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Summary

The information paradox highlights the incompatibility between general
relativity (locality + equivalence principle) and quantum physics (unitarity).

Breakdown of local effective field theory, even on "nice" time slices that avoid
strong curvature region.

Gauge theory - gravity correspondence implies unitary black hole evolution.

Black hole complementarity provides a "phenomenological” description, which
preserves unitarity and the equivalence principle, but requires giving up locality.

Stretched horizon for outside observers can be motivated from QFT in black
hole background.

Typical infalling observers do not see drama on their way towards a black hole
formed from a generic pure state. (Special pure states, as well as special
observers, exist for which this is not true.)

An approximate description of observers in the black hole interior can be given
in terms of an effective field theory, defined on a limited set of time slices, such
that no drama is seen until near the singularity.
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radiation




Effective field theory

- assume that local effective field theory can be
applied in regions of weak curvature, away from

black hole singularity
- the explicit form of the effective field theory 1s
not needed for information loss argument

- construct a convenient set of Cauchy surfaces

‘nice’ time slices

R.Wald ‘93
D.Lowe, J.Polchinski, L.Susskind, LT, J.Uglum '95

- effective field theory Hamiltonian generates
evolution of states
- the Hamiltonian on nice slices 1s time-dependent

—— Hawking emission

- the nice slices extend into black hole region

— 1information loss
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- prepare singlet pair (#1,#2)

- keep #2 outside and send #1 1nto black hole

- #1free and #1accel measure spin along z-axis

- #2 measures spin either along z-axis or x-axis

- local gft = independent measurements by

#1free and #1accel

- if they disagree #laccel discovers that #2 measured

along x-axis = acausal signal from #2 to #laccel




Black hole complementarity

BHC postulates: L.Susskind, LT, J.Uglum ’93

.

Black hole evolution, as viewed by a distant observer, is described
by a quantum theory with a unitary S-matrix relating the initial state
of the collapsing matter to that of outgoing radiation

. Outside the stretched horizon of a massive black hole, physics can be

described to good approximation by a set of semi-classical field equations

. To a distant observer, a black hole appears to be a quantum system with

discrete energy levels. The dimension of the subspace
of states that describe a black hole of mass M 1is

exp (%) = exp (47TM2)

. There 1s no contradiction between outside observers finding information

encoded in Hawking radiation and infalling observers entering a black
hole unharmed.
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Firewall for infalling observers!? R o
73N
Revisit gedanken Oaccel must wait before information can be
experiment extracted from Hawking radiation
Young BH: t ~ 75 Spp D.Page 1993

Old BH: t ~ 7 logrs PHayden & J.Preskill 2007
Ofree has short time for spin measurement
Young BH: At ~ e 2t
Old BH: At~ r;!
— limited measurement accuracy

Ofar measures state of Hawking radiation to
arbitrary accuracy
— projects BH state into eigenstate of
Hawking radiation
State of infalling observer is also projected
— observation of Hawking radiation burns

infalling observer at horizon D.Lowe, LT 06

A.Almbheiri, D. Marolf, |. Polchinski, J. Sully *12
Braunstein, Pirandola, Zyczkowski ’12




BHC in a holographic setting

 In a quantum theory, general covariance leads to a conflict between
unitarity and locality.

 In holographic models unitarity 1s preserved at the expense of bulk

locality.
* How does the non-locality avoid infecting observations made by

low-energy local observers?

 Soft violation of general covariance at finite N in holographic models

— symmetry is restored in N — oo limit.

* Hawking emission is a 1/N effect
— information paradox cannot be posed in the strict N — oo limit.

* The breaking of general covariance 1s implemented via the
holographic reconstruction of the bulk radial direction.

* We model this “holographic regulator” by discretising radial direction.



singularity

Modeling the exterior region
D.Lowe & LT I3

The effective field theory of Postulate 2
v applies outside stretched horizon .

This effective field theory can in principle
be obtained from the dual boundary theory.

Model slowly evaporating black hole by
static Schwarzschild solution.

2M dr?
ds® = — <1 — —) dt* + 1 T2M + r2df* + r* sin® 0d¢?
r
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Modeling the black hole interior
L.Susskind ’13; D.Lowe, LT ’14

#1 . Stretched horizon theory

Black hole interior is encoded in outside dof’s

Description of the interior is non-local and employs finite # of dof’s

#2 . Local effective field theory (extended inside horizon)

Approximately describes measurements made by a typical observer
who falls inside black hole

Applies on a restricted set of time slices with a radial cutoff in place
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The inside view D.Lowe, LT 14 204 I

Typical low energy observer O in free fall enters BH at ¢ = 1y

O 1s well described by theory #1 outside stretched horizon

Construct initial state for theory #2 at ¢ = ¢ - tser With tser ~ 4M log(4M)
r > Tsp © Use state from theory #1 U

r < Tshn : Use free-fall vacuum

Outgoing modes at » > ry; are entangled with
early Hawking radiation giving rise to a firewall

inside black hole Aimheiri et al 2012, Braunstein et al 2012

BUT the firewall meets the singularity

before t = tp so O 1s not affected
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Overlap region

Theories #1 and #2 both describe
observations in shaded region

Q: Can measurements of Hawking particles
emitted during [7o - tser, to T tser] affect O
inside the black hole?

A: Owill burn at ¢ ~ t9 + £, but that
1s also when O runs into the singularity.



No drama for infalling observer

Theories #1 and #2 need to have the following properties:

(1) The time required for outside observers to extract quantum
information from the black hole (in theory #1) has a lower

bound of order the scrambling time. P Hayden, |.Preskill 07
D.Lowe, LT in progress

(2) From the viewpoint of an infalling observer, who enters the
black hole, any quantum information that entered more than a

scrambling time earlier has been erased.

Property (2) holds 1n infalling lattice model D.Lowe, LT 15

g‘lsn") < )
SRk <& s,
: ‘.‘» y = w X o
2, T AN Y = CI
L ‘\0* 7/4, A
n + o



Infalling lattice model
S.Corley & T.Jacobson '97; D.Lowe, LT ’I5

Coordinate system for infalling observer

ds* = —dt* + v*(r)dy* + r*dQ?

o(r) = —@

r(y,t) = 2M (1 + % (y — t)) 2/3

Observer in free fall near horizon: ¢ = proper time, y = constant

Horizon is at y =¢. Observer enters black holeatf =y =0

Curvature singularity is at y =¢- 4M/3 .
Sag o A
- A - . . . . “ W W -
g XU Lattice model: Discretise y coordinate 2 WIRE 7
)), \‘\0é '7/4'/) S\,OO
+



Infalling lattice (continued)




Lattice action:

Killing symmetry:

Mode functions:

Free fall frequency:

Dispersion relation:

Group velocity:

Infalling lattice (continued)

O Q(Dy(b)z
Z/dt <|v r(yt) (815) v (T(y+1,t))+v(r(y,t))|>

(y,t) = (y+ 1, t+1)

—iwteik’(r) (y—t)

oy,t) = e
Wy f =w+k
lv(r)|(w + k) = £2sin (k/2)

dw cos (k/2)
= — = :|:
ST 0]

—1



Dispersion relation

lv(r)[(w+ k) = £2sin (k/2) v(r)

deep
inside | horizo

1r outside

S.Corley & T.Jacobson "97:

Free-fall vacuum initial state at t =0 gives rise to outgoing

thermal flux far outside the black hole.

Follows from WKB analysis of wavepackets outside black hole.



Interior wavepacket trajectories DLowe, LT'I5

Left- and right-moving wavepackets WKB approximation
startat 1=0, y=-1 o T i
tA 15
.
M 1.0 i
05t
00 :l e 1 —— 1 1 5
0 1 2 t 3 4 5
M
e e e 1 1 1 1 =
I ——
-0.2 i
-04 i
The wavepackets reach the A
singularity at different times: 08 ]
Left: ¢ <4M/3 |
Right: ¢ < tser = 4M log (4M) *
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Breakdown of bulk description

We want to model a laboratory that falls into a black hole.

Early on the lab is well described by the bulk effective Hamiltonian of
theory #2.

The lab has a complementary description in terms of theory #1 and
must eventually decohere with respect to the exact Hamiltonian.

This will appear highly non-local from the interior viewpoint.

In a toy model we find that the decoherence time matches the
scrambling time, which is also when lab approaches the singularity.

Results support the idea that singularity approach is complementary
to decoherence of the infalling state.



Toy model for theory #1

D. Lowe and LT, in progress.

N. Lashkari et al., JHEP 1304 (2013) 022.

A toy model that exhibits fast scrambling is discussed in [10]. This is a spin model
with a non-local pairwise interaction. There are N distinct sites with the Hilbert space of
tensor product form H = H; ® --- ® Hy. The sites interact via a pairwise Hamiltonian
H=> .0 H 4y summing over unordered pairs of sites. The Hamiltonian may therefore
be associated with a graph G = (V, E) with N vertices V', and edges F corresponding to
the non-zero H, .

In order to have fast scrambling, the degree of the vertices D should be of order the size
of the system. We shall then set D = N — 1. To have a sensible limit for large N, we take

the pairwise interactions to be bounded |H ;| < ¢/D, for some constant c.

We want to use this model to study the evolution of infalling degrees of freedom.

We conjecture that evolution with respect to the bulk effective Hamiltonian of & s
K o)
theory #2 is dual to mean field evolution in the holographic model. 2w %
W
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Decoherence

We suppose the Hilbert space factors as

H=Hs®Hse

Consider a pure state in Hg

(W) = (IY1)s + [P2)s) @ [x)se

Under time evolution this becomes
W) = 7MY =Y cules) @ | fu) + cales) @ | fan)

where the e; are some basis of Hg. If there is decoherence, then it is a good approximation
to assume |fy;) is orthogonal to | fy;) for any ¢ and j. For example, this will typically occur
if the Hamiltonian is local in position space and |f1;) and |fo;) are position eigenstates. We

will adopt the notation

\IJS - TrSc

w) (0|

to denote the partial trace over the complement of S. If there is decoherence, then to a good

approximation
5~ Z (|01z‘|2 + |02i|2) le;) (el
i

which means the probabilities add, without cross terms.



von Neumann entropy and trace distance

We use the von Neumann entropy H = —Tr W' log Ul

to quantify the purity of the reduced density matrix. This vanishes for a pure state. For
the maximally mixed state ¥y = 1/n, with n is the dimension of the Hilbert subspace S,
H =logn.

We can then formulate the decoherence time t; in the following way. Assume at time

t =0 Uy is in a pure state. Then define the decoherence time t; as the time when

H(Vs(ta)) = dlogn

for some choice of § < 1.

In the following we will mostly be interested in studying finite dimensional spin systems.

In this class of models, we can reformulate the condition as a condition on the trace
distance

Vs — s, = TYS\/(‘I’S — 05)" (U5 — @)

|H (V) — H(V)| < || Wy — Wy, logn M.Fannes, Comm. Math. Pays 31 no 4 (1973) 291.

Therefore the definition of the decoherence time can be reformulated as

|Ws(ta) — Vs(0)|, =0 for some fixed constant § < 1.



Mean field evolution

Begin with an initial pure state of product form

[W(0)) = [¥1)2;, @ @ [Un)ny
Then one may build a state dependent mean field Hamiltonian

Y3 M

HME — Z try (Hiy ¥ (1))
Yy

where UMF

evolves according to HM! starting from the same initial state |¥(0)). A key
point is that with these definitions, and choice of initial state, the mean field Hamiltonian
never generates entanglement between different sites, remains in the same product form as

the initial state.

It is important to note that not all states yield sensible mean field evolutions. Moreover,
the mean field Hamiltonian depends on the state. We conjecture that states close to smooth

bulk spacetimes do have useful mean field descriptions, and that the mean field evolution is

dual to the usual time evolution with respect to the bulk Hamiltonian.

One then wishes to calculate the timescale for which the trace norm distance between

U, (t) and UM (#) is small.

This problem was solved in [10] via careful application of Lieb-Robinson bounds

<
A O
t~logN S W W @)
=\ =
) L
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Summary

The information paradox highlights the incompatibility between general
relativity (locality + equivalence principle) and quantum physics (unitarity).

Breakdown of local effective field theory, even on "nice" time slices that avoid
strong curvature region.

Gauge theory - gravity correspondence implies unitary black hole evolution.

Black hole complementarity provides a "phenomenological” description, which
preserves unitarity and the equivalence principle, but requires giving up locality.

Stretched horizon for outside observers can be motivated from QFT in black
hole background.

Typical infalling observers do not see drama on their way towards a black hole
formed from a generic pure state. (Special pure states, as well as special
observers, exist for which this is not true.)

An approximate description of observers in the black hole interior can be given
in terms of an effective field theory, defined on a limited set of time slices, such
that no drama is seen until near the singularity.
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