
Intel® Xeon Phi™
programming

September 22nd-23rd 2015

University of Copenhagen,
Denmark

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core, VTune, and Cilk are
trademarks of Intel Corporation in the U.S. and other countries.

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Intel® software tools overview

Intel® Xeon® and Intel® Xeon Phi™

Create Faster Code…Faster

Intel® Parallel Studio XE

• Design, build, verify and tune

• C++, C, Fortran and Java*

Highlights from what’s new for “2016”
edition

• Intel® Data Analytics Acceleration Library

• Vectorization Advisor:
Custom Analysis and Advice

• MPI Performance Snapshot: Scalable profiling

• Support for the latest Standards, Operating
Systems and Processors

http://intel.ly/perf-tools

http://intel.ly/perf-tools

Intel® Parallel Studio XE 2016 editions

Composer Edition Professional Edition Cluster Edition

What it does:

Build fast code using
industry leading
compilers and libraries
including new data
analytics library

Adds analysis tools Adds MPI cluster
tools

What’s included:

• C++ and/or Fortran
compilers

• Performance libraries
• Parallel models

Composer edition +
• Performance profiling
• Threading

design/prototyping &
vectorization advisor

• Memory & thread
debugger

• Data analytics acceleration
library

Professional edition +
• MPI cluster

communications
library

• MPI error checking
and tuning

Intel® Parallel Studio XE 2016 compilers

Intel® Xeon® and Intel® Xeon Phi™

Intel® C/C++ and Fortran Compilers

What’s New:

• More of C++14, generic lambdas, member initializers and aggregates

• More of C11, _Static_assert, _Generic, _Noreturn, and more

• OpenMP 4.0 C++ User Defined Reductions, Fortran Array Reductions

• OpenMP 4.1 asynchronous offloading, simdlen, simd ordered

• F2008 Submodules, IMPURE ELEMENTAL Functions

• F2015 TYPE(*), DIMENSION(..), RANK intrinsic, relaxed restrictions on

interoperable dummy arguments

• Significant improvement in alignment analysis, vectorization robustness

• Much improved Neighboring Gather optimization

Performance without compromise
Intel® C++ and Fortran Compilers on Windows*, Linux* & OS X*

1.00 1.001.30

1.51

1.00 1.00
1.24

1.51

Boost C++ application performance
on Windows* & Linux* using Intel® C++ Compiler

(higher is better)

Windows Linux Windows Linux
Estimated SPECfp®_rate_base2006 Estimated SPECint®_rate_base2006

Configuration: Windows hardware: HP DL320e Gen8 v2 (single-socket server) with Intel(R) Xeon(R) CPU E3-1280 v3 @ 3.60GHz, 32 GB RAM, HyperThreading is off;
Linux hardware: HP BL460c Gen9 with Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, 256 GB RAM, HyperThreading is on. Software: Intel C++ compiler 16.0, Microsoft (R)
C/C++ Optimizing Compiler Version 19.00.23026 for x86/x64, GCC 5.2.0. Linux OS: Red Hat Enterprise Linux Server release 7.1 (Maipo), kernel 3.10.0-229.el7.x86_64.
Windows OS: Windows 8.1. SPEC* Benchmark (www.spec.org).

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice. Notice revision #20110804 .

V
is

u
a

l
C

+
+

*
2

0
1

5

In
te

l
1

6
.0

V
is

u
a

l
C

+
+

*
2

0
1

5

In
te

l
C

+
+

1

6
.0

G
C

C

5
.2

.0

In
te

l
1

6
.0

G
C

C

5
.2

.0

In
te

l
C

+
+

1

6
.0

Floating Point Integer

Relative geomean performance, SPEC* benchmark - higher is better

0.00

1.001.00 1.07

1.33

1.09

1.88

1.32

1.64

Boost Fortran application performance
on Windows* & Linux* using Intel® Fortran Compiler

(higher is better)

Configuration: Hardware: Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz, HyperThreading is off, 16 GB RAM. Software: Intel Fortran compiler 16.0, Absoft*15.0.1,. PGI
Fortran* 15.3, Open64* 4.5.2, gFortran* 5.1.0. Linux OS: Red Hat Enterprise Linux Server release 7.0 (Maipo), kernel 3.10.0-123.el7.x86_64. Windows OS: Windows 7,
Service pack 1. Polyhedron Fortran Benchmark (www.fortran.uk). Windows compiler switches: Absoft: -m64 -O5 -speed_math=10 -fast_math -march=core -xINTEGER
-stack:0x80000000. Intel® Fortran compiler: /fast /Qparallel /link /stack:64000000. PGI Fortran: -fastsse -Munroll=n:4 -Mipa=fast,inline -Mconcur=numa.
Linux compiler switches: Absoft -m64 -mavx -O5 -speed_math=10 -march=core -xINTEGER. Gfortran: -Ofast -mfpmath=sse -flto -march=native -funroll-loops -ftree-
parallelize-loops=4. Intel Fortran compiler: -fast –parallel. PGI Fortran: -fast -Mipa=fast,inline -Msmartalloc -Mfprelaxed -Mstack_arrays -Mconcur=bind. Open64: -
march=bdver1 -mavx -mno-fma4 -Ofast -mso –apo.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice. Notice revision #20110804 .

A
b

so
ft

*
1

5
.0

.1

P
G

I
F

o
rt

ra
n

*
1

5
.3

P
G

I
F

o
rt

ra
n

*
1

5
.3

O
p

e
n

6
4

*
4

.5
.2

A
b

so
ft

*
1

5
.0

.1

In
te

l
F

o
rt

ra
n

 1
6

.0

In
te

l
F

o
rt

ra
n

 1
6

.0

Windows Linux
Relative geomean performance, Polyhedron* benchmark– higher is better

g
F

o
rt

ra
n

*
5

.1
.0

• Two lines added that take full
advantage of both SSE or AVX

• Code portable between compilers

Impressive performance improvement
Intel® Compiler OpenMP* 4.0 Explicit Vectorization

typedef float complex fcomplex;
const uint32_t max_iter = 3000;
#pragma omp declare simd uniform(max_iter), simdlen(16)
uint32_t mandel(fcomplex c, uint32_t max_iter)
{

uint32_t count = 1; fcomplex z = c;
while ((cabsf(z) < 2.0f) && (count < max_iter)) {

z = z * z + c; count++;
}
return count;

}
uint32_t count[ImageWidth][ImageHeight];
…… …. …….

for (int32_t y = 0; y < ImageHeight; ++y) {
float c_im = max_imag - y * imag_factor;

#pragma omp simd safelen(16)
for (int32_t x = 0; x < ImageWidth; ++x) {
fcomplex in_vals_tmp = (min_real + x * real_factor) + (c_im * 1.0iF);
count[y][x] = mandel(in_vals_tmp, max_iter);

}
}

Configuration: Intel® Xeon® CPU E3-1270 @ 3.50 GHz Haswell system (4 cores with Hyper-Threading On), running at 3.50GHz, with 32.0GB
RAM, L1 Cache 256KB, L2 Cache 1.0MB, L3 Cache 8.0MB, 64-bit Windows* Server 2012 R2 Datacenter. Compiler options:, SSE4.2: –O3 –
Qopenmp -simd –QxSSE4.2 or AVX2: -O3 –Qopenmp –simd -QxCORE-AVX2. For more information go to http://www.intel.com/performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. * Other brands and
names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice. Notice revision #20110804 .

1

2,09

5,28

Mandelbrot calculation speedup
Normalized performance data – higher is better

Serial SSE 4.2 Core-AVX2

Impressive performance improvement
Intel C++ Explicit Vectorization using OpenMP* 4.0 SIMD or Intel® Cilk™ Plus

Configuration: Intel® Xeon® CPU E3-1270 @ 3.50 GHz Haswell system (4 cores with Hyper-Threading On), running at 3.50GHz, with 32.0GB RAM, L1 Cache 256KB, L2 Cache 1.0MB, L3 Cache 8.0MB, 64-bit Windows* Server 2012 R2 Datacenter. Compiler
options:, SSE4.2: –O3 –Qopenmp -simd –QxSSE4.2 or AVX2: -O3 –Qopenmp –simd -QxCORE-AVX2. For more information go to http://www.intel.com/performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice
revision #20110804 .

1,00 1,00 1,00 1,00 1,00 1,00 1,00

3,05
3,49

2,47
2,09

3,05

4,00

2,96

5,32

4,47
4,16

5,28

4,10

6,73

4,93

AoBench Collision
Detection

Grassshader Mandelbrot Libor RTM-stencil Geomean

SIMD Speedup on Intel® Xeon® Processor
Normalized performance data – higher is better

Serial SSE4.2 Core-AVX2

Intel® Parallel Studio XE 2016 libraries

Intel® Xeon® and Intel® Xeon Phi™

Intel® Threading Building Blocks
Intel® Integrated Performance Primitives

Intel® Math Kernel Library
Intel® Data Analytics Acceleration Library

Intel® Threading Building Blocks

Intel® Threading Building Blocks
(Intel® TBB)
• Specify tasks instead of manipulating threads

• Intel® TBB maps your logical tasks onto threads with full support for nested
parallelism

• Targets threading for scalable performance

• Uses proven, efficient parallel patterns

• Uses work stealing to support the load balance of unknown execution time for tasks

• Flow graph feature allows developers to easily express dependency and data flow
graphs

• Has high level parallel algorithms and concurrent containers and low level
building blocks like scalable memory allocator, locks and atomic operations

• Open-sourced and license versions available on Linux, Windows, Mac OSX,
Android

Commercial support for Intel® Atom™, Core™, Xeon® processors, and for Intel®

Xeon Phi™ coprocessors

Rich Feature Set for Parallelism
Intel® Threading Building Blocks
(Intel® TBB)

Generic Parallel
Algorithms

Efficient scalable way to
exploit the power of
multi-core without

having to start from
scratch.

Concurrent Containers

Concurrent access, and a scalable alternative to
containers that are externally locked for thread-safety

Thread Local Storage

Efficient
implementation for
unlimited number of
thread-local variables

Task Scheduler

Sophisticated work scheduling engine that
empowers parallel algorithms and the flow graph

Threads

OS API
wrappers

Timers and
Exceptions

Thread-safe timers
and exception

classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

Synchronization Primitives

Atomic operations, a variety of mutexes with different
properties, condition variables

Flow Graph

A set of classes to
express parallelism

as a graph of
compute

dependencies and/or
data flow

Parallel algorithms and data structures

Threads and synchronization

Memory allocation and task scheduling

Intel® Threading Building Blocks

What’s new:
• Fully supported tbb::task_arena

• Task arenas provide improved control over workload isolation and the
degree of concurrency

• Dynamic replacement of standard memory allocation routines for OS X*

• Utilize the powerful TBB scalable allocator easily on OS X

• Binary files for 64-bit Android* applications were added as part of
the Linux* package

• Improvements to the Flow Graph features

• Check out Flow Graph Designer!

• Several improvements to examples and documentation

Scalability and productivity
Intel® Threading Building Blocks (Intel® TBB)

Intel® Integrated Performance Primitives

Intel® Integrated Performance Primitives
(Intel® IPP)

A software developer’s competitive edge
• Multi-core-ready, computationally intensive and optimized functions for large

dataset problem processing and high performance computing

• Reduces cost and time associated with software development and maintenance

• Developers can focus their efforts only on their application code

• Cross platform support and optimized for current and future processors

Unleash your potential through access to silicon
• Yields the best system performance for the target processor

• Takes into account memory bandwidth and caching behavior of the target
environment

• Automatic dispatching feature picks the flow optimized for that specific
architecture without changing the code

Intel® IPP Domain Applications

Image
Processing/Color

Conversion

• Healthcare
(including medical
imaging)

• Special effects for
photo/video
processing

• Object compression/
decompression

• Image scaling,
image combination

• Noise reduction
• Optical correction

Computer Vision

• Digital Surveillance
• Industrial/Machine

Control
• Image Recognition
• Bio-metric

identification
• Remote operation of

equipment and
gesture
interpretation

• Automated sorting
of materials or
objects

Data Compression

• Internet portal data
center

• Data storage
centers

• Databases
• Enterprise data

management

Signal Processing

• Telecommunications
• Energy
• Recording,

enhancement and
playback of audio
and non-audio
signals

• Echo cancellation :
filtering,
equalization and
emphasis

• Simulation of
environment or
acoustics

• Games involving
sophisticated audio
content or effects

Cryptography

• Internet portal data
center

• Information Security
• Telecommunications
• Enterprise data

management
• Transaction security
• Smart card

interfaces
• ID verification
• Copy protection
• Electronic signature

Intel® Integrated Performance Primitives

What’s new:
• Additional optimization for Intel® Quark™, Intel® Atom™, and the processors

with Intel® AVX2 instructions support

• Intel® Quark™: data compression, cryptography optimization

• Intel® Atom™: computation vision, image processing optimization

• Intel® AVX2: computer vision, image processing optimization

• New APIs to support external threading

• Improved CPU dispatcher

• Auto-initialization. No need for the CPU initialization call in static libraries.

• Code dispatching based on CPU features

• Optimized cryptography functions to support SM2/SM3/SM4 algorithm

• Custom dynamic library building tool

• New APIs to support external memory allocation

Intel® Math Kernel Library

Intel® Math Kernel Library (Intel® MKL)

• Speeds math processing in scientific,
engineering and financial
applications

• Functionality for dense and sparse
linear algebra (BLAS, LAPACK,
PARDISO), FFTs, vector math,
summary statistics and more

• Provides scientific programmers and
domain scientists
• Interfaces to de-facto standard APIs

from C++, Fortran, C#, Python and
more

• Support for Linux*, Windows* and OS
X* operating systems

• Extract great performance with
minimal effort

• Unleash the performance of Intel®

Core, Intel® Xeon and Intel® Xeon
Phi™ product families
• Optimized for single core vectorization

and cache utilization

• Coupled with automatic OpenMP*-
based parallelism for multi-core,
manycore and coprocessors

• Scales to PetaFlop (1015 floating-point
operations/second) clusters and
beyond

• Included in Intel® Parallel Studio XE
and Intel® System Studio Suites

Intel® Math Kernel Library (Intel® MKL)

Linear Algebra

• BLAS
• LAPACK
• ScaLAPACK
• Sparse BLAS
• Sparse Solvers
• Iterative
• PARDISO* SMP &

Cluster

Fast Fourier
Transforms

• Multidimensional
• FFTW interfaces
• Cluster FFT

Vector Math

• Trigonometric
• Hyperbolic
• Exponential
• Log
• Power
• Root

Vector RNGs

• Congruential
• Wichmann-Hill
• Mersenne

Twister
• Sobol
• Neiderreiter
• Non-

deterministic

Summary
Statistics

• Kurtosis
• Variation

coefficient
• Order statistics
• Min/max
• Variance-

covariance

And More…

• Splines
• Interpolation
• Trust Region
• Fast Poisson

Solver

Automatic performance scaling from the core,
multicore, many-core and beyond

• Extracting performance
from the computing
resources

‒ Core: vectorization,
prefetching, cache utilization

‒ Multi-Many core
(processor/socket) level
parallelization

‒ Multi-socket (node) level
parallelization

‒ Clusters scaling

MKL
+

OpenMP

MKL
+

Intel® MPI

Sequential
Intel® MKL

Many Core
Intel® Xeon PhiTM

Coprocessor

The latest version of Intel® MKL unleashes the
performance benefits of Intel architectures

Intel® MKL 11.3

What’s New:
• Certified component of the VXF 2016

Reference platform

• Batch GEMM functions
• Improve the performance of multiple,

simultaneous matrix multiply operations

• Provides grouping (the same sizes and
leading dimensions) and batching across
groups

• Sparse BLAS inspector-executor API
• Matrix structure analysis brings

performance benefit for relevant
applications (i.e. iterative solvers)

• Parallel triangular solver

• Both 0-based and 1-based indexing, row-
major and column-major ordering

• Extended BSR support

• GEMMT functions calculate C = A * S *
AT, where S is symmetric and/or
diagonal

• Counter-based pseudorandom number
generators

• ARS-5 based on the Intel AES-NI
instruction set

• Philox4x32-10

• Intel MKL PARDISO scalability
• Improved Intel MKL PARDISO and Cluster

Sparse Solver scalability on Intel Xeon Phi
coprocessors

• Cluster components extension
• MPI wrappers provide compatibility with

most MPI implementations including custom
ones

• Cluster components support on OS X

Intel® Data Analytics Acceleration Library

Intel® Data Analytics Acceleration Library

• Advanced analytics algorithms supporting all
data analysis stages.

• Simple to incorporate object-oriented APIs
for C++ and Java

• Easy connections to:

• Popular analytics platforms (Hadoop, Spark)

• Data sources (SQL, non-SQL, files, in-memory)

Business
Scientific
Engineering
Web/Social

Pre-processing

• Decompression
• Filtering
• Normalization

Transformation

• Aggregation
• Dimension

Reduction

Analysis

• Summary
Statistics

• Clustering.

Modeling

• Machine
Learning

• Parameter
Estimation

• Simulation

Validation

• Hypothesis
testing

• Model
errors

Decision Making

• Forecasting
• Decision Trees
• Etc.

Configuration Info - Versions: Intel® Data Analytics Acceleration Library 2016, CDH v5.3.1, Apache Spark* v1.2.0; Hardware: Intel® Xeon® Processor E5-2699 v3, 2
Eighteen-core CPUs (45MB LLC, 2.3GHz), 128GB of RAM per node; Operating System: CentOS 6.6 x86_64. PCA normalized input.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice. Notice revision #20110804 .

4X

6X
6X

7X 7X

0

2

4

6

8

1M x 200 1M x 400 1M x 600 1M x 800 1M x 1000

S
p

e
e

d
u

p

Table Size

PCA Performance Boost
Using Intel® DAAL vs. Spark* MLLib

Designed and
Built by Intel

to
Delight

Data Scientists

Intel® Data Analytics Acceleration Library
List of Algorithms

• Low Order Moments
• computing min, max, mean, standard

deviation, variance, … for a dataset

• Quantiles
• splitting observations into equal-sized

groups defined by quantile orders

• Correlation matrix and variance
• The basic tool in understanding statistical

dependence among variables

• Correlation distance matrix
• Measuring pairwise distance between items

using correlation distance

• Cosine distance matrix
• Measuring pairwise distance using cosine

distance

• Data transformation through matrix
decomposition
• Supports Cholesky, QR, and SVD

decomposition algorithms

• Outlier detection

• Identifying observations that are
abnormally distant from typical
distribution of other observations

• Association rules mining – Also known
as “shopping basket mining”

• Detecting co-occurrence patterns

• Linear regression

• The simplest regression method

• Classification

• Building a model to assign items
into different labeled groups

• Clustering

• Grouping data into unlabeled
groups uisng 2 algorithms: K-
Means and “EM for GMM”

Intel® Parallel Studio XE 2016 tools

Intel® Xeon® and Intel® Xeon Phi™

Intel® VTune™ Amplifier XE Performance Profiler
Intel® Inspector XE Memory & Thread Debugger

Intel® Advisor XE Vectorization Optimization and Thread Prototyping

Intel® VTune™ Amplifier XE

Intel® VTune™ Amplifier Performance
Profiler

Get Faster Code Faster with accurate
data & meaningful analysis

• Accurate CPU, GPU and threading
data

• OpenMP region efficiency analysis

• Powerful data analysis & filtering

• Data displayed on the source code

• Easy set-up, no special compiles http://intel.ly/vtune-amplifier-xe

http://intel.ly/vtune-amplifier-xe

Collecting data
Intel® VTune™ Amplifier

Software Collector Hardware Collector

Uses OS interrupts Uses the on chip Performance Monitoring Unit (PMU)

Collects from a single process tree Collect system wide or from a single process tree.

~10ms default resolution ~1ms default resolution (finer granularity - finds small functions)

Either an Intel® or a compatible processor Requires a genuine Intel® processor for collection

Call stacks show calling sequence Optionally collect call stacks

Works in virtual environments
Works in a VM only when supported by the VM

(e.g., vSphere*, KVM)

No driver required Requires a driver

- Easy to install on Windows

- Linux requires root

(or use default perf driver without stacks)

No special recompiles - C, C++, C#, Fortran, Java, Assembly

A rich set of performance data
Intel® VTune™ Amplifier

Software Collector Hardware Collector

Basic Hotspots
Which functions use the most time?

Advanced Hotspots
Which functions use the most time?
Where to inline? – Statistical call counts

Concurrency
Tune parallelism.
Colors show number of cores used.

General Exploration
Where is the biggest opportunity?
Cache misses? Branch mispredictions?

Locks and Waits
Tune the #1 cause of slow threaded performance:
– waiting with idle cores.

Advanced Analysis
Dig deep to tune access contention, etc.

Any IA86 processor, any VM, no driver Higher res., lower overhead, system wide

No special recompiles - C, C++, C#, Fortran, Java, Assembly

Find answers fast
Intel® VTune™ Amplifier

Double click function
to view source

Adjust data grouping

… (Partial list shown)

Click [+] for call stack

Filter by timeline selection
(or by grid selection)

Filter by process
& other controls

Tuning opportunities shown in pink.
Hover for tips

Profile data on source / assembly
Intel® VTune™ Amplifier

Right click for instruction reference manualView source / assembly or both CPU Time

Click jump to scroll assembly

Quick assembly navigation:
Select source to highlight assembly

Scroll Bar “Heat Map” is an overview of hot spots

• Optional: Use API to mark frames and user tasks

• Optional: Add a mark during collection

Thread behavior timeline
Intel® VTune™ Amplifier

CPU Time

Hovers:

Transitions
Basic Hotspots Advanced HotspotsLocks & Waits

Parallel performance issues
Intel® VTune™ Amplifier

Coarse grain
locks

High lock
contention

Load
imbalance

Low
concurrency

OpenMP analysis
Intel® VTune™ Amplifier

The summary view shown above gives fast answers to four important OpenMP tuning questions:

1) Is the serial time of my application significant enough to prevent scaling?

2) How much performance can be gained by tuning OpenMP?

3) Which OpenMP regions / loops / barriers will benefit most from tuning?

4) What are the inefficiencies with each region? (click the link to see details)

Fast Answers: Is my OpenMP scalable? How much faster could it be?

1)

2)

4)

3)

OpenMP analysis
Intel® VTune™ Amplifier

• Focus on what’s important
• What region is inefficient?

• Is the potential gain worth it?

• Why is it inefficient?
Imbalance? Scheduling? Lock spinning?

• Intel® Xeon Phi™ systems supported

Actual Elapsed Time

Ideal Time

Fork Join

Potential
Gain

Potential
GainImbalance Lock SchedulingFork

Results comparison
Intel® VTune™ Amplifier

• Quickly identify cause of regressions.
• Run a command line analysis daily

• Identify the function responsible so you know who to alert

• Compare 2 optimizations – What improved?

• Compare 2 systems – What didn’t speed up as much?

Linux* improvements
Intel® VTune™ Amplifier

Previously added in 2015:
• Auto-rebuild Intel EBS driver

• Does advanced analysis stop
working when an OS update is
installed?

• Do you have to ask IT to rebuild
the driver?

• No longer! Just setup the driver to
auto-rebuild when the OS is
updated.

• Auto-disable NMI watchdog
• Tired of turning off NMI watchdog

to run advanced EBS profiling?
• Now you don’t have to. We turn it

off, then put it back the way it
was.

Added in 2016

• Perf can collect stacks

• Use pre-installed perf driver
• Intel EBS driver provides

additional features not available in
perf:

• Uncore events

• Multiple precise events

• New events for the latest
processors, even on an older
OS

Easier access to the on-chip PMU for advanced performance profiling

Command line interface
Intel® VTune™ Amplifier

• Command line tool amplxe-cl
• Windows:

C:\Program Files (x86)\Intel\VTune Amplifier XE \bin[32|64]\amplxe-cl.exe

• Linux:
/opt/intel/vtune_amplifier_xe/bin[32|64]/amplxe-cl

• Help: amplxe-cl –help

• Use UI to setup
1)Configure analysis in UI
2)Press “Command Line…” button
3)Copy & paste command

Great for regression analysis – send results file to developer
Command line results can also be opened in the UI

Interactive remote data collection
Intel® VTune™ Amplifier

• Interactive analysis
1) Configure SSH to a remote Linux*

target

2) Choose and run analysis with the
GUI

• Command line analysis
1) Run command line remotely on

Windows* or Linux* target

2) Copy results back to host and open
in GUI

Conveniently use your local UI to analyze remote systems

Intel® Inspector XE

Intel® Inspector XE – Memory & Thread
Debugger

Find & debug memory & threading errors

• Correctness tools increase ROI By 12%-21%
• Errors found earlier are less expensive to fix

• Several studies, ROI% varies, but earlier is cheaper

• Diagnosing some errors can take months
• Races & deadlocks not easily reproduced

• Memory errors can be hard to find without a tool

• Debugger integration speeds diagnosis
• Breakpoint set just before the problem

• Examine variables & threads with the debugger

Debugger Breakpoints

Diagnose in hours instead of months
1 Cost Factors – Square Project Analysis

CERT: U.S. Computer Emergency Readiness Team, and Carnegie Mellon CyLab
NIST: National Institute of Standards & Technology : Square Project Results

http://intel.ly/inspector-xe

http://intel.ly/inspector-xe

Memory growth diagnostics
Intel® Inspector XE

Memory usage
graph
plots memory
growth

Select a cause of
memory growth

As your app is running…

See the code
snippet
& call stack

Speed diagnosis of difficult to find heap errors

Intel® Advisor XE

Intel® Advisor XE

Have you:

• Threaded an app, but seen little benefit?

• Hit a “scalability barrier”?

• Delayed release due to sync. errors?

Data Driven Threading Design:

• Quickly prototype multiple options

• Project scaling on larger systems

• Find synchronization errors before implementing
threading

• Design without disrupting development
Add Parallelism with Less Effort,

Less Risk and More Impact

http://intel.ly/advisor-xe

http://intel.ly/advisor-xe

1) Analyze it.

3) Tune it.

4) Check it.

5) Do it!

2) Design it.
(Compiler ignores
these annotations.)

Thread Prototyping
Intel® Advisor XE

Design Parallelism
• No disruption to regular development

• All test cases continue to work

• Tune and debug the design before you
implement it

Less Effort, Less Risk, More Impact

Implement Parallelism

Vectorization Optimization
Intel® Advisor XE

Have you:
• Recompiled for AVX2 with little gain

• Wondered where to vectorize?

• Recoded intrinsics for new arch.?

• Struggled with compiler reports?

Data driven vectorization:
• What vectorization will pay off most?

• What’s blocking vectorization? Why?

• Are my loops vector friendly?

• Will reorganizing data increase
performance?

• Is it safe to use pragma omp simd?

High impact vectorization
Intel® Advisor XE

Filter by which loops
are vectorized!

Focus on
hot loops

What vectorization
issues do I have?

How efficient is
the code?

What prevents
vectorization?

Which Vector instructions
are being used?

Trip Counts

Get Faster Code Faster! Intel® Advisor XE
Vectorization Optimization and Thread Prototyping

Intel® Parallel Studio XE 2016 cluster tools

Intel® Xeon® and Intel® Xeon Phi™

Intel® MPI Library
Intel® Trace Analyzer and Collector

Intel® MPI Library Overview
Optimized MPI application performance

• Application-specific tuning

• Automatic tuning

Lower latency and multi-vendor interoperability

• Industry leading latency

• Performance optimized support for the latest OFED capabilities
through DAPL 2.0

Faster MPI communication

• Optimized collectives

Sustainable scalability up to 340K cores

• Native InfiniBand* interface support allows for lower latencies,
higher bandwidth, and reduced memory requirements

More robust MPI applications

• Seamless interoperability with Intel® Trace Analyzer and
Collector

Intel® MPI Library

What’s New:
• Added support for OpenFabrics Interface* (OFI*) v1.0 API

• Added support for Fortran* 2008

• Updated the default value for I_MPI_FABRICS_LIST

• Added brand new Troubleshooting chapter to the Intel® MPI Library User's Guide

• Added new application-specific features in the Automatic Tuner and Hydra
process manager

• Added support for the MPI_Pcontrol feature for improved internal statistics

• Increased the possible space for MPI_TAG

• Changed the default product installation directories

• Various bug fixes for general stability and performance

• Note: Support in Intel Fortran compiler for draft Fortran 2015 feature for
interoperability with C specifically helps with MPI-3.

Intel® Trace Analyzer and Collector
Intel® MPI Library

Intel® Trace Analyzer and Collector
helps the developer:
• Visualize and understand parallel

application behavior

• Evaluate profiling statistics and load balancing

• Identify communication hotspots

Features
• Event-based approach

• Low overhead

• Excellent scalability

• Powerful aggregation and filtering functions

• Idealizer Automatically detect
performance issues
and their impact on

runtime

Intel® Trace Analyzer and Collector
Intel® MPI Library

What’s new:

• Addition of MPI Performance Snapshot

• Lightweight scalable MPI+OpenMP profiler

• Support for collection of CPI ad Memory Bound performance
metrics

• Addition of new application summary details in the HTML report

• New command-line options

• The mps tool for statistical analysis is now available on
Windows*

• Various bug fixes for general stability and performance

MPI Performance Snapshot
Intel® MPI Library

Identifying Key Metrics –
Shows PAPI counters and
MPI/OpenMP* imbalances

Scalability- Performance
variation at scale can be
detected sooner

Lightweight – Low overhead
profiling up to 32K Ranks

