

Intel[®] Xeon Phi[™] programming

September 22nd-23rd 2015 University of Copenhagen, Denmark

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core, VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Intel[®] software tools overview

Intel[®] Xeon[®] and Intel[®] Xeon Phi[™]

Create Faster Code...Faster

Intel[®] Parallel Studio XE

- Design, build, verify and tune
- C++, C, Fortran and Java*

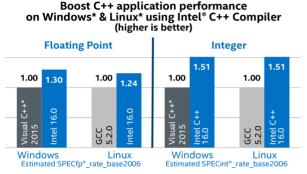
Highlights from what's new for "2016" edition

- Intel[®] Data Analytics Acceleration Library
- Vectorization Advisor: Custom Analysis and Advice
- MPI Performance Snapshot: Scalable profiling
- Support for the latest Standards, Operating Systems and Processors

Intel[®] Parallel Studio XE 2016 editions

	Composer Edition	Professional Edition	Cluster Edition
What it does:	Build fast code using industry leading compilers and libraries including new data analytics library	Adds analysis tools	Adds MPI cluster tools
What's included:	 C++ and/or Fortran compilers Performance libraries Parallel models 	 Composer edition + Performance profiling Threading design/prototyping & vectorization advisor Memory & thread debugger Data analytics acceleration library 	 Professional edition + MPI cluster communications library MPI error checking and tuning
SOFTWARE AND) SERVICES		

Intel[®] Parallel Studio XE 2016 compilers

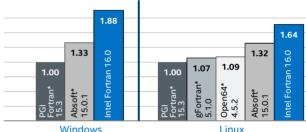

Intel[®] Xeon[®] and Intel[®] Xeon Phi[™]

Intel[®] C/C++ and Fortran Compilers

What's New:

- More of C++14, generic lambdas, member initializers and aggregates
- More of C11, _Static_assert, _Generic, _Noreturn, and more
- OpenMP 4.0 C++ User Defined Reductions, Fortran Array Reductions
- OpenMP 4.1 asynchronous offloading, simdlen, simd ordered
- F2008 Submodules, IMPURE ELEMENTAL Functions
- F2015 **TYPE**(*), **DIMENSION**(..), **RANK** intrinsic, relaxed restrictions on interoperable dummy arguments
- Significant improvement in alignment analysis, vectorization robustness
- Much improved Neighboring Gather optimization

Performance without compromise Intel® C++ and Fortran Compilers on Windows*, Linux* & OS X*


Relative geomean performance. SPEC* benchmark - higher is better

Configuration: Windows hardware: VP (1230); Gene & 2 (pingle-scoker soviet) with Intel(8); Xoori8); CPU (3-120); a) 3: 400-Hz 3: 25 (BMH, HyperThanading; Lotfi, Liux Pardware: VPL B40(2); Continue Hard(8); Xoori8); CPU (3-2208); a) 3: 2: 400-Hz 3: 50 (BMH, HyperThanading; Lotfi, C) (C++) Optimizing; Compiler Version: 1900/2302; BFD; A) 5: 200; a) 3: 2: 400-Hz 3: 50 (BMH, HyperThanading; Lotfi, Windows C3: Windows 8: 1) SPCC Hard(8); Xoori8); CPU (3-20); a) 4: 2: 400-Hz 3: 50 (BMH, HyperThanading; Lotfi, Windows 5: C3: Windows 8: 1) SPCC Hard(8); Xoori8); CPU (3-20); A) 4: 400-Hz 3: 400-Hz

are and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and Additional with works and in products was limit, and the observation of the product of the produ

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations, Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microgrocessors not manufactured by their Microgrocessor-dependent optimizations in this product are interded for use with Interrogrocessors, certain optimizations not specific to Intel microgrotessor-are reserved for Intel microgrocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision 120110804.

Boost Fortran application performance on Windows* & Linux* using Intel® Fortran Compiler (higher is better)

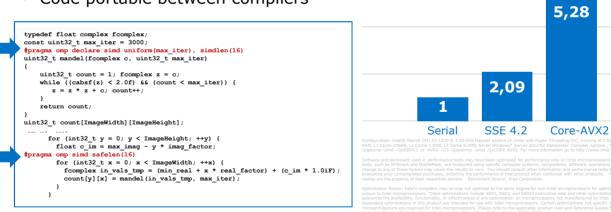
Windows

Relative geomean performance, Polyhedron* benchmark- higher is better

Configurations Handware: Intel® (Concr(M1)-7470K (CM)@ 3.500H; HyperTransdarg is off. 16 (BAMS Scharzer, Intel Fortgan, complier 16.0, BascH121, FGI Tomiro 113.3, Dender 14.2, Sortanz 15.1, Luna US: Bet Hat Hard Scharzer (Sandara 19.1, Sandara 19.1, Sandar arallelize-loops=4. Intel Fortran compiler: -fast -parallel. PGI Fortran: -fast -Mipa=fast,inline -Msmartalloc -Mfprelaxed -Mstack_arrays -Mconcur=bind. Open64: -narch=bdver1 -maxy.-mno-fma4 -Ofast -mso -apo.

are and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests such as SYSmark and AbbiteMark are measured using a periodinance task and inter-betroparticle of periodical or periodical and a periodical as a pe

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are nor unique to Intel microprocessors. Three optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessors add internet to be initializations in this product are intended for use with intel information accessors. Certain optimizations not specific to here intended for use with intel information accessors. Certain optimizations not specific to here intended for use are reserved for intel incroarcessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804.

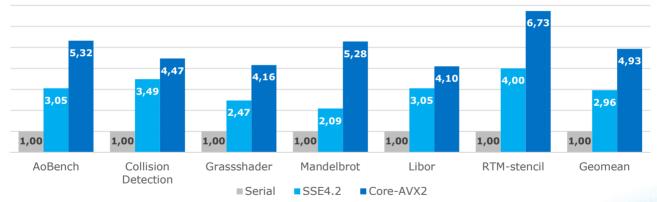

Impressive performance improvement

Intel® Compiler OpenMP* 4.0 Explicit Vectorization

- Two lines added that take full advantage of both SSE or AVX
- Code portable between compilers

Mandelbrot calculation speedup

Normalized performance data – higher is better



Impressive performance improvement

Intel C++ Explicit Vectorization using OpenMP* 4.0 SIMD or Intel® Cilk™ Plus

SIMD Speedup on Intel® Xeon® Processor

Normalized performance data - higher is better

Configuration: Intel® Xeon® CPU E3-1270 @ 3.50 GHz Hassell system (4 cores with Hyper-Threading On), running at 3.50GHz, with 3.20GB RAM, L1 Cache 256KB, L2 Cache 1.0MB, L3 Cache 8.0MB, 64-bit Windows* Server 2012 R2 Datacenter. Complier options: JS542... '03-Qopemprise-ind-QS5542... or AD2: 03-Qopemprise-ind-QCORE-AVOZ. For more information go to thtp://www.intit.com/performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that nor when comhined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Intel[®] Parallel Studio XE 2016 libraries

Intel[®] Threading Building Blocks Intel[®] Integrated Performance Primitives Intel[®] Math Kernel Library Intel[®] Data Analytics Acceleration Library

Intel[®] Xeon[®] and Intel[®] Xeon Phi[™]

Intel[®] Threading Building Blocks

Intel[®] Threading Building Blocks (Intel[®] TBB)

- Specify tasks instead of manipulating threads
 - Intel[®] TBB maps your logical tasks onto threads with full support for nested parallelism
- Targets threading for scalable performance
 - Uses proven, efficient parallel patterns
 - Uses work stealing to support the load balance of unknown execution time for tasks
- Flow graph feature allows developers to easily express dependency and data flow graphs
- Has high level parallel algorithms and concurrent containers and low level building blocks like scalable memory allocator, locks and atomic operations
- Open-sourced and license versions available on Linux, Windows, Mac OSX, Android

Commercial support for Intel[®] Atom[™], Core[™], Xeon[®] processors, and for Intel[®] Xeon Phi[™] coprocessors

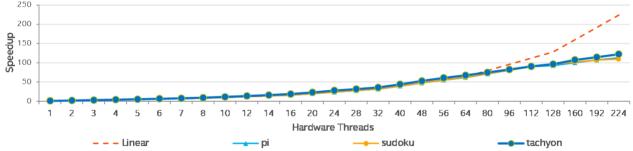
Rich Feature Set for Parallelism Intel® Threading Building Blocks (Intel® TBB)

Parallel algorithms and data structures

Threads and synchronization

Memory allocation and task scheduling

Generic Parallel Flow Graph		Concurrent Containers					
Algorithms Efficient scalable way to exploit the power of multi-core without	A set of classes to express parallelism as a graph of			able alternative to ked for thread-safety			
having to start from	compute dependencies and/or	Synchronization Primitives					
scratch.	data flow	Atomic operations, a variety of mutexes with different properties, condition variables					
Task Sch	eduler	Timers and	Threads	Thread Local Storage			
		Eventions					
Sophisticated work sch empowers parallel algorith		Exceptions Thread-safe timers and exception classes	OS API wrappers	Efficient implementation for unlimited number of thread-local variables			
	nms and the flow graph	Thread-safe timers and exception	OS API	Efficient implementation for unlimited number of			
empowers parallel algorith	nms and the flow graph	Thread-safe timers and exception classes	OS API wrappers	Efficient implementation for unlimited number of			


Intel[®] Threading Building Blocks

What's new:

- Fully supported tbb::task_arena
 - Task arenas provide improved control over workload isolation and the degree of concurrency
- Dynamic replacement of standard memory allocation routines for OS X*
 - Utilize the powerful TBB scalable allocator easily on OS X
- Binary files for 64-bit Android* applications were added as part of the Linux* package
- Improvements to the Flow Graph features
 - Check out <u>Flow Graph Designer</u>!
- Several improvements to examples and documentation

Scalability and productivity Intel[®] Threading Building Blocks (Intel[®] TBB)

Excellent Performance Scalability with Intel® Threading Building Blocks 4.4 on Intel® Xeon® Phi™ Coprocessor

Configuration Info: SW Versions: Intel® C++ Intel® 64 Compiler, Version 16.0, Intel® Threading Buicks (Intel® TBB) 4.4; Hardware: Intel® Xeon Phi" Coprocessor 7120 (16GB, 1.238 GHz, 61C/244T); MPSS Version: 3.5; Rash Version: 2.1.02.0391; Host: 2x Intel(R) Xeon(R) CPU E5-2680 0.0@ 2.70GHz (16C/32T); 64GB Main Memory; . OS: Red Hat Enterprise Linux Server release 6.5 (Santiago), kernel 2.6.32-431.elGx86_64; Benchmarks are measured only on Intel® Yeon Phi" Coprocessor. Benchmarks Source: Intel Cop. Note: sudoku and tachyon are included with Intel TBB

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source Intel Corporation

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations and specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804.

Intel[®] Integrated Performance Primitives

Intel[®] Integrated Performance Primitives (Intel[®] IPP)

A software developer's competitive edge

- Multi-core-ready, computationally intensive and optimized functions for large dataset problem processing and high performance computing
- Reduces cost and time associated with software development and maintenance
- Developers can focus their efforts only on their application code
- Cross platform support and optimized for current and future processors

Unleash your potential through access to silicon

- Yields the best system performance for the target processor
- Takes into account memory bandwidth and caching behavior of the target environment
- Automatic dispatching feature picks the flow optimized for that specific architecture without changing the code

Intel[®] IPP Domain Applications

Image Processing/Color Conversion	Computer Vision	Data Compression	Signal Processing	Cryptography
 Healthcare (including medical imaging) Special effects for photo/video processing Object compression/ decompression Image scaling, image combination Noise reduction Optical correction 	 Digital Surveillance Industrial/Machine Control Image Recognition Bio-metric identification Remote operation of equipment and gesture interpretation Automated sorting of materials or objects 	 Internet portal data center Data storage centers Databases Enterprise data management 	 Telecommunications Energy Recording, enhancement and playback of audio and non-audio signals Echo cancellation : filtering, equalization and emphasis Simulation of environment or acoustics Games involving 	 Internet portal data center Information Security Telecommunications Enterprise data management Transaction security Smart card interfaces ID verification Copy protection Electronic signature

content or effects

Intel[®] Integrated Performance Primitives

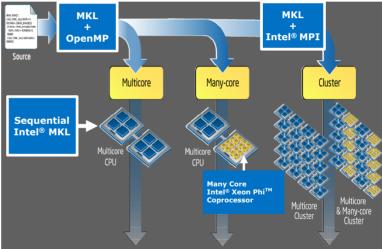
What's new:

- Additional optimization for Intel® Quark[™], Intel® Atom[™], and the processors with Intel® AVX2 instructions support
 - Intel[®] Quark[™]: data compression, cryptography optimization
 - Intel® Atom[™]: computation vision, image processing optimization
 - Intel® AVX2: computer vision, image processing optimization
- New APIs to support external threading
- Improved CPU dispatcher
 - Auto-initialization. No need for the CPU initialization call in static libraries.
 - Code dispatching based on CPU features
- Optimized cryptography functions to support SM2/SM3/SM4 algorithm
- Custom dynamic library building tool
- New APIs to support external memory allocation

Intel[®] Math Kernel Library

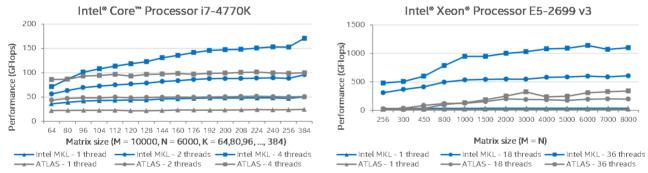
Intel[®] Math Kernel Library (Intel[®] MKL)

- Speeds math processing in scientific, engineering and financial applications
- Functionality for dense and sparse linear algebra (BLAS, LAPACK, PARDISO), FFTs, vector math, summary statistics and more
- Provides scientific programmers and domain scientists
 - Interfaces to de-facto standard APIs from C++, Fortran, C#, Python and more
 - Support for Linux*, Windows* and OS X* operating systems
 - Extract great performance with minimal effort


- Unleash the performance of Intel[®] Core, Intel[®] Xeon and Intel[®] Xeon Phi[™] product families
 - Optimized for single core vectorization and cache utilization
 - Coupled with automatic OpenMP*based parallelism for multi-core, manycore and coprocessors
 - Scales to PetaFlop (1015 floating-point operations/second) clusters and beyond
- Included in Intel® Parallel Studio XE and Intel® System Studio Suites

Intel[®] Math Kernel Library (Intel[®] MKL)

Linear Algebra	Fast Fourier Transforms	Vector Math	Vector RNGs	Summary Statistics	And More
 BLAS LAPACK ScaLAPACK Sparse BLAS Sparse Solvers Iterative PARDISO* SMP & Cluster 	MultidimensionalFFTW interfacesCluster FFT	 Trigonometric Hyperbolic Exponential Log Power Root 	 Congruential Wichmann-Hill Mersenne Twister Sobol Neiderreiter Non- deterministic 	 Kurtosis Variation coefficient Order statistics Min/max Variance- covariance 	 Splines Interpolation Trust Region Fast Poisson Solver


Automatic performance scaling from the core, multicore, many-core and beyond

- Extracting performance from the computing resources
- Core: vectorization, prefetching, cache utilization
- Multi-Many core (processor/socket) level parallelization
- Multi-socket (node) level parallelization
- Clusters scaling

The latest version of Intel[®] MKL unleashes the performance benefits of Intel architectures

DGEMM Performance Boost by using Intel® MKL vs. ATLAS*

Configuration Info - Versions: Intel® Math Kernel Library (Intel® MKL) 11.3, ATLAS® 3.10.2; Hardware: Intel® Xeon® Processor E5-2699v3, 2 Eighteen-core CPUs (45MB LLC, 2.3GHz), 64GB of RAM; Intel® Core® Processor I7-4770K, Quad-core CPU (8MB LLC, 3.5GHz), 8GB of RAM; Operating System: RHEL 6.4 GA x86_64;

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #201 10804 .

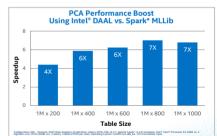
Intel® MKL 11.3

What's New:

- Certified component of the VXF 2016
 Reference platform
- Batch GEMM functions
 - Improve the performance of multiple, simultaneous matrix multiply operations
 - Provides grouping (the same sizes and leading dimensions) and batching across groups
- Sparse BLAS inspector-executor API
 - Matrix structure analysis brings performance benefit for relevant applications (i.e. iterative solvers)
 - Parallel triangular solver
 - Both 0-based and 1-based indexing, rowmajor and column-major ordering
 - Extended BSR support

- GEMMT functions calculate C = A * S * AT, where S is symmetric and/or diagonal
- Counter-based pseudorandom number generators
 - ARS-5 based on the Intel AES-NI instruction set
 - Philox4x32-10
- Intel MKL PARDISO scalability
 - Improved Intel MKL PARDISO and Cluster Sparse Solver scalability on Intel Xeon Phi coprocessors
- Cluster components extension
 - MPI wrappers provide compatibility with most MPI implementations including custom ones
 - Cluster components support on OS X

Intel[®] Data Analytics Acceleration Library


Intel[®] Data Analytics Acceleration Library

• Advanced analytics algorithms supporting all data analysis stages.

DATA SOURCES	Pre-processing	Transformation	Analysis	Modeling	Validation	Decision Making
Business Scientific Engineering Web/Social	 Decompression Filtering Normalization 	 Aggregation Dimension Reduction 	 Summary Statistics Clustering. 	 Machine Learning Parameter Estimation Simulation 	 Hypothesis testing Model errors	 Forecasting Decision Trees Etc.

- Simple to incorporate object-oriented APIs for C++ and Java
- Easy connections to:
 - Popular analytics platforms (Hadoop, Spark)
 - Data sources (SQL, non-SQL, files, in-memory)

Designed and Built by Intel to Delight Data Scientists

gen and worklash used in performance tests may have been optimized to performance only period in expressions. The Performance tests was have been optimized to performance only period in expressions. The Performance tests was a set of the Performance tests was a

the to be in the case in the case of the same of the case is a start of the case of the ca

SOFTWARE AND SERVICES

DAT.

Intel® Data Analytics Acceleration Library List of Algorithms

- Low Order Moments
 - computing min, max, mean, standard deviation, variance, ... for a dataset
- Quantiles
 - splitting observations into equal-sized groups defined by quantile orders
- Correlation matrix and variance
 - The basic tool in understanding statistical dependence among variables
- Correlation distance matrix
 - Measuring pairwise distance between items
 using correlation distance
- Cosine distance matrix
 - Measuring pairwise distance using cosine distance
- Data transformation through matrix decomposition
 - Supports Cholesky, QR, and SVD decomposition algorithms

- Outlier detection
 - Identifying observations that are abnormally distant from typical distribution of other observations
- Association rules mining Also known as "shopping basket mining"
 - Detecting co-occurrence patterns
- Linear regression
 - The simplest regression method
- Classification
 - Building a model to assign items into different labeled groups
- Clustering
 - Grouping data into unlabeled groups uisng 2 algorithms: K-Means and "EM for GMM"

Intel[®] Parallel Studio XE 2016 tools

Intel® VTune[™] Amplifier XE Performance Profiler Intel® Inspector XE Memory & Thread Debugger Intel® Advisor XE Vectorization Optimization and Thread Prototyping

Intel[®] Xeon[®] and Intel[®] Xeon Phi[™]

Intel[®] VTune[™] Amplifier XE

Intel® VTune[™] Amplifier Performance Profiler

Get Faster Code Faster with accurate data & meaningful analysis

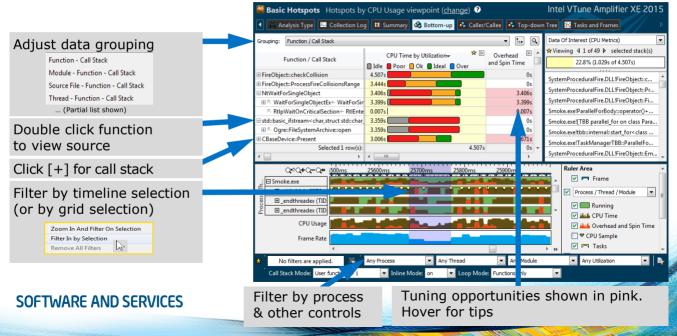
- Accurate CPU, GPU and threading data
- OpenMP region efficiency analysis
- Powerful data analysis & filtering
- Data displayed on the source code
- Easy set-up, no special compiles

rouping: Function / Call Stack			~	L. Q.	*	Data Of	Interest (CPU Metrics)	
rooping. Tarconty can stark	1	CPU Timew		*			ng 4 1 of 56 ⊮ selected :	tack(s)
Function / Call Stack	-		Spin	Overhead			26.6% (2.038s of 7.650s)
Punction/ Call Stack		Ellective finite by oblization -		Overhead	1			
		📒 Ok 📕 Ideal 📕 Over	Time			SystemProceduralFireion - fireobject.cpp		
FireObject:checkCollision	7.650s		0;		8	System	ProceduralFire fireobject.	cop:1459
func@0x1000e190	3.318s		2.020s				ProceduralFire fireobject.	
FireObject::ProcessFireCollisionsRang			0s			-	exelParallelFmanagertbb.	
■ ▷ FireObject:FireCollisionCallback			05	(
■ ^C FireObject:EmitterCollisionChec			05		k.		exel[TBB parall parallel_	
func@0x7545a064 Selected 1 rowi	3.811s	7.65	0.675s		s s v		exeltbb::intern parallel_f	
Selected 1 row(0	7.65	Os Os	(5 ~	Smoke.	.exe!TaskMananagertbb.c	pp:606
	2.0				,	C.m.m	Designation (Constitute	
Q*Q+Q=Q#	31.5s 32s	32.5s 33s 33.5s	345	34.5s	355		Thread	~
Frame Rate							Running	
rrame nate			· · ·				CPU Time	
wWinMainCRTStartup (TID: 3496)	an a second at the last	ATALA COMPANY STATEMENT	1 10 1 1 1	1 11	1 1	· •	Spin and Overh	and Time
func@0x7854345e (TID: 9332)		ALVER AND	1/06-0	161111	1011	61 C	CPU Sample	eau nine
func@0x7854345e (TID: 9332) func@0x7854345e (TID: 12704)	in de la companya de	in she data in	141774	1.100	201		V PR Tasks	
func@0x7854345e (TID: 10792)		- LI I I LIVI I MAN	1 Martin	STO OF	10.0	11 ~		
							🗹 CPU Usage	
CPU Usage	A # 8 A	and the second second	a di kana di ka	الاختلاد الشدا			Auf CPU Time	

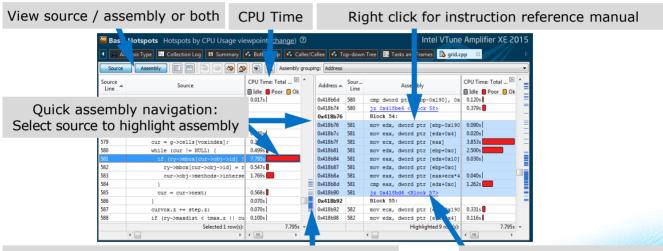
http://intel.ly/vtune-amplifier-xe

Collecting data Intel® VTune™ Amplifier

Software Collector	Hardware Collector			
Uses OS interrupts	Uses the on chip Performance Monitoring Unit (PMU)			
Collects from a single process tree	Collect system wide or from a single process tree.			
~10ms default resolution	~1ms default resolution (finer granularity - finds small functions)			
Either an Intel [®] or a compatible processor	Requires a genuine Intel [®] processor for collection			
Call stacks show calling sequence	Optionally collect call stacks			
Works in virtual environments	Works in a VM only when supported by the VM (e.g., vSphere*, KVM)			
No driver required	 Easy to install on Windows Linux requires root (or use default perf driver without stacks) 			

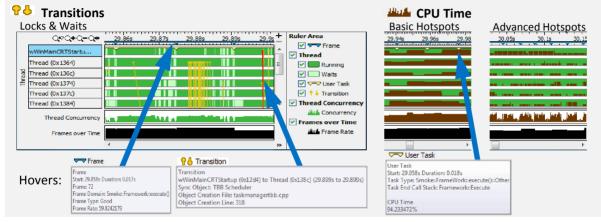

No special recompiles - C, C++, C#, Fortran, Java, Assembly

A rich set of performance data Intel® VTune[™] Amplifier


Software Collector	Hardware Collector
Basic Hotspots Which functions use the most time?	Advanced Hotspots Which functions use the most time? Where to inline? – Statistical call counts
Concurrency Tune parallelism. Colors show number of cores used.	General Exploration Where is the biggest opportunity? Cache misses? Branch mispredictions?
Locks and Waits Tune the #1 cause of slow threaded performance: - waiting with idle cores.	Advanced Analysis Dig deep to tune access contention, etc.
Any IA86 processor, any VM, no driver	Higher res., lower overhead, system wide

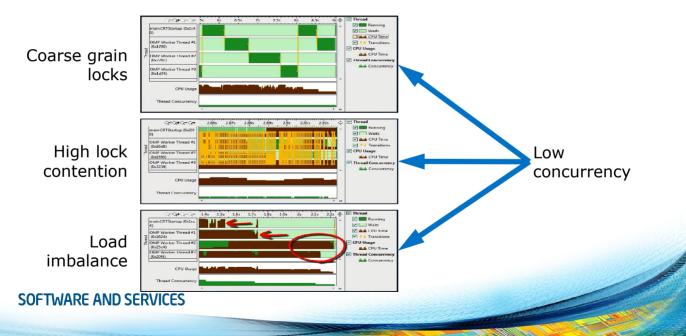
No special recompiles - C, C++, C#, Fortran, Java, Assembly

Find answers fast Intel[®] VTune[™] Amplifier


Profile data on source / assembly Intel[®] VTune[™] Amplifier

Scroll Bar "Heat Map" is an overview of hot spots

Click jump to scroll assembly


Thread behavior timeline Intel[®] VTune[™] Amplifier

Mark Timeline

• Optional: Add a mark during collection

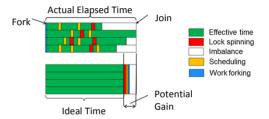
Parallel performance issues Intel[®] VTune[™] Amplifier

OpenMP analysis Intel® VTune™ Amplifier

Fast Answers: Is my OpenMP scalable? How much faster could it be?

1)	OpenMP Analysis. Collection Time: 14.490 Serial Time (outside any parallel region): 4.0205 (27.7%)	
1	Serial Time of your application is high. It directly impacts application Elapsed Time and scalability. Explore options for parallelizati microarchitecture tuning of the serial part of the application.	on, algorithm or
	⊗ Parallel Region Time: [®] 10.469s (72.3%)	
	Estimated Ideal Time: 07.115s (49.1%)	
2)	Potential Gain: 23.354s (23.1%)	
	The time wasted on load imbalance or parallel work arrangement is significant and negatively impacts the application perforr scalability. Explore OpenMP regions with the highest metric values. Make sure the workload of the regions is enough and th	
3) 🕨 🤇	💿 Top OpenMP Regions by Potential Gain 🐚	
	This section lists OpenMP regions with the highest potential for performance improvement. The Potential Gain metric shows the ela could be saved if the region was optimized to have no load imbalance assuming no runtime overhead.	psed time that
	OpenMP Region Potential Gain [©] (%) [©] Elap	sed Time 💿
	conj_grad_\$omp\$parallel:24@/home/vtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg.f:514:695 3.294s 22.7%	10.208s
4) V	MAIN\$omp\$parallel:24@/home/vtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cg.f:185:231 0.059s 0.4%	0.260s

The summary view shown above gives fast answers to four important OpenMP tuning questions:


- 1) Is the serial time of my application significant enough to prevent scaling?
- 2) How much performance can be gained by tuning OpenMP?
- 3) Which OpenMP regions / loops / barriers will benefit most from tuning?

4) What are the inefficiencies with each region? (click the link to see details)

OpenMP analysis Intel[®] VTune[™] Amplifier

Focus on what's important

- What region is inefficient?
- Is the potential gain worth it?
- Why is it inefficient? Imbalance? Scheduling? Lock spinning?
- Intel® Xeon Phi[™] systems supported

Imbalaı	nce	Lock	Fork	Sch	nedulin	g	Gain							
Advanced Hotspots		ts v i v poir :t Analys		je) (😵 Bottor	ni No		lee 🔺 T	op-down 1	free 🛃 I	Platform	Intel VTune A	Amplifi	
Grouping: OpenMP Region / Fun	icti. ta	lok One	nMP Poten	tial Gain			OpenMP D		Number			CPU Time	~	\$. Q. ≶ ★≪
OpenMP Region / Function / Call Stack	Imbalance	Lock Contention			Reduction	Other	Potential Gain (% of Colle	Elapsed Time	of OpenMP threads	Instance Count	Effective Time by	Utilization	Spin 🗵 Time	Overhead Dime
■ conj_grad_\$omp\$parallel:24@	3.944s	0s				0.010s	34.7%				172.963s		92.219s	0.084s
⊞ MAIN_\$omp\$parallel:24@/h	0.086s	0s	Os	0s	0s	0.000s	0.8%	0.286s	24	1	4.819s		2.006s	Os
[Serial - outside any region]						0s	0.0%	0.012s			0.045s		0.091s	0.003s
■ MAIN_\$omp\$parallel:24@/h	0.000s	Os	Os	Os	0s	0s	0.0%	0.001s	24	75	0.004s		0.016s	Os
Selected 1 row(s):								11.095s		76		172.963s	92.219s	0.084s
< >	<													>

Potential

Results comparison Intel[®] VTune[™] Amplifier

- Quickly identify cause of regressions.
 - Run a command line analysis daily
 - Identify the function responsible so you know who to alert
- Compare 2 optimizations What improved?
- Compare 2 systems What didn't speed up as much?

Grouping: Function / Call Stack					•	
Function / Call Stack	CPU Time:Difference	Module	Module CPU Time:r007hs 🛠 CPU T			
■ FireObject::checkCollision	4.850s	SystemProceduralFire.DLL	6.281s	1.431s		
Image: Barrier Herrichten Bertreichnen B	4.644s	SystemProceduralFire.DLL	5.643s	0.999s		
⊞ dllStopPlugin	3.765s	RenderSystem_Direct3D9.DLL	9.184s	5.419s		

Linux* improvements Intel[®] VTune[™] Amplifier

Previously added in 2015:

Auto-rebuild Intel EBS driver

- Does advanced analysis stop working when an OS update is installed?
- Do you have to ask IT to rebuild the driver?
- No longer! Just setup the driver to auto-rebuild when the OS is updated.

Auto-disable NMI watchdog

- Tired of turning off NMI watchdog to run advanced EBS profiling?
- Now you don't have to. We turn it off, then put it back the way it was.

Added in 2016

- Perf can collect stacks
- Use pre-installed perf driver
 - Intel EBS driver provides additional features not available in perf:
 - Uncore events
 - Multiple precise events
 - New events for the latest processors, even on an older OS

Easier access to the on-chip PMU for advanced performance profiling SOFTWARE AND SERVICES

Command line interface Intel[®] VTune[™] Amplifier

- Command line tool amplxe-cl
 - Windows:

C:\Program Files (x86)\Intel\VTune Amplifier XE \bin[32|64]\amplxe-cl.exe

• Linux:

/opt/intel/vtune_amplifier_xe/bin[32|64]/amplxe-cl

- Help: amplxe-cl -help
- Use UI to setup
 - 1) Configure analysis in UI
 - 2) Press "Command Line..." button
 - 3) Copy & paste command

Great for regression analysis – send results file to developer Command line results can also be opened in the UI

Interactive remote data collection Intel[®] VTune[™] Amplifier

- Interactive analysis
 - Configure SSH to a remote Linux* target
 - 2) Choose and run analysis with the GUI

Command line analysis

- Run command line remotely on Windows* or Linux* target
- 2) Copy results back to host and open in GUI

💹 Choose Target and Analysis Ty	VTune Amplifier XE 2016				
🔄 🕀 Analysis Target 🕺 Analysis Type					
local important (SSH) intel Xeon Phi coprocessor (native)	Launch Application Specify and configure ye		1		Choose Analysis
Intel Xeon Phi coprocessor (host launch)	to execute. Press F1 for r	🔯 Binary/Symbol Search			
	Application:	C:\Test Case	s for AXE∖Sm		🔯 Source Search
	Application parameters:		✓ M	odify	

Conveniently use your local UI to analyze remote systems

Intel[®] Inspector XE

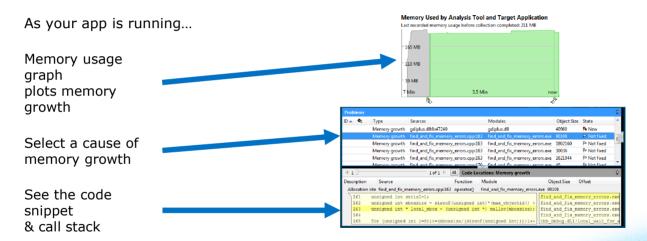
Intel[®] Inspector XE – Memory & Thread Debugger

Find & debug memory & threading errors

- Correctness tools increase ROI By 12%-21%
 - Errors found earlier are less expensive to fix
 - Several studies, ROI% varies, but earlier is cheaper
- Diagnosing some errors can take months
 - Races & deadlocks not easily reproduced
 - Memory errors can be hard to find without a tool
- Debugger integration speeds diagnosis
 - · Breakpoint set just before the problem
 - Examine variables & threads with the debugger

Debugger Breakpoints

http://intel.ly/inspector-xe


¹ Cost Factors – Square Project Analysis

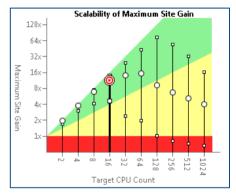
CERT: U.S. Computer Emergency Readiness Team, and Carnegie Mellon CyLab NIST: National Institute of Standards & Technology : Square Project Results

Diagnose in hours instead of months

Memory growth diagnostics Intel® Inspector XE

Speed diagnosis of difficult to find heap errors

Intel[®] Advisor XE


Intel[®] Advisor XE

Have you:

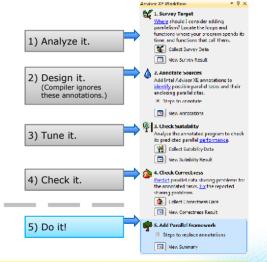
- Threaded an app, but seen little benefit?
- Hit a "scalability barrier"?
- Delayed release due to sync. errors?

Data Driven Threading Design:

- Quickly prototype multiple options
- Project scaling on larger systems
- Find synchronization errors before implementing threading
- Design without disrupting development

http://intel.ly/advisor-xe

Add Parallelism with Less Effort, Less Risk and More Impact


Thread Prototyping Intel[®] Advisor XE

Design Parallelism

- No disruption to regular development
- All test cases continue to work

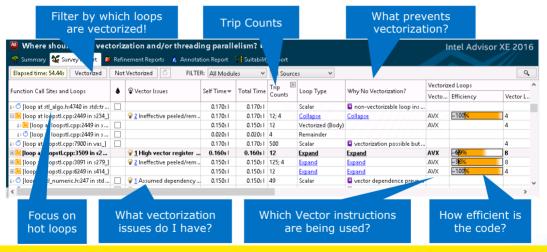
Implement Parallelism

 Tune and debug the design before you implement it

Less Effort, Less Risk, More Impact

Vectorization Optimization Intel[®] Advisor XE

Have you:


- Recompiled for AVX2 with little gain
- Wondered where to vectorize?
- Recoded intrinsics for new arch.?
- Struggled with compiler reports?

Data driven vectorization:

- What vectorization will pay off most?
- What's blocking vectorization? Why?
- Are my loops vector friendly?
- Will reorganizing data increase performance?
- Is it safe to use pragma omp simd?

🚇 Where should I add vectorization and/or threading parallelism? 🗖										
Refi	nement Reports 💧 Annota	tion Repor	t 🤎 Sui	ability R	eport					
Not	Vectorized 6 FILTE	R: All Mo	dules	¥ ,4	II Sources	~			٩	
	Overselen	Self	Total	Trip 🚿	np 🔊 . 📼		Vectorized Loops			
•	W Vector Issues	Time▼	Time	Counts	Loop Type	wny ivo vectorization:	Vecto	Efficiency		
		0.170s l	0.170s I		Scalar	non-vectorizable loop ins				
	💡 2 Ineffective peeled/rem	0.170s I	0.170s I	12; 4	Collapse	Collapse	AVX	~100%		
		0.150s I	0.150s I	12	Vectorized (B		AVX			
		0.020s I	0.020s1	4	Remainder					
		0.170s I	0.170s I	500	Scalar	vectorization possible but				
	♀ <u>1</u> High vector register	0.160s	0.160s	12	Expand	Expand	AVX	~6 <mark>9%</mark>		
	Refi	Refinement Report: Annota Not Vectorized FILTE Image: State of the state of	Refinement Reports Annotation Report Not Vectorized FILTER: All Mo Image: Constraint of the second	Refinement Reports ▲ Annotation Report Suit Not Vectorized ✓ FILTER: All Modules ● Vector Issues Self 0 Vector Issues 170e1 0 Vector Issues 170e1 0 Vector Issues 170e1 0 Vector Issues 150e1 0 0.170e1 0.170e1 0 0.020e1 0.020e1	Refinement Reports Annotation Report Suitability R Not Vectorized Fill TER: All Modules Annotation Image: Constraint Constr	Refinement Report ▲ Annotation Report Suitability Report Not Vectorized FILTER: All Modules ✓ All Sources ♥ Vector Issues Seffer Total Trap Total Total College ♥ Vector Issues 0.176:1 0.176:1 0.176:1 College College ● 107:05 0.170:1 0.176:1 0.176:1 College College ● 2020:1 0.170:1 0.176:1 0.176:1 12.4 College ● 0.020:1 0.276:1 0.170:1 12.4 College College	Refinement Reports ▲ Annotation Report Suitability Report Not Vectorized FILTER: All Modules ▲ All Sources ✓ ● Vector Issues Self strain Time Counts Loop Type Why No Vectorization? ● Vector Issues 01706:1 01706:1 01706:1 Galarse Counts ● Q Ineffective peeled/rem. 01706:1 01706:1 24 Collinges Collinges ● Q Ineffective peeled/rem. 01706:1 01706:1 24 Collinges Collinges ● Q Type Ineffective peeled/rem. 01706:1 01706:1 24 Collinges Collinges ● Q Type Ineffective peeled/rem. 01706:1 01706:1 24 Collinges Collinges ● Q Type Ineffective peeled/rem. 01706:1 01706:1 Collinges Collinges Collinges ● Q Type Ineffective peeled/rem. 01706:1 01706:1 Collinges Collinges Collinges	Refirement Report Annotation Report Sutability Report Not Vectorized FILTER: All Modules All Sources • Vector Issues Seffet Total Trip Why No Vectorization? Vector • Vector Issues Seffet Total Trip Diffet non-vectorization? Vectorication? • Plane 0.170:1 0.170:1 Scalar non-vectorizable loop ins AVX • Softei 0.150:1 0.170:1 12.4 Collapsize Collapsize AVX • Softei 0.150:1 0.120:1 12.4 Celapsize AVX • Collapsize 0.200:1 0.120:1 2.4 Celapsize AVX • Collapsize 0.200:1 0.200:1 2.0 Celapsize AVX	Refinement Reports Annotation Report Suitability Report Not Vectorized Fill.TER: All Modules All Sources Vectorization? Vectorization? Image: Source Stress Str	

High impact vectorization Intel[®] Advisor XE

Get Faster Code Faster! Intel® Advisor XE Vectorization Optimization and Thread Prototyping

Intel[®] Parallel Studio XE 2016 cluster tools

Intel[®] MPI Library Intel[®] Trace Analyzer and Collector

Intel[®] Xeon[®] and Intel[®] Xeon Phi[™]

Intel[®] MPI Library Overview

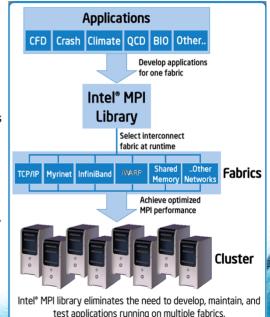
Optimized MPI application performance

- Application-specific tuning
- Automatic tuning

Lower latency and multi-vendor interoperability

- Industry leading latency
- Performance optimized support for the latest OFED capabilities through DAPL 2.0

Faster MPI communication


Optimized collectives

Sustainable scalability up to 340K cores

 Native InfiniBand* interface support allows for lower latencies, higher bandwidth, and reduced memory requirements

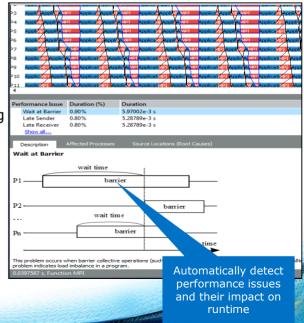
More robust MPI applications

 Seamless interoperability with Intel® Trace Analyzer and Collector
 SOFTWARE AND SERVICES

Intel[®] MPI Library

What's New:

- Added support for OpenFabrics Interface* (OFI*) v1.0 API
- Added support for Fortran* 2008
- Updated the default value for I_MPI_FABRICS_LIST
- Added brand new Troubleshooting chapter to the Intel® MPI Library User's Guide
- Added new application-specific features in the Automatic Tuner and Hydra process manager
- Added support for the MPI_Pcontrol feature for improved internal statistics
- Increased the possible space for MPI_TAG
- Changed the default product installation directories
- Various bug fixes for general stability and performance
- Note: Support in Intel Fortran compiler for *draft* Fortran 2015 feature for interoperability with C specifically helps with MPI-3.


Intel[®] Trace Analyzer and Collector Intel[®] MPI Library

Intel[®] Trace Analyzer and Collector helps the developer:

- Visualize and understand parallel application behavior
- Evaluate profiling statistics and load balancing
- Identify communication hotspots

Features

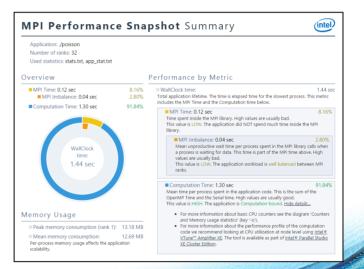
- Event-based approach
- Low overhead
- Excellent scalability
- Powerful aggregation and filtering functions
- Idealizer

Intel[®] Trace Analyzer and Collector Intel[®] MPI Library

What's new:

- Addition of MPI Performance Snapshot
 - Lightweight scalable MPI+OpenMP profiler
- Support for collection of CPI ad Memory Bound performance metrics
- Addition of new application summary details in the HTML report
- New command-line options
- The mps tool for statistical analysis is now available on Windows*
- Various bug fixes for general stability and performance

MPI Performance Snapshot Intel[®] MPI Library


Lightweight – Low overhead profiling up to 32K Ranks

Scalability- Performance variation at scale can be detected sooner

Identifying Key Metrics – Shows PAPI counters and MPI/OpenMP* imbalances

