
USE const USE hydro_parameters !! compute the 1D MHD fluxes from the conservative variables !! the structure of gvar is : rho, Pressure, Vnormal, Bnormal, !! vitroreversel, Btransversel, Wonserse2, Btransverse2 IN A BOOM OF THE CONSTRUCTION OF StarPlan IN A BOOM OF THE CONSTRUCTION OF THE CONSTRUCTI

call trace_mpi('find_mhd_flux(qvar,cvar,ff)', 'enter',2)

! Local variables entho = one/(gamma-one)

Computational Astrophysics @ NBI on Xeon-Phi

A brief history of astro-HPC in CPH

Shared memory era

2002: DCSC established – SGI Origin in CPH 2004: SGI Altix with 64 CPUs

Infiniband clusters

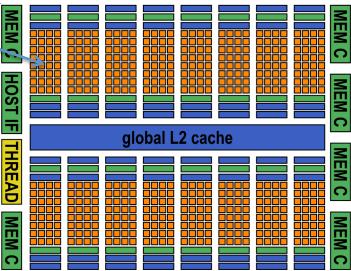
2005: Steno is born: Opteron + infiniband2007: Expansion of infiniband cluster (astro)2008: First Nehalem based cluster (astro2)

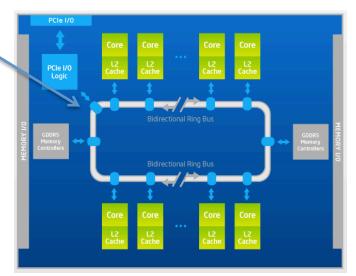
Arrival of accelerators

2009: First GPU cluster. 20 nodes, C1060 Tesla (astro_gpu) 2010: Expansion with 30 Fermi C2050 nodes (astro_gpu2) 2012: More memory to GPUs – 72 GB per node

Our installation is reborn

2014: Ivy nodes, Xeon-Phi, Analysis frontends 1 PB storage, 3000+ cores


What makes an accelerator fast ?

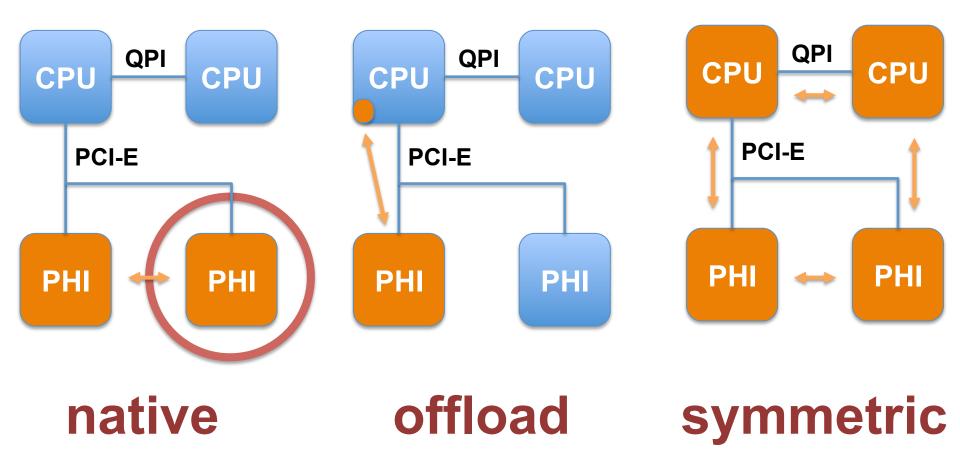

GPU's have many cores optimized for simple parallel work

- Execute simple parallel code
 - GPU's do the same operation on many data
 - Nvidia use groups of 32 cores all doing the same
- High throughput of data
 - Very high memory bandwidth, but little cache
 - Use multi-threading instead: Oversubscribe the GPU and only work on data when it has arrived

Xeon Phi is designed like a GPU, but more versatile 60 simple cores

- Execute code in-order using simple cores
 - Get performance from 512-bit vectors units
 - Memory is cache coherent. Looks like a x86 CPU
- Always keep the PHI busy by over-subscription
 - Use 4-way hyper-threading to try to do useful work

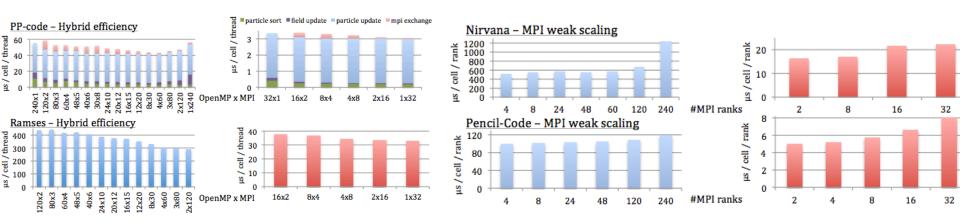
Why shift from GPUs to Xeon-Phi?


- GPUs can deliver very high performance, but code has to be rewritten specifically to exploit the architecture.
- In practice people too busy doing science to care. Only local code that ever made it to the GPUs: PP-code
- After much effort, PP-code speedup is still only 5x compared to CPUs (8 cores to 8 cores + 4 GPUs)
- Xeon-Phi promises to execute any fairly well behaved code after a simple recompile
- With 240 threads but only 8 GB memory pure MPI is almost impossible. MPI + OpenMP works fine.

First Benchmarks

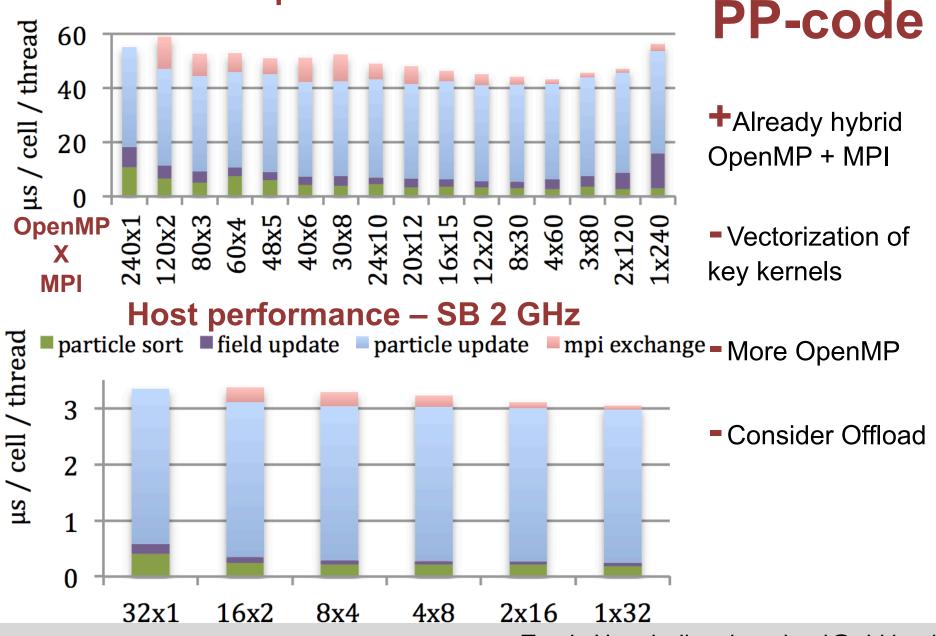
Can Xeon-Phi deliver?

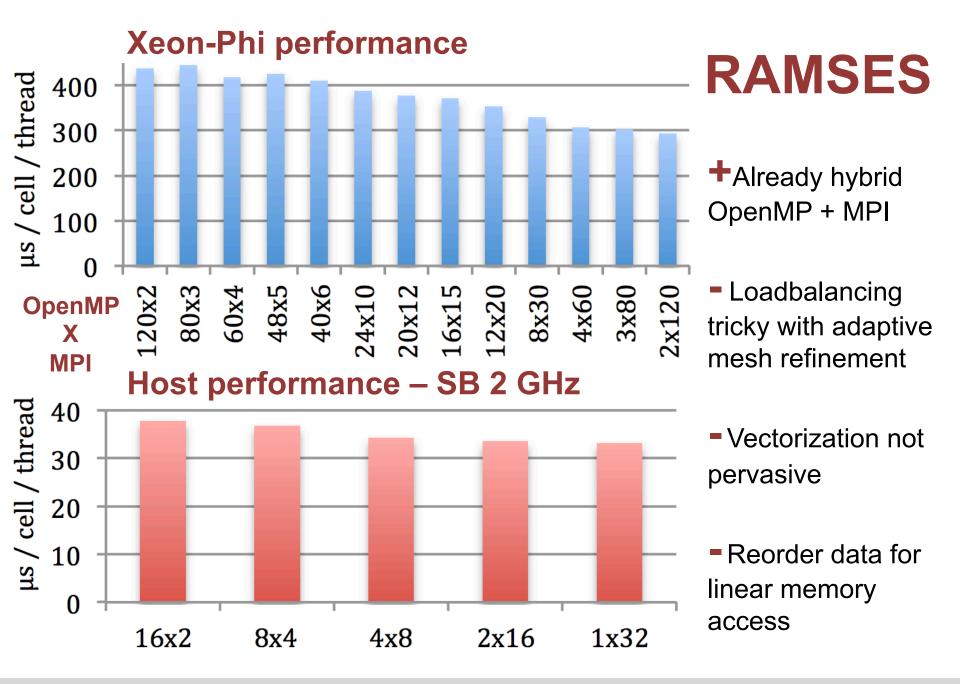
- Benchmark a number of codes in active use by the group
 - PP-code: Particle-in-cell code for plasmas
 - **RAMSES:** Finite volume MHD on oct-tree AMR
 - Pencil-Code: Finite difference MHD on unigrid
 - Nirvana: Finite volume MHD with block AMR


Remember: Programming models

Can Xeon-Phi deliver?

- Benchmark a number of codes in active use by the group
 - PP-code: Particle-in-cell code for plasmas
 - **RAMSES:** Finite volume MHD on oct-tree AMR
 - Pencil-Code: Finite difference MHD on unigrid
 - Nirvana: Finite volume MHD with block AMR
- Compile and execute codes natively on a Xeon-Phi
- Done in late 2013 on test equipment from Dell


Can Xeon-Phi deliver?


Single card results for the four codes, without any source code changes. To the left (right) is shown results on a 5120D Xeon-Phi card (Dual 8C Xeon E5-2650 Host). The two first codes are hybrid, and the scaling is using different full card / host configurations with 240 / 32 threads, while for the two other codes MPI-only weak scaling results are shown. The workloads are in all cases scaled to be the same for a single Xeon-Phi card (240 threads) and a single CPU socket (16 threads). For all codes the total raw performance, measured as the time it takes to do a cell update in the model, is comparable between a single 8-core CPU socket and a Xeon-Phi card.

[From IPCC application]

Xeon-Phi performance

Troels Haugbølle – haugboel@nbi.ku.dk

Xeon-Phi performance

120 80 40 40 4 8 40 4 8 40 4 8 24 48 120 240

Pencil-Code

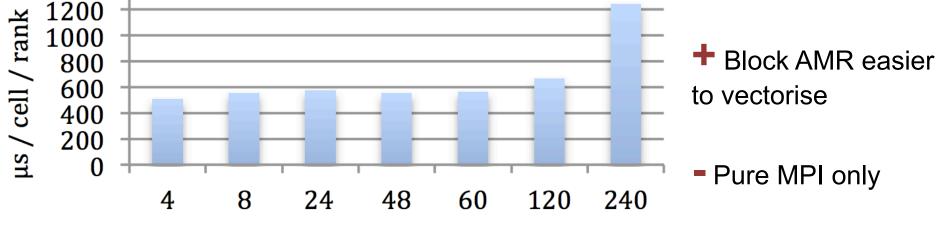
+ well vectorized(?)

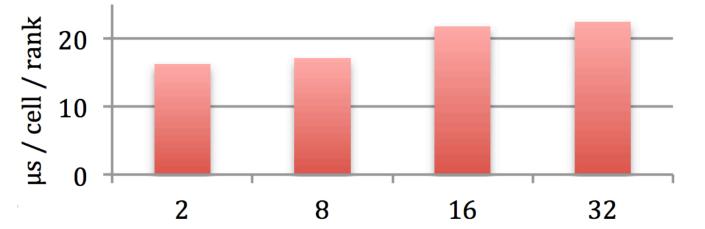
OK with small domain per rank

+ unigrid: balanced

+ low memory bw

pure MPI only


 X files per MPI rank; too many with Xeon-Phi


Xeon-Phi performance

Nirvana

#MPI ranks – weak scaling

Host performance – SB 2 GHz

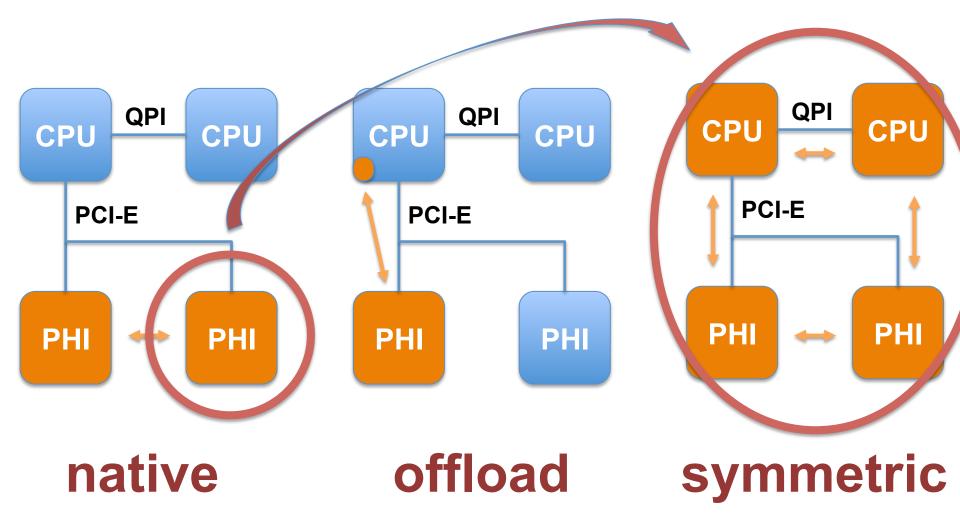
 Vectorization of kernels

Memory bandwidth starved?

Can Xeon-Phi deliver?

• Different codes have different bottlenecks and problems. They all perform equally on 2xPhi's and on 16 SB cores

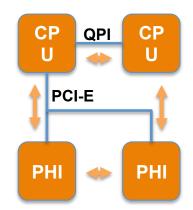
• Work needed for PP-code and RAMSES to get them to perform well on Xeon-Phi, in particular vectorisation


• Significant work needed in the case of Pencil-Code and Nirvana: they have to become OpenMP+MPI to scale

 All codes are >>20.000 lines with lots of kernels and physics. They have to run natively. Only exception is PP-code, where offload could be based on GPU code

- Profiling tools (vtune) and timers key to pin-point hot-spots
- Correctness tools (Intel Inspector) essential for OpenMP
- OMP SIMD directives needed to implement vectorisation

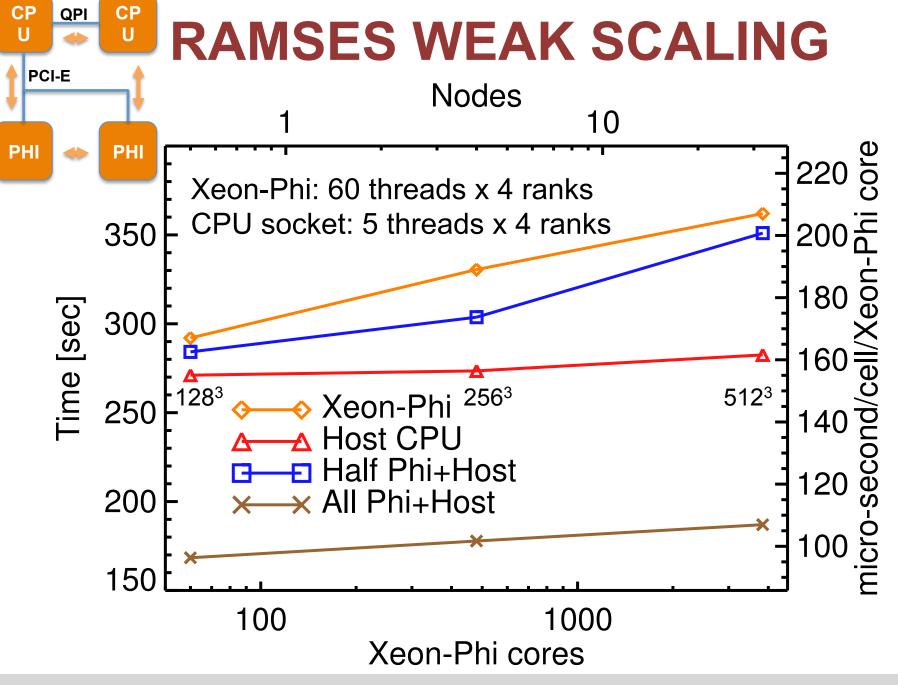
Efficient use of resources in symmetric mode & OpenMP + MPI considerations


Remember: Programming models

Beyond pure MPI

- Xeon-Phi cards have 60 cores x 4 HT = 240 threads
- CPUs have (in our system) 10 cores x 2 HT = 20 threads
- How to load balance code across system?
 - (1) Make load balancing aware that different nodes have different speed

A solution: OpenMP + MPI


- Xeon-Phi cards have 60 cores x 4 HT = 240 threads
- CPUs have (in our system) 10 cores x 2 HT = 20 threads
- If a code has a robust two-layer parallelization, it can be future proofed:
 - The number of cores per node (and per socket) is increasing, but network speed is not going up proportionally. Example
 - First Steno cluster had dual single-core opteron, and 10 gbit/s infiniband
 - Now 20 much faster cores, but only 56 gbit/s IB
 - Many cores per node demand a "shared memory layer"

Xeon-Phi 2x2x2x2x3x5=240 threads		Ivy-Bridge Host 2x2x2x5=40 threads		
OpenMP threads	MPI ranks	OpenMP threads		
240	1	40		
120	2	20		
80	4	10		
60	5	8		
48	8	5		
40	10	4		
30	20	2		
24	40	1		
20				
16				
15				
12				
10				
8				
6				
5				
4				
3				
2				
1				
	OpenMP threads 240 120 80 60 48 40 30 24 20 16 15 12 10 8 61 13 14 15 16 15 16 15 12 10 8 6 13 3 3 2 3 2	OpenMP threadsMPI ranks24011202804605488401030202440204010112115110186544130210312113114115110111112113151433221		

OpenMP + MPI

• Different number of threads per MPI rank on Xeon-Phi and on host CPUs

- Even performance per MPI rank
- Xeon-Phi has many choices
- Ex 1 card=1 CPU:
 60 Phi threads=
 5 CPU threads

RAMSES - DETAILS

Host executing benchmark on 32 nodes / 640 cores / 1280 threads

ctd/av

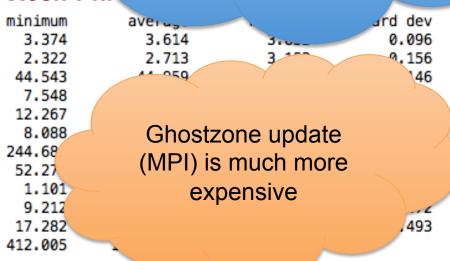
		SLU/dv	2		TTHER
5.	993	0.002	1.4	5 254	ref fine – kill grid
10.	211	001	3.6	255 1	update random forcing
1.	125 /	47		200 1	courant
1.	642 Fortunately, RAMSES has)0	0.8	1 192	hydro – new vars
243.	been running on Blue-Gene/Q	<u>ð0</u>	85.2	252 47	hydro – godunov
19		~ 9	3.8	1 47	hydro – ghostzones
	on up to 16 cores / 64 threads.		0.4	48 1	hydro – old vars
ف	· · · · · · · · · · · · · · · · · · ·	ļ	3.4	227 142	do forcing
1.			0.8	47 147	hydro – boundaries
286	Amdahl hits back.				

Xeon-Pm

CP

U

PHI


PCI-E

QPI

CP

U

PHI

ds / 3840 cores / 15360 threads.

std/av	%	rmn	rmx	TIMER
0.027	0 0	161	18	ref fine - authorize_fin
0.057	0.7	240	41	ref fine - make grid
0.003	11.0	37	240	ref fine – kill grid
0.008	1.9	255	2	update random forcing
0.005	3.0	192	140	courant
0.008	2.0	140	192	hydro – new vars
0.000	33.0	- 1	18	hydro – godunov
0.0 0	12.8	1	231	hydro – ghostzones 📃
0.001	0.3	117	156	hydro – old vars
0.049	2.4		2.10	Le rereing
0.069	5.3	253	129	hydro – boundaries

TIMER

rmv

Looking forward

- RAMSES is ready for production on Xeon-Phi + CPUs
- PP-code will be ready very soon
- KROME is trivially OpenMP'ed, and ready too
- We have no code with stellar performance on Xeon-Phi
- Non-trivial to get good performance on Xeon-Phi.
 Three layers of parallelism:
 - (1) Vectorisation for good serial performance [hard; if implicit]
 - (2) Threading to parallelize inside card [60+ threads? some work]
 - (3) Tolerant MPI between cards and host CPUs ["easy"]
- Platform is memory constrained and MPI communication latency / bandwidth not good. Weak cores bad for communication (?)
- Good news: Enhancements will improve performance on any architecture, and future proof codes (better than offload!)
- Vectorisation the biggest problem (Knights Landing solves rest)