B B
I.ISE nst

USE hyd o_paramete

Il compute the 10 MHD Flux
is

:'.f,eén-th'ﬁ”ﬁavs @ StarPlan

REAL(dp) :: ecin,emag, etot,d, u,v,w A B C, P, Ptot, th

call trace_mpi('find_mhd_flux(qv

| Local variable
entho = one/(gam ‘:_ne)

Computational Astrophysics @ NBI
on
Xeon-Phi

RAMSES PENCIL-CODE NIRVANA PP-CODE

Troels Haugbglle — haugboel@nbi.ku.dk

A brief history of astro-HPC in CPH

Shared memory era
2002: DCSC established — SGI Origin in CPH
2004: SGI Altix with 64 CPUs

Infiniband clusters

2005: Steno is born: Opteron + infiniband
2007: Expansion of infiniband cluster (astro)
2008: First Nehalem based cluster (astro2)

Arrival of accelerators
2009: First GPU cluster. 20 nodes, C1060 Tesla (astro_gpu)
2010: Expansion with 30 Fermi C2050 nodes (astro_gpu2)

2012: More memory to GPUs — 72 GB per node

Our installation is reborn WY e
2014: Ivy nodes, Xeon-Phi, Analysis frontends Vg
1 PB storage, 3000+ cores

Troels Haugbwalle — haugboel@nbi.ku.dk

What makes an accelerator fast ?

GPU’s have many cores optimized for simple parallel Wol

1000s of slim cores
» Execute simple parallel code

- GPU’s do the same operation on many data
— Nvidia use groups of 32 cores all doing the same

* High throughput of data
- Very high memory bandwidth, but little cache
- Use multi-threading instead: Oversubscribe the
GPU and only work on data when it has arrived

Xeon Phi is designed like a GPU, but more versatile
60 simple cores

» Execute code in-order using simple cores
- Get performance from 512-bit vectors units
- Memory is cache coherent. Looks like a x86 CPU

» Always keep the PHI busy by over-subscription
- Use 4-way hyper-threading to try to do useful work

Troels Haugbwalle — haugboel@nbi.ku.dk

Why shift from GPUs to Xeon-Phi?

* GPUs can deliver very high performance, but code has to
be rewritten specifically to exploit the architecture.

* In practice people too busy doing science to care. Only
local code that ever made it to the GPUs: PP-code

 After much effort, PP-code speedup is still only 5x
compared to CPUs (8 cores to 8 cores + 4 GPUs)

« Xeon-Phi promises to execute any fairly well behaved
code after a simple recompile

« With 240 threads but only 8 GB memory pure MPl is
almost impossible. MPI + OpenMP works fine.

Troels Haugbwalle — haugboel@nbi.ku.dk

First Benchmarks

Troels Haugbwalle — haugboel@nbi.ku.dk

Can Xeon-Phi deliver?

* Benchmark a number of codes in active use by the group

* PP-code: Particle-in-cell code for plasmas

« RAMSES: Finite volume MHD on oct-tree AMR
* Pencil-Code: Finite difference MHD on unigrid
* Nirvana: Finite volume MHD with block AMR

Troels Haugbwalle — haugboel@nbi.ku.dk

Remember: Programming models

QPI QPI

~—

QPI

PCI-E PCI-E PCI-E

T

native offload symmetric

Troels Haugbwalle — haugboel@nbi.ku.dk

Can Xeon-Phi deliver?

* Benchmark a number of codes in active use by the group
* PP-code: Particle-in-cell code for plasmas
« RAMSES: Finite volume MHD on oct-tree AMR
* Pencil-Code: Finite difference MHD on unigrid
* Nirvana: Finite volume MHD with block AMR

« Compile and execute codes natively on a Xeon-Phi

* Done in late 2013 on test equipment from Dell

Troels Haugbwalle — haugboel@nbi.ku.dk

Can Xeon-Phi deliver?

® particle sort ®field update * particle update * mpi exchange

PP-code - Hybrid efficiency

o]
=)

Nirvana - MPI weak scaling
2 1200 -

3

us / cell / thread

z 20
£ y £ 1000
< 40 2 g «
= E "800 £
= 2 1 = 600 Z 10 T
Eol"llllllllllll‘ll 0 B = = =5 = = :388 2 . . .
PR E LERERSCSIZS S S22 OpenMPxMPI 32x1 16x2 8x4 4x8 2x16 1x32 £ 0 20 w
FREBIESRIFSIIESTARY ” . .
ps SR8 3% 4 8 24 48 60 120 240 #MPIranks 2 8 16
Ramses - Hybrid efficiency - Pencil-Code - MPI weak scaling x 8
400 1 g0 120 S 6
e P L L =
£ 300 530 £ g0 = 4 —]
= 200 20 = g
o | H N ~ 3 40— — — — — - w2
perpbbbbbbbEHHEE R R R R R 2 Sl
0 T 0] T 0 T
o o o O O O O “ - 2 -
22EdE3:35535%8¢ 3 OpenMPXMPI 162 Bxt &8 216 1x32 4 8 24 48 120 240 #MPlIranks 2 4 8 16
- NN o~ - b

Single card results for the four codes, without any source code changes. To the left (right) is shown results on a
5120D Xeon-Phi card (Dual 8C Xeon E5-2650 Host). The two first codes are hybrid, and the scaling is using
different full card / host configurations with 240 / 32 threads, while for the two other codes MPI-only weak
scaling results are shown. The workloads are in all cases scaled to be the same for a single Xeon-Phi card (240
threads) and a single CPU socket (16 threads). For all codes the total raw performance, measured as the time it
takes to do a cell update in the model, is comparable between a single 8-core CPU socket and a Xeon-Phi card.

[From IPCC application]

Troels Haugbwalle — haugboel@nbi.ku.dk

Xeon-Phi performance

PP-code

® 60
o)
S
B EEEEEEEEEEEERE NI
= + Already hybrid
g 20 I I OpenMP + MPI
S~
wn -
= 0
OenMPHNMQ-LO\O&ONLDOOOOOO - . .
PX §§§x§§§32832\§%§§ Vectorization of
MP] & O N N o & & key kernels
Host performance — SB 2 GHz
'S ®particle sort ®field update “ particle update “mpi exchange = More OpenMP
£
+ 3 +—] SN S W — —
S~ .
= = Consider Offload
L
°o 21+ — — @ — @ — — —
S~
)
= 1 +— S - — _ _— _
0 %

32x1 16x2 8x4 4x8 2x16 1x32
Troels Haugbwalle — haugboel@nbi.ku.dk

Xeon-Phi performance

T 400 + RAMSES

b}

< 300 -

\ .

— 200 - + Already hybrid

b)

2 100 - OpenMP + MPI

g 0 - T 1 1

OpenMP (;3: m <1~ m ‘° 3 S ';2 8 Q Q@ g K -~ loadbalancing
X 8 8 & o X 83 3 & & X X o tricky with adaptive
MPI NN N mesh refinement

5 Host performance — SB 2 GHz

s 40

é’ _ = \/ectorization not

g 30 pervasive

@ 20 -

o 10 - = Reorder data for

= 0 - linear memory

16x2 8x4 4x8 2x16 1x32 2¢¢°SS

Troels Haugbglle — haugboel@nbi.ku.dk

Xeon-Phi performance Pencil-Code

120

E 30 — ¥ well vectorized(?)
T 40 .

> o + OK with small

:_ 1 1 1 1 1 1

A g ” 48 120 240 domain per rank

#MPI ranks — weak scaling + unigrid: balanced

Host performance — SB 2 GHz

+ low memory bw

= pure MPI only

us / cell /rank

= X files per MPI

rank; too many with
Xeon-Phi

Troels Haugbglle — haugboel@nbi.ku.dk

16 32

Xeon-Phi performance Nirvana

1200
1000
800
600
400
200
0 T T T T T T

4 8 24 48 60 120 240

#MPI ranks — weak scaling

+ Block AMR easier
to vectorise

LT

us / cell / rank

= Pure MPI only

= Vectorization of
Host performance — SB 2 GHz kernels

)
o

= Memory bandwidth
starved?

us / cell / rank
p—
-

o
I

2 8 16 32

Troels Haugbglle — haugboel@nbi.ku.dk

Can Xeon-Phi deliver?

* Different codes have different bottlenecks and problems.
They all perform equally on 2xPhi’'s and on 16 SB cores

* Work needed for PP-code and RAMSES to get them to perform
well on Xeon-Phi, in particular vectorisation

« Significant work needed in the case of Pencil-Code and Nirvana:
they have to become OpenMP+MPI to scale

* All codes are >>20.000 lines with lots of kernels and physics.
They have to run natively. Only exception is PP-code, where off-
load could be based on GPU code

* Profiling tools (vtune) and timers key to pin-point hot-spots
» Correctness tools (Intel Inspector) essential for OpenMP
« OMP SIMD directives needed to implement vectorisation

Troels Haugbwalle — haugboel@nbi.ku.dk

Efficient use of resources in
symmetric mode

&
OpenMP + MPI considerations

Troels Haugbglle — haugboel@nbi.ku.dk

Remember: Programming models

native offload symmetric

Troels Haugbwalle — haugboel@nbi.ku.dk

Beyond pure MPI

 Xeon-Phi cards have 60 cores x4 HT = 240 threads

* CPUs have (in our system) 10 cores x 2 HT = 20 threads

QPI
* How to load balance code across system?

PCI-E
(1) Make load balancing aware that different
nodes have different speed

(2) Make each MPI rank roughly the same speed

Troels Haugbwalle — haugboel@nbi.ku.dk

A solution: OpenMP + MPI

« Xeon-Phi cards have 60 cores x 4 HT = 240 threads
* CPUs have (in our system) 10 cores x 2 HT = 20 threads

* If a code has a robust two-layer parallelization, it can be
future proofed:
* The number of cores per node (and per socket) is
Increasing, but network speed is not going up
proportionally. Example

* First Steno cluster had dual single-core opteron, and
10 gbit/s infiniband
* Now 20 much faster cores, but only 56 gbit/s IB

* Many cores per node demand a “shared memory layer”

Troels Haugbwalle — haugboel@nbi.ku.dk

MPI ranks

120
240

OpenMP threads
240
120
80
60
48
40
30
24
20
16

MPI ranks

OpenMP threads O pe n M P

40

+ MPI

 Different number
of threads per MPI
rank on Xeon-Phi

and on host CPUs

* Even performance
per MPI rank

« Xeon-Phi has
many choices

* Ex 1 card=1 CPU:
60 Phi threads=
5 CPU threads

Troels Haugbwalle — haugboel@nbi.ku.dk

59288 RAMSES WEAK SCALING

PCI-E

350

W
-
o

Ol
o

Time [sec]

N
-
-

150 L

Nodes
1 10

1 . — — . — e
- Xeon-Phi: 60 threads x 4 ranks 1220 8
" CPU socket: 5 threa] 2005
: c
. 1180 9
5 1, X
A A —A - 160%
128° . Xeon-Phi 256° 512 140%
[A~—A Host CPU : S
I 3—~¢ Half Phi+Host N 120 8
- »%—x All Phi+Host : 7
[] S
[e 1100 5

&

100

1000

Xeon-Phi cores

Troels Haugbwalle — haugboel@nbi.ku.dk

1 PCI-E

o
um
.993

10.211
1.125

minimum
3.374
2.322
44,543
7.548
12.267
8.088

412.005

2.713

Ghostzone update
(MPI) is much more

rage

RAMSES - DETAILS

Host executing benchmark on 32 nodes / 640 cores / 1280 threads

u std/av W rmn rmx TIMER
0.002 5 254 ref fine - kill grid
255 1 update random forcing

200 1 courant

0.8 1192 hydro - new vars
5.2 252 47 hydro - godunov
3.8 1 47 hydro - ghostzones
0.4 48 1 hydro - old vars
3.4
0.8

227 142 do forcing
47 147 hydro - boundaries

s / 3840 cores / 15360 threads

d dev std/av rmn rmx TIMER
0.096 0.027 161 18 ref fine - authorize_fin

0.057 240 41 ref fine - make grid
0.003 37 240 ref fine - kill grid
0.008 255 2 update random forcing
0.005

192

'}

140 courant
0.008 - h

0.0« ghostzones

0.00x - old va
0.049 ' .
0.069 5.3 253 129 hydro - boundaries

Troels Haugbwalle — haugboel@nbi.ku.dk

Looking forward

* RAMSES is ready for production on Xeon-Phi + CPUs
* PP-code will be ready very soon

« KROME is trivially OpenMP’ed, and ready too

 We have no code with stellar performance on Xeon-Phi

* Non-trivial to get good performance on Xeon-Phi.

Three layers of parallelism:
(1) Vectorisation for good serial performance [hard; if implicit]
(2) Threading to parallelize inside card [60+ threads? some work]
(3) Tolerant MPI between cards and host CPUs [“easy”]

* Platform is memory constrained and MPI communication latency /
bandwidth not good. Weak cores bad for communication (?)

« Good news: Enhancements will improve performance on any
architecture, and future proof codes (better than offload!)

* Vectorisation the biggest problem (Knights Landing solves rest)

Troels Haugbwalle — haugboel@nbi.ku.dk

