

Offloading from Python*

- pyMIC

Intel® Xeon Phi™, Knights Corner (KNC)

Python in HPC

• Python has gained a lot of interest throughout
the HPC community (and others):
• IPython

• Numpy / SciPy

• Pandas

• Intel® Xeon Phi™ Coprocessors are an interesting
target to speed-up processing of Python codes

pyMIC introduction

• pyMIC: A Python* Offload Module for the
Intel® Xeon Phi™ Coprocessor

• Main developer: Michael Klemm, Intel
michael.klemm@intel.com

• Available from github:
https://github.com/01org/pyMIC

The pyMIC offload infrastructure

• Design principles (pyMIC’s 4 “K”s)
• Keep usage simple

• Keep the API slim

• Keep the code fast

• Keep control in a programmer’s hand

• pyMIC facts
• 3800 lines of C/C++ code;

• 1100 lines of Python code for the main API;

• libxstream and Intel® LEO for interfacing with MPSS

High-level Interface
[Python]

High-level overview

• libxstream & Intel® LEO:
low-level device interaction
• Transfer of shared libraries
• Data transfers, kernel invocation

• C/C++ extension module
• Low-level device management
• Interaction with LEO

• Low-level API with memcpy-
like interface, smart device
pointers

• High-level API with offload
arrays

• Library with internal device
kernels

_pyMICimpl
[C/C++]

libxstream & Intel® LEO
runtime
[C/C++]

O
ff

lo
a
d

A
rr

a
y

(k
e
rn

e
ls

)
[C

]

Low-level Data
Management

[Python]

Example dgemm: the host side…
import pymic as mic
import numpy as np

device = mic.devices[0]
stream = device.get_default_stream()
library = device.load_library("libdgemm.so")

m,n,k = 4096,4096,4096
alpha = 1.0
beta = 0.0
np.random.seed(10)
a = np.random.random(m*k).reshape((m, k))
b = np.random.random(k*n).reshape((k, n))
c = np.empty((m, n))

stream.invoke(library.dgemm_kernel,
a, b, c,
m, n, k, alpha, beta)

stream.sync()

import numpy as np

m, n, k = 4096, 4096, 4096
alpha = 1.0
beta = 0.0
np.random.seed(10)
a = np.random.random(m * k).reshape((m, k))
b = np.random.random(k * n).reshape((k, n))
c = np.empty((m, n))

am = np.matrix(a)
bm = np.matrix(b)
cm = np.matrix(c)
cm = alpha * am * bm + beta * cm

Example dgemm: the host side…
import pymic as mic
import numpy as np

device = mic.devices[0]
stream = device.get_default_stream()
library = device.load_library("libdgemm.so")

m,n,k = 4096,4096,4096
alpha = 1.0
beta = 0.0
np.random.seed(10)
a = np.random.random(m*k).reshape((m, k))
b = np.random.random(k*n).reshape((k, n))
c = np.empty((m, n))

stream.invoke(library.dgemm_kernel,
a, b, c,
m, n, k, alpha, beta)

stream.sync()

• Get a device handle
(numbered from 0 to n-1)

• Load native code as a shared-
object library

• Invoke kernel function and pass
actual arguments

• Copy-in/copy-out semantics for
arrays

• Copy-in semantics for scalars

• Synchronize host and
coprocessor

Example dgemm: the target side…

#include <pymic_kernel.h>

#include <mkl.h>

PYMIC_KERNEL
void dgemm_kernel(const double *A, const double *B,

double *C,
const int64_t *m, const int64_t *n,
const int64_t *k,
const double *alpha, const double *beta) {

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
*m, *n, *k, *alpha, A, *k, B, *n,
*beta, C, *n);

}

• Arguments are passed as C/C++
types

• All argument passing is done
with pointers to actual data

• Invoke (native) dgemm kernel

High-level data structures

OffloadDevice

• Interaction with devices

• Loading of shared
libraries

OffloadStream

• Invocation of kernel
functions

• Buffer management

OffloadArray

• numpy.ndarray container

• Transfer management

• Simple kernels and
operators (fill, +, *)

Optimize offloads with high-level
containers

import pymic as mic
import numpy as np

device = mic.devices[0]
stream = device.get_default_stream()
library = device.load_library("libdgemm.so")

m,n,k = 4096,4096,4096
alpha = 1.0
beta = 0.0
np.random.seed(10)
a = np.random.random(m*k).reshape((m, k))
b = np.random.random(k*n).reshape((k, n))
c = np.zeros((m, n))

offl_a = stream.bind(a)
offl_b = stream.bind(b)
offl_c = stream.bind(c)

stream.invoke(library.dgemm_kernel,
offl_a, offl_b, offl_c,
m, n, k, alpha, beta)

offl_c.update_host()
stream.sync()

• Use bind to create an offload
buffer for host data

• Invoke kernel function and pass
actual arguments

• Update host data from the
device buffer

• Get a device handle
(numbered from 0 to n-1)

• Load native code as a shared-
object library

import pyMIC as mic
import numpy as np

device = mic.devices[0]
libr = device.load_library("libdgemm.so")
stream = device.get_default_stream()

m,n,k = 4096,4096,4096
alpha = 1.0
beta = 0.0
np.random.seed(10)
a = np.random.random(m*k).reshape((m, k))
b = np.random.random(k*n).reshape((k, n))
c = np.zeros((m, n))

offl_a = stream.bind(a)
offl_b = stream.bind(b)
offl_c = stream.bind(c)

stream.invoke(libr.dgemm_kernel,
offl_a, offl_b,
offl_c,
m, n, k,
alpha, beta)

offl_c.update_host()
stream.sync()

#include <pymic_kernel.h>

#include <mkl.h>

PYMIC_KERNEL
void dgemm_kernel(const double *A,

const double *B,
double *C,
const int64_t *m,
const int64_t *n,
const int64_t *k,
count double *alpha,
const double beta) {

cblas_dgemm(CblasRowMajor,
CblasNoTrans,
CblasNoTrans,
*m, *n, *k,
*alpha, A, *k,
B, *n,
*beta, C, *n);

}

The high-level offload protocol

a.update_device()

a.update_host()

device.load_library()

0101010100100010101
0101010001010010010
1010100101010101010
0010010011101110001
0101010010101011011
0010101010101010101

0101010100100010101
0101010001010010010
1010100101010101010
0010010011101110001
0101010010101011011
0010101010101010101

h
o
s
t

p
ro

c
e
s
s

ta
rg

e
t p

ro
c
e
s
sstream.invoke(…)

Buffer management: buffer creation

class OffloadStream:

def bind(self, array, update_device=True):

if not isinstance(array, numpy.ndarray):

raise ValueError("only numpy.ndarray can be associated "

"with OffloadArray")

detect the order of storage for 'array'

if array.flags.c_contiguous:

order = "C"

elif array.flags.f_contiguous:

order = "F"

else:

raise ValueError("could not detect storage order")

construct and return a new OffloadArray

bound = pymic.OffloadArray(array.shape, array.dtype, order,
False,

device=self._device, stream=self)

bound.array = array

allocate the buffer on the device (and update data)

bound._device_ptr = self.allocate_device_memory(bound._nbytes)

if update_device:

bound.update_device()

return bound

class OffloadStream:

def allocate_device_memory(self, nbytes, alignment=64,

sticky=False):

device = self._device_id

if nbytes <= 0:

raise ValueError('Cannot allocate negative amount of '

'memory: {0}'.format(nbytes))

device_ptr = _pymic_impl_stream_allocate(device, self._stream_id,

nbytes, alignment)

return SmartPtr(self, device, device_ptr, sticky)

unsigned char *buffer_allocate(int device,

libxstream_stream *stream,

size_t size,

size_t alignment) {

void *memory = NULL;

libxstream_mem_allocate(device, &memory, size, alignment);

return reinterpret_cast<unsigned char *>(memory);

}

Buffer management: data transfer

class OffloadArray:

def update_device(self):

host_ptr = self.array.ctypes.get_data()

s = self.stream

s.transfer_host2device(host_ptr,

self._device_ptr,

self._nbytes)

return None

def update_host(self):

host_ptr = self.array.ctypes.get_data()

s = self.stream

s.transfer_device2host(self._device_ptr,

host_ptr,

self._nbytes)

return self

void buffer_copy_to_target(int device,

libxstream_stream *stream,

unsigned char *src,

unsigned char *dst,

size_t size,

size_t offset_host,

size_t offset_device) {

unsigned char *src_offs = src + offset_host;

unsigned char *dst_offs = dst + offset_device;

libxstream_memcpy_h2d(src_offs, dst_offs,

size, stream);

}

Example: Singular value decomposition

• Treat picture as 2D matrix �

• Compute SVD

� = �Σ��

• Ignore the smallest singular
values and singular vectors

• “Optimal” compression of
images (in a 2-norm sense)

Example: Singular value decomposition

Host code
import numpy as np

import pymic as mic

from PIL import Image

def compute_svd(image):

mtx = np.asarray(image.getdata(band=0),

float)

mtx.shape = (image.size[1], image.size[0])

mtx = np.matrix(mtx)

return np.linalg.svd(mtx)

def reconstruct_image(U, sigma, V):

reconstructed = U * sigma * V

image = Image.fromarray(reconstructed)

return image

Host code, cont’d
def reconstruct_image_dgemm(U, sigma, V):

offl_tmp = stream.empty((U.shape[0], U.shape[1]),

dtype=float, update_host=False)

offl_res = stream.empty((U.shape[0], V.shape[1]),

dtype=float, update_host=False)

offl_U, offl_sigma = stream.bind(U), stream.bind(sigma)

offl_V = stream.bind(V)

alpha, beta = 1.0, 0.0

m, k, n = U.shape[0], U.shape[1], sigma.shape[1]

stream.invoke_kernel(library.dgemm_kernel,

offl_U, offl_sigma, offl_tmp,

m, n, k, alpha, beta)

m, k, n = offl_tmp.shape[0], offl_tmp.shape[1], V.shape[1]

stream.invoke_kernel(library.dgemm_kernel,

offl_tmp, offl_V, offl_res,

m, n, k, alpha, beta)

offl_res.update_host()

stream.sync()

image = Image.fromarray(offl_res.array)

return image

Performance: Data transfer bandwidth

0

1000

2000

3000

4000

5000

6000

7000

8000

8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

8
3

8
8

6
0

8

1
6

7
7

7
2

1
6

3
3

5
5

4
4

3
2

6
7

1
0

8
8

6
4

1
3

4
2

1
7

7
2

8

2
6

8
4

3
5

4
5

6

5
3

6
8

7
0

9
1

2

1
0

7
3

7
4

1
8

2
4

2
1

4
7

4
8

3
6

4
8

M
iB

/s
ec

data transferred [bytes]

bind

copyin

copyout

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests are measured using specific
computer systems, components, software, operations, and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. System
configuration: Intel S2600GZ server with two Intel Xeon E5-2697v2 12-core processors at 2.7 GHz (64 GB DDR3 with 1867 MHz), Red Had Enterprise Linux 6.5 (kernel version
2.6.32-358.6.2) and Intel C600 IOH, one Intel Xeon Phi 7120P coprocessor (C0 stepping, GDDR5 with 3.6 GT/sec, driver v3.3-1, flash image/micro OS 2.1.02.0390), and Intel
Composer XE 14.0.3.174. For more complete information visit http://www.intel.com/performance.

Performance: dgemm

0

100

200

300

400

500

600

700

1
2

8

3
8

4

6
4

0

8
9

6

1
1

5
2

1
4

0
8

1
6

6
4

1
9

2
0

2
1

7
6

2
4

3
2

2
6

8
8

2
9

4
4

3
2

0
0

3
4

5
6

3
7

1
2

3
9

6
8

4
2

2
4

4
4

8
0

4
7

3
6

4
9

9
2

5
2

4
8

5
5

0
4

5
7

6
0

6
0

1
6

6
2

7
2

6
5

2
8

6
7

8
4

7
0

4
0

7
2

9
6

7
5

5
2

7
8

0
8

8
0

6
4

G
FL

O
P

S

matrix size

MKL

Numpy (MKL)

pyMIC (kernel only)

pyMIC (incl. transfers)

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests are measured using specific
computer systems, components, software, operations, and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. System
configuration: Intel S2600GZ server with two Intel Xeon E5-2697v2 12-core processors at 2.7 GHz (64 GB DDR3 with 1867 MHz), Red Had Enterprise Linux 6.5 (kernel version
2.6.32-358.6.2) and Intel C600 IOH, one Intel Xeon Phi 7120P coprocessor (C0 stepping, GDDR5 with 3.6 GT/sec, driver v3.3-1, flash image/micro OS 2.1.02.0390), and Intel
Composer XE 14.0.3.174. For more complete information visit http://www.intel.com/performance.

Offloading and MPI

Intel® Xeon Phi™, Knights Corner (KNC)

MPI+Offload programming model

• MPI ranks on Intel® Xeon®
processors (only)

• All MPI messages into/out of
host CPUs

• Offload models used to
accelerate MPI ranks

• Intel® Cilk™ Plus, OpenMP*,
Intel® Threading Building
Blocks, Pthreads* within
Intel® Xeon Phi™
coprocessor

Homogenous network
of heterogeneous nodes

CPUCPU

CPUCPU

MPI

Offload

Offload

N
et

w
o

rk

Data

Data

Build Intel® 64 executable with included offload by
using the Intel compiler
Run instances of the MPI application on the host,
offloading code onto coprocessor
Advantages of more cores and wider SIMD for
certain applications

45

MPI+Offload programming model

• MPI messaging done by the host

• To send/receive data from the coprocessor, the data must
be copied to/from the host memory and back

• Offloading from a single MPI task to a single Intel®

Xeon Phi™ is straightforward

• Offloading from multiple MPI tasks to a single Intel®

Xeon Phi™ is possible, but care must be taken not to
overlap threads on the card
• Use environment variable KMP_PLACE_THREADS to offset the separate

MPI tasks on a single node

Conclusions

• With C/C++ and Fortran, OpenMP target
directives can be used to offload computations to
Intel® Xeon Phi™

• With Python, pyMIC can be used of offloading the
computations

• Offloading can be combined with MPI

