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The information paradox highlights the incompatibility between general 
relativity (locality + equivalence principle) and quantum physics (unitarity).

Breakdown of local effective field theory, even on "nice" time slices that avoid 
strong curvature region.

Gauge theory - gravity correspondence implies unitary black hole evolution.

Black hole complementarity provides a "phenomenological" description, which 
preserves unitarity and the equivalence principle, but requires giving up locality.

Stretched horizon for outside observers can be motivated from QFT in black 
hole background.

Typical infalling observers do not see drama on their way towards a black hole 
formed from a generic pure state. (Special pure states, as well as special 
observers, exist for which this is not true.)

An approximate description of observers in the black hole interior can be given 
in terms of an effective field theory, defined on a limited set of time slices, such 
that no drama is seen until near the singularity.
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Effective field theory

- assume that local effective field theory can be  
  applied in regions of weak curvature, away from 
  black hole singularity 

- the explicit form of the effective field theory is 
  not needed for information loss argument 

- construct a convenient set of Cauchy surfaces  

     ‘nice’ time slices 
            R.Wald ’93    
            D.Lowe, J.Polchinski, L.Susskind, LT, J.Uglum ’95

- effective field theory Hamiltonian generates  
  evolution of states 

- the Hamiltonian on nice slices is time-dependent  

                Hawking emission 

- the nice slices extend into black hole region 

                information loss
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Formulation of the paradox

- prepare singlet pair (#1,#2) 

- keep #2 outside and send #1 into black hole 

- #1free and #1accel measure spin along z-axis 

- #2 measures spin either along z-axis or x-axis 

- local qft ⇒ independent measurements by  

  #1free and #1accel 

- if they disagree #1accel discovers that #2 measured 

  along x-axis  ⇒  acausal signal from #2 to #1accel
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BHC postulates:

1. Black hole evolution, as viewed by a distant observer, is described 
    by a quantum theory with a unitary S-matrix relating the initial state  
    of the collapsing matter to that of outgoing radiation 

2. Outside the stretched horizon of a massive black hole, physics can be 
    described to good approximation by a set of semi-classical field equations 

3. To a distant observer, a black hole appears to be a quantum system with 
    discrete energy levels. The dimension of the subspace 
    of states that describe a black hole of mass M is 

4. There is no contradiction between outside observers finding information  
    encoded in Hawking radiation and infalling observers entering a black  
    hole unharmed.
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Black hole complementarity

L.Susskind, LT, J.Uglum ’93
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Revisit gedanken 
experiment

Firewall for infalling observers?

Oaccel must wait before information can be 
extracted from Hawking radiation 
Young BH:                                D.Page 1993

    Old BH:                        P.Hayden & J.Preskill 2007

Ofree has short time for spin measurement 
Young BH: 
    Old BH: 
         limited measurement accuracy 
Ofar measures state of Hawking radiation to 
arbitrary accuracy 
         projects BH state into eigenstate of 
         Hawking radiation 
State of infalling observer is also projected 
         observation of Hawking radiation burns 
         infalling observer at horizon   D.Lowe, LT ’06
                     A. Almheiri, D. Marolf, J. Polchinski, J. Sully ’12
                               Braunstein, Pirandola, Zyczkowski ’12
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•  In a quantum theory, general covariance leads to a conflict between  
   unitarity and locality. 

•  In holographic models unitarity is preserved at the expense of bulk 
   locality. 

•  How does the non-locality avoid infecting observations made by 
   low-energy local observers? 

•  Soft violation of general covariance at finite N in holographic models 

     —  symmetry is restored in N → ∞ limit. 

•  Hawking emission is a 1/N effect  

     — information paradox cannot be posed in the strict N → ∞ limit. 

•  The breaking of general covariance is implemented via the  
   holographic reconstruction of the bulk radial direction. 

•  We model this “holographic regulator” by discretising radial direction. 

BHC in a holographic setting



D.Lowe & LT ’13

Model slowly evaporating black hole by 
static Schwarzschild solution.
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Figure 1: Penrose diagram for black hole evaporation. Σ0 is the global horizon and Σ is a stretched

horizon.

The stretched horizon is a surface outside the global black hole horizon that remains

timelike. Outside observers ascribe non-trivial microphysical dynamics to the stretched

horizon that serves to absorb, thermalize, and eventually re-emit the information contained

in infalling matter. The usual thermodynamics of black holes is assumed to arise from a

coarse graining of this (unspecified) microscopic dynamics. From the point of view of outside

observers, no information ever enters the black hole in this description and the stretched

horizon is the end of the road for all infalling matter. In that sense it is indeed a firewall.

According to the fourth postulate the story is very different for an infalling observer. The

spacetime curvature is weak at the horizon of a large black hole and an infalling observer

should not notice anything out of the ordinary upon crossing the horizon. In a recent paper

Almheiri et al. [3] claim, however, that the first two postulates imply that an infalling

observer must also see a firewall. In other words, that the fourth postulate is inconsistent

with the others.

The microscopic stretched horizon in [1] was placed at a proper distance of order the

Planck length away from the global horizon. More generally in the present work, we require
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The effective field theory of Postulate 2 
applies outside stretched horizon ⌃

II. NON-ROTATING BLACK HOLE EVAPORATION IN 3+1 DIMENSIONS:

PROBLEMS AND SOLUTIONS

A. Mode expansions and vacua

In this section we consider a massless conformally coupled scalar field. Issues of

back-reaction will be ignored, and re-examined in the following section. The metric in

Schwarzschild coordinates takes the form
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2
= �

✓
1� 2M

r

◆
dt

2
+

dr

2

1� 2M
r

+ r

2
d✓

2
+ r

2
sin

2
✓d�

2
.

In these coordinates, a complete set of modes in the exterior region may be obtained by

separating the equation of motion, and defining the tortoise radial coordinate
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The angular and time dependence may be handled straightforwardly, and the radial equation

can be mapped into a scattering problem with a step-like potential separating the behavior at

r ! 1 from the region r ! 2M [9]. This leads to a natural decomposition into independent

modes that we refer to as in-going and out-going [23]:
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Scattering off the gravitational field leads to “grey body” factors, so a mode that is purely

outgoing near infinity contains an ingoing component near the horizon, and likewise a mode

that is purely ingoing near the horizon contains an outgoing component near infinity.

The Unruh vacuum is defined by requiring the modes incoming at past null infinity to

be purely positive frequency with respect to t, and while those outgoing from the past
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Modeling the exterior region

This effective field theory can in principle 
be obtained from the dual boundary theory. 



#2 :  Local effective field theory (extended inside horizon)

Approximately describes measurements made by a typical observer  
who falls inside black hole

Applies on a restricted set of time slices with a radial cutoff in place

Black hole interior is encoded in outside dof’s

Description of the interior is non-local and employs finite # of dof’s

#1 :  Stretched horizon theory

Fails for an atypical observer who has measured state of BH

L.Susskind ’13;  D.Lowe, LT ’14

Modeling the black hole interior



O is well described by theory #1 outside stretched horizon

Typical low energy observer O in free fall enters BH at t = t0

Construct initial state for theory #2 at t = t0 - tscr  with

r > rsh : Use state from theory #1 

r < rsh : Use free-fall vacuum

Outgoing modes at r > rsh are entangled with  
early Hawking radiation giving rise to a firewall 
inside black hole   Almheiri et al  2012, Braunstein et al 2012

BUT the firewall meets the singularity 
before t = t0  so O is not affected

VU

UV=1

t0
t0-tscr

t0+tscr

O

r
=
r
sh

x

D.Lowe, LT ’14The inside view

tscr ⇠ 4M log(4M)



Q:  Can measurements of Hawking particles 
emitted during [t0 - tscr , t0 + tscr] affect O 
inside the black hole?

Theories #1 and #2 both describe  
observations in shaded region

A:  O will burn at t ~ t0 + tscr ,  but that  
is also when O runs into the singularity.

Overlap region

t

r

t0

t0+tscr

rsh



Theories #1 and #2 need to have the following properties:

No drama for infalling observer

D.Lowe, LT ’15Property (2) holds in infalling lattice model

(2)  From the viewpoint of an infalling observer, who enters the 
black hole, any quantum information that entered more than a 
scrambling time earlier has been erased.

(1)  The time required for outside observers to extract quantum 
information from the black hole (in theory #1) has a lower 
bound of order the scrambling time. P. Hayden, J.Preskill ’07

D.Lowe, LT in progress



Observer in free fall near horizon:    t = proper time,  y = constant

Horizon is at  y = t .  Observer enters black hole at t = y = 0 . 

Coordinate system for infalling observer 

Lattice model: Discretise y coordinate

S.Corley & T.Jacobson ’97;  D.Lowe, LT ’15

Infalling lattice model
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The infall coordinates used in [3] are constructed from geodesics with E2
= 1, which are at

rest at infinity. For this choice, t is equal to the proper time along the geodesic. One may

then introduce a new radial coordinate
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The horizon is located at y = t and the curvature singularity at y = t� 4
3M . In particular,

the y = 0 geodesic enters the horizon at t = 0, and hits the singularity at t = 4
3M .

The freely falling lattice model is obtained by discretizing the y coordinate. We choose a

freely falling Planck scale lattice near the horizon (rescaling M can be used to rescale this

to any desired length), as motivated by holographic models. At larger radius, the proper

spacing falls below the Planck length, limiting the region of spacetime where the effective

field theory description will be valid. However this will be sufficient for our purposes, and

was already sufficient to show cutoff independence of the Hawking flux. The breakdown of

the free-fall lattice regulator far from the black hole is in line with black hole complemen-

tarity. Presumably to represent the far region using a holographic description, one must

evolve operators with respect to a different time coordinate, such as the Schwarzschild time,

resulting in a very different regulator in the bulk effective field theory.

Let us consider a massless scalar field on the freely falling lattice. We choose units such

that the lattice spacing in y is 1. Since the most dangerous modes for us are s-waves, it is

convenient to truncate to only those modes. The Lagrangian is then [3]

S =

1

2

X

y

ˆ
dt

 
|v(r(y, t))|

✓
@�

@t

◆2

� 2 (D
y

�)2

|v(r(y + 1, t)) + v(r(y, t))|

!
, (4)

6

model, treating the radial direction as a free falling lattice with Planck scale lattice spacing

near the horizon. Rather than work with a two-dimensional model, one can also generalize to

four dimensions, treating the angular directions as continuous spheres, but for our purposes

it turns out to be sufficient to consider the s-wave sector. We will be focusing on near-

horizon physics, so we restrict discussion to the simple case of a Schwarzschild black hole

in asymptotically flat spacetime. Generalization to spacetimes with other asymptotics will

not affect our main conclusions. Furthermore, since we will be considering timescales that

are parametrically short compared to the black hole lifetime, we will model the background

geometry as a static Schwarzschild spacetime.

The starting point for the lattice model is the Schwarzschild metric in Gullstrand-Painlevé

coordinates (in units with G = ~ = c = 1). We define

v(r) = �
r

2M

r
, (1)

and then the metric is

ds2 = � �
1� v2(r)

�
dt2 � 2v(r)dt dr + r2d⌦2 ,

where the time coordinate is obtained by adding an r-dependent function to the usual

Schwarzschild time
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The coordinate transformation is singular on the horizon, as it must be for the Gullstrand-

Painlevé coordinates to be smooth there. We note, however, that this is traded for a coor-

dinate singularity at large r.

For the moment, we take the metric to be of the form (1) inside the horizon of the

black hole r < 2M . This amounts to assuming that neither additional matter stress energy

nor gravitational waves are present inside the horizon. This may appear to be rather a

strong assumption given that the lattice model based on this metric is to be viewed as a

representation of the exact physics described by the holographic theory. However, as we see

later on (towards the end of section III), there is a sense in which the metric (1) behaves as

an attractor in the regulated theory.

The metric is stationary in Gullstrand-Painlevé coordinates so p
t

is conserved along a

timelike geodesic. For a particle of unit mass on a radial geodesic we have
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Curvature singularity is at  y = t - 4M/3 .
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Infalling lattice (continued)



Infalling lattice (continued)

Lattice action: 
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Killing symmetry:

where the difference operator

D
y

� = �(y + 1, t)� �(y, t) .

An attractive feature of this discretization is that the action has a residue of the Killing

symmetry of the Schwarzschild metric

(y, t) ! (y + 1, t+ 1) . (5)

In particular, this allows one to use separation of variables to derive the form of the mode

functions, and determine the lattice dispersion relation. The general form of the mode

function takes the form

�(y, t) = e�i!tf(y � t) , (6)

where the frequency ! may be taken to be any real number. The invariance of the mode

function under

k ! k + 2n⇡, ! ! ! � 2n⇡ (7)

for any integer n allows one to map an arbitrary pair (!, k) into the range

� ⇡ <k ⇡

�1 <!< 1 . (8)

In a WKB approximation, we expand the mode function in terms of wavevectors that

depend on position

�(y, t) = e�i!teik(r)(y�t) . (9)

Plugging (9) into the equation of motion yields the formula obtained by Corley and

Jacobson [3] for the WKB wavevector k(r(y, t))

|v(r)|(! + k) = ±2 sin (k/2) . (10)

This dispersion relation governs the propagation of wavepackets in the (y, t) plane. It can

be solved numerically but the qualitative behavior of solutions can be obtained by simple

graphical analysis based on figure 1. The straight lines in the figure correspond to the left-

hand side of (10) for ! > 0 and three different values of r; outside, inside and at the black

hole horizon, with the slope of the line determined by (1) in each case. Far away from the

black hole v(r) ! 0 and the line approaches horizontal, while deep inside the black hole it
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Group velocity:

Figure 2. Interior wavepacket trajectories. The left figure shows the radial position as a function of

the Gulstrand-Painlevé coordinate t. The right figure shows the evolution of the WKB wavevector

k. The blue curves represent the right-moving, horizon skimming mode, which take a scrambling

time to hit the singularity. The red curves represent the left-moving mode. In the figures, M = 100,

! = 1/10.

evolved by free fall from outside the horizon, crossing the horizon at a later time. The

by now standard theory of decoherence (for a textbook treatment see [9]) shows that local

interactions with a large number of exterior degrees of freedom decohere a quantum state,

if given sufficient time. In the case of a black hole this decoherence time is at least of order

the scrambling time [10]. Correlation functions between wavepackets that enter the horizon

separated by less than a scrambling time are not affected by decoherence. However, if our

initial wavepacket is capable of sending a detectable signal to a late time wavepacket that

enters the black hole a scrambling time or more later, then the black hole complementarity

principle will be falsified [11]. In other words, if one takes property #1 as a postulate, then

a violation of property #2 implies violation of black hole complementarity.

It is straightforward to analyze the propagation of such wavepackets, using standard

methods of propagation in dispersive media [12]. The largest amplitude component of the

wavepacket propagates within a timelike cone, bounded by the evolution of trajectories

according to the group velocity of the different Fourier components. The group velocity

with respect to the y � t coordinate of a wavetrain (6) is

v
g

=

d!

dk
= ±cos (k/2)

|v| � 1 . (11)

Let us begin with a wavepacket just inside the horizon. This is inside the future trapped

region so both signs in (11) correspond to ingoing wavepackets. The minus sign gives rise
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Free fall frequency:

Figure 1. Graphical solution of the lattice dispersion relation. The straight lines correspond to the

left hand side of 10 for different values of v(r) (and ! > 0).

becomes vertical. For a given value of r, the solutions to the dispersion relation are given by

the points where the corresponding straight line intersects the sinusoidal curves. The choice

of sign in (10) determines whether the mode is right- or left-moving, i.e. moves towards

positive or negative y, respectively, on the infalling lattice with increasing t. For each ! > 0

solution represented in figure 1, there is a corresponding one with ! < 0 (and opposite sign

k). The two branches of solutions are related by complex conjugation and we will restrict

attention to the ! > 0 case.

Far away from the black hole there are four intersection points, corresponding to four

different ! > 0 modes, of which two survive the continuum limit and two are only present

at finite lattice cutoff. Following [3], we denote the modes by  +,  �,  +,s

, and  �,s

, and

let the corresponding WKB momenta carry the same subscripts, as indicated in figure 1. Of

these modes,  �,s

, is left-moving while the other three are right-moving. The momenta k+

and k� lie outside the fundamental domain in (8) but can be brought inside it by a shift of

the form (7).

Free fall observers, traveling along lines of constant y measure the free-fall frequency

!
ff

= ! + k ,
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where the difference operator

D
y

� = �(y + 1, t)� �(y, t) .

An attractive feature of this discretization is that the action has a residue of the Killing

symmetry of the Schwarzschild metric

(y, t) ! (y + 1, t+ 1) . (5)

In particular, this allows one to use separation of variables to derive the form of the mode

functions, and determine the lattice dispersion relation. The general form of the mode

function takes the form

�(y, t) = e�i!tf(y � t) , (6)

where the frequency ! may be taken to be any real number. The invariance of the mode

function under

k ! k + 2n⇡, ! ! ! � 2n⇡ (7)

for any integer n allows one to map an arbitrary pair (!, k) into the range
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�1 <!< 1 . (8)

In a WKB approximation, we expand the mode function in terms of wavevectors that

depend on position
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Plugging (9) into the equation of motion yields the formula obtained by Corley and

Jacobson [3] for the WKB wavevector k(r(y, t))

|v(r)|(! + k) = ±2 sin (k/2) . (10)

This dispersion relation governs the propagation of wavepackets in the (y, t) plane. It can

be solved numerically but the qualitative behavior of solutions can be obtained by simple

graphical analysis based on figure 1. The straight lines in the figure correspond to the left-

hand side of (10) for ! > 0 and three different values of r; outside, inside and at the black

hole horizon, with the slope of the line determined by (1) in each case. Far away from the

black hole v(r) ! 0 and the line approaches horizontal, while deep inside the black hole it
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model, treating the radial direction as a free falling lattice with Planck scale lattice spacing

near the horizon. Rather than work with a two-dimensional model, one can also generalize to

four dimensions, treating the angular directions as continuous spheres, but for our purposes

it turns out to be sufficient to consider the s-wave sector. We will be focusing on near-

horizon physics, so we restrict discussion to the simple case of a Schwarzschild black hole

in asymptotically flat spacetime. Generalization to spacetimes with other asymptotics will

not affect our main conclusions. Furthermore, since we will be considering timescales that

are parametrically short compared to the black hole lifetime, we will model the background

geometry as a static Schwarzschild spacetime.

The starting point for the lattice model is the Schwarzschild metric in Gullstrand-Painlevé

coordinates (in units with G = ~ = c = 1). We define

v(r) = �
r

2M

r
, (1)

and then the metric is

ds2 = � �
1� v2(r)

�
dt2 � 2v(r)dt dr + r2d⌦2 ,

where the time coordinate is obtained by adding an r-dependent function to the usual

Schwarzschild time

t = t
s

+ 2M

✓
� 2

v(r)
� log

✓
1� v(r)

1 + v(r)

◆◆
.

The coordinate transformation is singular on the horizon, as it must be for the Gullstrand-

Painlevé coordinates to be smooth there. We note, however, that this is traded for a coor-

dinate singularity at large r.

For the moment, we take the metric to be of the form (1) inside the horizon of the

black hole r < 2M . This amounts to assuming that neither additional matter stress energy

nor gravitational waves are present inside the horizon. This may appear to be rather a

strong assumption given that the lattice model based on this metric is to be viewed as a

representation of the exact physics described by the holographic theory. However, as we see

later on (towards the end of section III), there is a sense in which the metric (1) behaves as

an attractor in the regulated theory.

The metric is stationary in Gullstrand-Painlevé coordinates so p
t

is conserved along a

timelike geodesic. For a particle of unit mass on a radial geodesic we have

5

Free-fall vacuum initial state at  t = 0  gives rise to outgoing 
thermal flux far outside the black hole.

S.Corley & T.Jacobson ’97:

Follows from WKB analysis of wavepackets outside black hole. 
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Figure 2. Interior wavepacket trajectories. The left figure shows the radial position as a function of

the Gulstrand-Painlevé coordinate t. The right figure shows the evolution of the WKB wavevector

k. The blue curves represent the right-moving, horizon skimming mode, which take a scrambling

time to hit the singularity. The red curves represent the left-moving mode. In the figures, M = 100,

! = 1/10.

evolved by free fall from outside the horizon, crossing the horizon at a later time. The

by now standard theory of decoherence (for a textbook treatment see [9]) shows that local

interactions with a large number of exterior degrees of freedom decohere a quantum state,

if given sufficient time. In the case of a black hole this decoherence time is at least of order

the scrambling time [10]. Correlation functions between wavepackets that enter the horizon

separated by less than a scrambling time are not affected by decoherence. However, if our

initial wavepacket is capable of sending a detectable signal to a late time wavepacket that

enters the black hole a scrambling time or more later, then the black hole complementarity

principle will be falsified [11]. In other words, if one takes property #1 as a postulate, then

a violation of property #2 implies violation of black hole complementarity.

It is straightforward to analyze the propagation of such wavepackets, using standard

methods of propagation in dispersive media [12]. The largest amplitude component of the

wavepacket propagates within a timelike cone, bounded by the evolution of trajectories

according to the group velocity of the different Fourier components. The group velocity

with respect to the y � t coordinate of a wavetrain (6) is

v
g

=

d!

dk
= ±cos (k/2)

|v| � 1 . (11)

Let us begin with a wavepacket just inside the horizon. This is inside the future trapped

region so both signs in (11) correspond to ingoing wavepackets. The minus sign gives rise
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WKB approximation 

The wavepackets reach the  
singularity at different times: 

Left:    t  < 4M/3 
Right:   t  < tscr  ≡ 4M log (4M)

All information about interior quantum state at t = 0 is erased by t = tscr

D.Lowe, LT ’15



Breakdown of bulk description

We want to model a laboratory that falls into a black hole.  

Early on the lab is well described by the bulk effective Hamiltonian of 
theory #2. 

The lab has a complementary description in terms of theory #1 and 
must eventually decohere with respect to the exact Hamiltonian. 

This will appear highly non-local from the interior viewpoint. 

In a toy model we find that the decoherence time matches the 
scrambling time, which is also when lab approaches the singularity. 

Results support the idea that singularity approach is complementary 
to decoherence of the infalling state.



Toy model for theory #1

for two different density matrices in HS. Therefore the definition of the decoherence time

can be reformulated as

k S(td)� S(0)k1 = � (5)

for some fixed constant � < 1.

In [10] the statement of fast scrambling was defined in a similar way. The key distinction

is that scrambling involves a global mixing of the system, rather than only the mixing of a

particular subsystem of interest. The condition for scrambling would then require that, (5)

should hold for all subsystems, suitably defined, rather than some single small subsystem,

as typically considered in the decoherence problem.

III. TOY HOLOGRAPHIC MODEL

A toy model that exhibits fast scrambling is discussed in [10]. This is a spin model

with a non-local pairwise interaction. There are N distinct sites with the Hilbert space of

tensor product form H = H1 ⌦ · · · ⌦ HN . The sites interact via a pairwise Hamiltonian

H =

P
hx,yi Hhx,yi summing over unordered pairs of sites. The Hamiltonian may therefore

be associated with a graph G = (V,E) with N vertices V , and edges E corresponding to

the non-zero Hhx,yi.

In order to have fast scrambling, the degree of the vertices D should be of order the size

of the system. We shall then set D = N � 1. To have a sensible limit for large N , we take

the pairwise interactions to be bounded |Hhx,yi| < c/D, for some constant c.

The Lieb-Robinson result [11] places bounds on the norm of the commutator of opera-

tors localized at different sites, as a function of time. For local interactions, this is to be

interpreted as a proof of finite group velocity in nonrelativistic spin systems. In the case at

hand, where interactions are non-local, the same method still yields a bound on the norm

of the commutator for operators. In particular, in [10] it is shown that

k[OA(t), OB]k  4

D
kOAk kOBk |A|e8ct (6)

Here OX is a bounded norm operator acting in the Hilbert subspace of the sites in the set

X, and B is chosen to be a single site.

The condition for scrambling is set up in [10] follows. Consider some Hilbert subspace

H1 with dimension of order 1, maximally entangled with some reference system N , which

5

N. Lashkari et al., JHEP 1304 (2013) 022.

We want to use this model to study the evolution of infalling degrees of freedom. 

We conjecture that evolution with respect to the bulk effective Hamiltonian of  

theory #2 is dual to mean field evolution in the holographic model.

D. Lowe and LT, in progress.



will lead to apparent violations of quantum mechanics.

These statements will be quantified in the holographic model we study. The model we

choose exhibits fast scrambling which is conjectured to be a property of a wide class of

black holes [7]. The infalling Hamiltonian evolution is mapped to a mean field Hamiltonian,

dependent on the state. We compute the trace distance between the evolution of such a

state evolved with respect to the exact Hamiltonian and with respect to the mean field

Hamiltonian. This provides a measure of the decoherence of the infalling state. We find the

decoherence becomes significant precisely at the scrambling time, matching precisely our

expectation from the regulated bulk theory. The results support the version of black hole

complementarity advocated by the authors where singularity approach is complementary to

decoherence of the infalling state, initially outlined in [8].

II. COHERENCE/DECOHERENCE

Let us begin by reviewing the basic ideas of decoherence, which involves some system

of interest S, interacting with some much larger system SC which is often denoted the

environment. We suppose the Hilbert space factors as

H = HS ⌦HSc

Consider a pure state in HS

| i = (| 1iS + | 2iS)⌦ |�iSC

Under time evolution this becomes

| 0i = e�iHt| i =
X

i

c1i|eii ⌦ |f1ii+ c2i|eii ⌦ |f2ii (1)

where the ei are some basis of HS. If there is decoherence, then it is a good approximation

to assume |f1ii is orthogonal to |f2ji for any i and j. For example, this will typically occur

if the Hamiltonian is local in position space and |f1ii and |f2ii are position eigenstates. We

will adopt the notation

 S = TrSc | ih |

3
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3to denote the partial trace over the complement of S. If there is decoherence, then to a good

approximation

 

0
S ⇡

X

i

�|c1i|2 + |c2i|2
� |eiihei| (2)

which means the probabilities add, without cross terms. The end result for  0
S is then the

same as if a measurement had collapsed the wavefunction into the states |eii. Note the

probability of each |eii is not necessarily equal, so  0
S need not be maximally mixed.

As it stands, this statement of decoherence is basis dependent. To make a basis indepen-

dent statement, one can instead quantify the purity of the reduced density matrix  0
S. One

way to do this to compute

P = TrS( 
0
S)

2

which is known as the purity of a density matrix. P = 1 for a pure state since a pure

state acts as a projector, ( 0
S)

2
=  

0
S, and by normalization Trs 

0
S = 1. For a mixed state

0 < P < 1.

Alternatively, one may use the von Neumann entropy

H = �Trs 
0
S log 

0
S

to quantify the purity of the reduced density matrix. This vanishes for a pure state. For

the maximally mixed state  0
S = /n, with n is the dimension of the Hilbert subspace S,

H = log n.

We can then formulate the decoherence time td in the following way. Assume at time

t = 0  S is in a pure state. Then define the decoherence time td as the time when

H( S(td)) = � log n (3)

for some choice of � < 1.

In the following we will mostly be interested in studying finite dimensional spin systems.

In this class of models, we can reformulate the condition (3) as a condition on the trace

distance using the results of [9]. We recall the definition

k S � �Sk1 = TrS

q
( S � �S)

†
( S � �S) (4)

In [9] it is shown that

|H( 1)�H( 2)|  k 1 � 2k1 log n

4

to denote the partial trace over the complement of S. If there is decoherence, then to a good

approximation

 

0
S ⇡

X

i

�|c1i|2 + |c2i|2
� |eiihei| (2)

which means the probabilities add, without cross terms. The end result for  0
S is then the

same as if a measurement had collapsed the wavefunction into the states |eii. Note the

probability of each |eii is not necessarily equal, so  0
S need not be maximally mixed.

As it stands, this statement of decoherence is basis dependent. To make a basis indepen-

dent statement, one can instead quantify the purity of the reduced density matrix  0
S. One

way to do this to compute

P = TrS( 
0
S)

2

which is known as the purity of a density matrix. P = 1 for a pure state since a pure

state acts as a projector, ( 0
S)

2
=  

0
S, and by normalization Trs 

0
S = 1. For a mixed state

0 < P < 1.

Alternatively, one may use the von Neumann entropy

H = �Trs 
0
S log 

0
S

to quantify the purity of the reduced density matrix. This vanishes for a pure state. For

the maximally mixed state  0
S = /n, with n is the dimension of the Hilbert subspace S,

H = log n.

We can then formulate the decoherence time td in the following way. Assume at time

t = 0  S is in a pure state. Then define the decoherence time td as the time when

H( S(td)) = � log n (3)

for some choice of � < 1.

In the following we will mostly be interested in studying finite dimensional spin systems.

In this class of models, we can reformulate the condition (3) as a condition on the trace

distance using the results of [9]. We recall the definition

k S � �Sk1 = TrS

q
( S � �S)

†
( S � �S) (4)

In [9] it is shown that

|H( 1)�H( 2)|  k 1 � 2k1 log n

4

Decoherence

will lead to apparent violations of quantum mechanics.

These statements will be quantified in the holographic model we study. The model we

choose exhibits fast scrambling which is conjectured to be a property of a wide class of

black holes [7]. The infalling Hamiltonian evolution is mapped to a mean field Hamiltonian,

dependent on the state. We compute the trace distance between the evolution of such a

state evolved with respect to the exact Hamiltonian and with respect to the mean field

Hamiltonian. This provides a measure of the decoherence of the infalling state. We find the

decoherence becomes significant precisely at the scrambling time, matching precisely our

expectation from the regulated bulk theory. The results support the version of black hole

complementarity advocated by the authors where singularity approach is complementary to

decoherence of the infalling state, initially outlined in [8].

II. COHERENCE/DECOHERENCE

Let us begin by reviewing the basic ideas of decoherence, which involves some system

of interest S, interacting with some much larger system SC which is often denoted the

environment. We suppose the Hilbert space factors as

H = HS ⌦HSc

Consider a pure state in HS

| i = (| 1iS + | 2iS)⌦ |�iSC

Under time evolution this becomes

| 0i = e�iHt| i =
X

i

c1i|eii ⌦ |f1ii+ c2i|eii ⌦ |f2ii (1)

where the ei are some basis of HS. If there is decoherence, then it is a good approximation

to assume |f1ii is orthogonal to |f2ji for any i and j. For example, this will typically occur

if the Hamiltonian is local in position space and |f1ii and |f2ii are position eigenstates. We

will adopt the notation

 S = TrSc | ih |

3
to denote the partial trace over the complement of S. If there is decoherence, then to a good

approximation

 

0
S ⇡

X

i

�|c1i|2 + |c2i|2
� |eiihei| (2)

which means the probabilities add, without cross terms. The end result for  0
S is then the

same as if a measurement had collapsed the wavefunction into the states |eii. Note the

probability of each |eii is not necessarily equal, so  0
S need not be maximally mixed.

As it stands, this statement of decoherence is basis dependent. To make a basis indepen-

dent statement, one can instead quantify the purity of the reduced density matrix  0
S. One

way to do this to compute

P = TrS( 
0
S)

2

which is known as the purity of a density matrix. P = 1 for a pure state since a pure

state acts as a projector, ( 0
S)

2
=  

0
S, and by normalization Trs 

0
S = 1. For a mixed state

0 < P < 1.

Alternatively, one may use the von Neumann entropy

H = �Trs 
0
S log 

0
S

to quantify the purity of the reduced density matrix. This vanishes for a pure state. For

the maximally mixed state  0
S = /n, with n is the dimension of the Hilbert subspace S,

H = log n.

We can then formulate the decoherence time td in the following way. Assume at time

t = 0  S is in a pure state. Then define the decoherence time td as the time when

H( S(td)) = � log n (3)

for some choice of � < 1.

In the following we will mostly be interested in studying finite dimensional spin systems.

In this class of models, we can reformulate the condition (3) as a condition on the trace

distance using the results of [9]. We recall the definition

k S � �Sk1 = TrS

q
( S � �S)

†
( S � �S) (4)

In [9] it is shown that

|H( 1)�H( 2)|  k 1 � 2k1 log n

4



von Neumann entropy and trace distance

to denote the partial trace over the complement of S. If there is decoherence, then to a good

approximation

 

0
S ⇡

X

i

�|c1i|2 + |c2i|2
� |eiihei| (2)

which means the probabilities add, without cross terms. The end result for  0
S is then the

same as if a measurement had collapsed the wavefunction into the states |eii. Note the

probability of each |eii is not necessarily equal, so  0
S need not be maximally mixed.

As it stands, this statement of decoherence is basis dependent. To make a basis indepen-

dent statement, one can instead quantify the purity of the reduced density matrix  0
S. One

way to do this to compute

P = TrS( 
0
S)

2

which is known as the purity of a density matrix. P = 1 for a pure state since a pure

state acts as a projector, ( 0
S)

2
=  

0
S, and by normalization Trs 

0
S = 1. For a mixed state

0 < P < 1.

Alternatively, one may use the von Neumann entropy

H = �Trs 
0
S log 

0
S

to quantify the purity of the reduced density matrix. This vanishes for a pure state. For

the maximally mixed state  0
S = /n, with n is the dimension of the Hilbert subspace S,

H = log n.

We can then formulate the decoherence time td in the following way. Assume at time

t = 0  S is in a pure state. Then define the decoherence time td as the time when

H( S(td)) = � log n (3)

for some choice of � < 1.

In the following we will mostly be interested in studying finite dimensional spin systems.

In this class of models, we can reformulate the condition (3) as a condition on the trace

distance using the results of [9]. We recall the definition

k S � �Sk1 = TrS

q
( S � �S)

†
( S � �S) (4)

In [9] it is shown that

|H( 1)�H( 2)|  k 1 � 2k1 log n

4

to denote the partial trace over the complement of S. If there is decoherence, then to a good

approximation

 

0
S ⇡

X

i

�|c1i|2 + |c2i|2
� |eiihei| (2)

which means the probabilities add, without cross terms. The end result for  0
S is then the

same as if a measurement had collapsed the wavefunction into the states |eii. Note the

probability of each |eii is not necessarily equal, so  0
S need not be maximally mixed.

As it stands, this statement of decoherence is basis dependent. To make a basis indepen-

dent statement, one can instead quantify the purity of the reduced density matrix  0
S. One

way to do this to compute

P = TrS( 
0
S)

2

which is known as the purity of a density matrix. P = 1 for a pure state since a pure

state acts as a projector, ( 0
S)

2
=  

0
S, and by normalization Trs 

0
S = 1. For a mixed state

0 < P < 1.

Alternatively, one may use the von Neumann entropy

H = �Trs 
0
S log 

0
S

to quantify the purity of the reduced density matrix. This vanishes for a pure state. For

the maximally mixed state  0
S = /n, with n is the dimension of the Hilbert subspace S,

H = log n.

We can then formulate the decoherence time td in the following way. Assume at time

t = 0  S is in a pure state. Then define the decoherence time td as the time when

H( S(td)) = � log n (3)

for some choice of � < 1.

In the following we will mostly be interested in studying finite dimensional spin systems.

In this class of models, we can reformulate the condition (3) as a condition on the trace

distance using the results of [9]. We recall the definition

k S � �Sk1 = TrS

q
( S � �S)

†
( S � �S) (4)

In [9] it is shown that

|H( 1)�H( 2)|  k 1 � 2k1 log n

4

to denote the partial trace over the complement of S. If there is decoherence, then to a good

approximation

 

0
S ⇡

X

i

�|c1i|2 + |c2i|2
� |eiihei| (2)

which means the probabilities add, without cross terms. The end result for  0
S is then the

same as if a measurement had collapsed the wavefunction into the states |eii. Note the

probability of each |eii is not necessarily equal, so  0
S need not be maximally mixed.

As it stands, this statement of decoherence is basis dependent. To make a basis indepen-

dent statement, one can instead quantify the purity of the reduced density matrix  0
S. One

way to do this to compute

P = TrS( 
0
S)

2

which is known as the purity of a density matrix. P = 1 for a pure state since a pure

state acts as a projector, ( 0
S)

2
=  

0
S, and by normalization Trs 

0
S = 1. For a mixed state

0 < P < 1.

Alternatively, one may use the von Neumann entropy

H = �Trs 
0
S log 

0
S

to quantify the purity of the reduced density matrix. This vanishes for a pure state. For

the maximally mixed state  0
S = /n, with n is the dimension of the Hilbert subspace S,

H = log n.

We can then formulate the decoherence time td in the following way. Assume at time

t = 0  S is in a pure state. Then define the decoherence time td as the time when

H( S(td)) = � log n (3)

for some choice of � < 1.

In the following we will mostly be interested in studying finite dimensional spin systems.

In this class of models, we can reformulate the condition (3) as a condition on the trace

distance using the results of [9]. We recall the definition

k S � �Sk1 = TrS

q
( S � �S)

†
( S � �S) (4)

In [9] it is shown that

|H( 1)�H( 2)|  k 1 � 2k1 log n

4

to denote the partial trace over the complement of S. If there is decoherence, then to a good

approximation

 

0
S ⇡

X

i

�|c1i|2 + |c2i|2
� |eiihei| (2)

which means the probabilities add, without cross terms. The end result for  0
S is then the

same as if a measurement had collapsed the wavefunction into the states |eii. Note the

probability of each |eii is not necessarily equal, so  0
S need not be maximally mixed.

As it stands, this statement of decoherence is basis dependent. To make a basis indepen-

dent statement, one can instead quantify the purity of the reduced density matrix  0
S. One

way to do this to compute

P = TrS( 
0
S)

2

which is known as the purity of a density matrix. P = 1 for a pure state since a pure

state acts as a projector, ( 0
S)

2
=  

0
S, and by normalization Trs 

0
S = 1. For a mixed state

0 < P < 1.

Alternatively, one may use the von Neumann entropy

H = �Trs 
0
S log 

0
S

to quantify the purity of the reduced density matrix. This vanishes for a pure state. For

the maximally mixed state  0
S = /n, with n is the dimension of the Hilbert subspace S,

H = log n.

We can then formulate the decoherence time td in the following way. Assume at time

t = 0  S is in a pure state. Then define the decoherence time td as the time when

H( S(td)) = � log n (3)

for some choice of � < 1.

In the following we will mostly be interested in studying finite dimensional spin systems.

In this class of models, we can reformulate the condition (3) as a condition on the trace

distance using the results of [9]. We recall the definition

k S � �Sk1 = TrS

q
( S � �S)

†
( S � �S) (4)

In [9] it is shown that

|H( 1)�H( 2)|  k 1 � 2k1 log n

4

to denote the partial trace over the complement of S. If there is decoherence, then to a good

approximation

 

0
S ⇡

X

i

�|c1i|2 + |c2i|2
� |eiihei| (2)

which means the probabilities add, without cross terms. The end result for  0
S is then the

same as if a measurement had collapsed the wavefunction into the states |eii. Note the

probability of each |eii is not necessarily equal, so  0
S need not be maximally mixed.

As it stands, this statement of decoherence is basis dependent. To make a basis indepen-

dent statement, one can instead quantify the purity of the reduced density matrix  0
S. One

way to do this to compute

P = TrS( 
0
S)

2

which is known as the purity of a density matrix. P = 1 for a pure state since a pure

state acts as a projector, ( 0
S)

2
=  

0
S, and by normalization Trs 

0
S = 1. For a mixed state

0 < P < 1.

Alternatively, one may use the von Neumann entropy

H = �Trs 
0
S log 

0
S

to quantify the purity of the reduced density matrix. This vanishes for a pure state. For

the maximally mixed state  0
S = /n, with n is the dimension of the Hilbert subspace S,

H = log n.

We can then formulate the decoherence time td in the following way. Assume at time

t = 0  S is in a pure state. Then define the decoherence time td as the time when

H( S(td)) = � log n (3)

for some choice of � < 1.

In the following we will mostly be interested in studying finite dimensional spin systems.

In this class of models, we can reformulate the condition (3) as a condition on the trace

distance using the results of [9]. We recall the definition

k S � �Sk1 = TrS

q
( S � �S)

†
( S � �S) (4)

In [9] it is shown that

|H( 1)�H( 2)|  k 1 � 2k1 log n

4

to denote the partial trace over the complement of S. If there is decoherence, then to a good

approximation

 

0
S ⇡

X

i

�|c1i|2 + |c2i|2
� |eiihei| (2)

which means the probabilities add, without cross terms. The end result for  0
S is then the

same as if a measurement had collapsed the wavefunction into the states |eii. Note the

probability of each |eii is not necessarily equal, so  0
S need not be maximally mixed.

As it stands, this statement of decoherence is basis dependent. To make a basis indepen-

dent statement, one can instead quantify the purity of the reduced density matrix  0
S. One

way to do this to compute

P = TrS( 
0
S)

2

which is known as the purity of a density matrix. P = 1 for a pure state since a pure

state acts as a projector, ( 0
S)

2
=  

0
S, and by normalization Trs 

0
S = 1. For a mixed state

0 < P < 1.

Alternatively, one may use the von Neumann entropy

H = �Trs 
0
S log 

0
S

to quantify the purity of the reduced density matrix. This vanishes for a pure state. For

the maximally mixed state  0
S = /n, with n is the dimension of the Hilbert subspace S,

H = log n.

We can then formulate the decoherence time td in the following way. Assume at time

t = 0  S is in a pure state. Then define the decoherence time td as the time when

H( S(td)) = � log n (3)

for some choice of � < 1.

In the following we will mostly be interested in studying finite dimensional spin systems.

In this class of models, we can reformulate the condition (3) as a condition on the trace

distance using the results of [9]. We recall the definition

k S � �Sk1 = TrS

q
( S � �S)

†
( S � �S) (4)

In [9] it is shown that

|H( 1)�H( 2)|  k 1 � 2k1 log n

4

to denote the partial trace over the complement of S. If there is decoherence, then to a good

approximation

 

0
S ⇡

X

i

�|c1i|2 + |c2i|2
� |eiihei| (2)

which means the probabilities add, without cross terms. The end result for  0
S is then the

same as if a measurement had collapsed the wavefunction into the states |eii. Note the

probability of each |eii is not necessarily equal, so  0
S need not be maximally mixed.

As it stands, this statement of decoherence is basis dependent. To make a basis indepen-

dent statement, one can instead quantify the purity of the reduced density matrix  0
S. One

way to do this to compute

P = TrS( 
0
S)

2

which is known as the purity of a density matrix. P = 1 for a pure state since a pure

state acts as a projector, ( 0
S)

2
=  

0
S, and by normalization Trs 

0
S = 1. For a mixed state

0 < P < 1.

Alternatively, one may use the von Neumann entropy

H = �Trs 
0
S log 

0
S

to quantify the purity of the reduced density matrix. This vanishes for a pure state. For

the maximally mixed state  0
S = /n, with n is the dimension of the Hilbert subspace S,

H = log n.

We can then formulate the decoherence time td in the following way. Assume at time

t = 0  S is in a pure state. Then define the decoherence time td as the time when

H( S(td)) = � log n (3)

for some choice of � < 1.

In the following we will mostly be interested in studying finite dimensional spin systems.

In this class of models, we can reformulate the condition (3) as a condition on the trace

distance using the results of [9]. We recall the definition

k S � �Sk1 = TrS

q
( S � �S)

†
( S � �S) (4)

In [9] it is shown that

|H( 1)�H( 2)|  k 1 � 2k1 log n

4

to denote the partial trace over the complement of S. If there is decoherence, then to a good

approximation

 

0
S ⇡

X

i

�|c1i|2 + |c2i|2
� |eiihei| (2)

which means the probabilities add, without cross terms. The end result for  0
S is then the

same as if a measurement had collapsed the wavefunction into the states |eii. Note the

probability of each |eii is not necessarily equal, so  0
S need not be maximally mixed.

As it stands, this statement of decoherence is basis dependent. To make a basis indepen-

dent statement, one can instead quantify the purity of the reduced density matrix  0
S. One

way to do this to compute

P = TrS( 
0
S)

2

which is known as the purity of a density matrix. P = 1 for a pure state since a pure

state acts as a projector, ( 0
S)

2
=  

0
S, and by normalization Trs 

0
S = 1. For a mixed state

0 < P < 1.

Alternatively, one may use the von Neumann entropy

H = �Trs 
0
S log 

0
S

to quantify the purity of the reduced density matrix. This vanishes for a pure state. For

the maximally mixed state  0
S = /n, with n is the dimension of the Hilbert subspace S,

H = log n.

We can then formulate the decoherence time td in the following way. Assume at time

t = 0  S is in a pure state. Then define the decoherence time td as the time when

H( S(td)) = � log n (3)

for some choice of � < 1.

In the following we will mostly be interested in studying finite dimensional spin systems.

In this class of models, we can reformulate the condition (3) as a condition on the trace

distance using the results of [9]. We recall the definition

k S � �Sk1 = TrS

q
( S � �S)

†
( S � �S) (4)

In [9] it is shown that

|H( 1)�H( 2)|  k 1 � 2k1 log n

4

M.Fannes, Comm. Math. Pays 31 no 4 (1973) 291.

for two different density matrices in HS. Therefore the definition of the decoherence time

can be reformulated as

k S(td)� S(0)k1 = � (5)

for some fixed constant � < 1.

In [10] the statement of fast scrambling was defined in a similar way. The key distinction

is that scrambling involves a global mixing of the system, rather than only the mixing of a

particular subsystem of interest. The condition for scrambling would then require that, (5)

should hold for all subsystems, suitably defined, rather than some single small subsystem,

as typically considered in the decoherence problem.

III. TOY HOLOGRAPHIC MODEL

A toy model that exhibits fast scrambling is discussed in [10]. This is a spin model

with a non-local pairwise interaction. There are N distinct sites with the Hilbert space of

tensor product form H = H1 ⌦ · · · ⌦ HN . The sites interact via a pairwise Hamiltonian

H =

P
hx,yi Hhx,yi summing over unordered pairs of sites. The Hamiltonian may therefore

be associated with a graph G = (V,E) with N vertices V , and edges E corresponding to

the non-zero Hhx,yi.

In order to have fast scrambling, the degree of the vertices D should be of order the size

of the system. We shall then set D = N � 1. To have a sensible limit for large N , we take

the pairwise interactions to be bounded |Hhx,yi| < c/D, for some constant c.

The Lieb-Robinson result [11] places bounds on the norm of the commutator of opera-

tors localized at different sites, as a function of time. For local interactions, this is to be

interpreted as a proof of finite group velocity in nonrelativistic spin systems. In the case at

hand, where interactions are non-local, the same method still yields a bound on the norm

of the commutator for operators. In particular, in [10] it is shown that

k[OA(t), OB]k  4

D
kOAk kOBk |A|e8ct (6)

Here OX is a bounded norm operator acting in the Hilbert subspace of the sites in the set

X, and B is chosen to be a single site.

The condition for scrambling is set up in [10] follows. Consider some Hilbert subspace

H1 with dimension of order 1, maximally entangled with some reference system N , which

5
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We



Mean field evolution

mechanics failing from their classical demise due to singularity approach.

If one uses the decoherence time defined according to (7), then one is appealing to the

subsystem N that the laboratory does not have access to. It is then not necessarily a

contraction then that the decoherence time defined this way does not scale with system size.

However if we use the definition in (5), the timescale is defined in terms of observables in

the lab subsystem. In the present section, we study this possibility.

To make sense of this we need two distinct time evolutions for the state in the lab

subspace. One of these will be the exact Hamiltonian evolution according to H. The other

will be defined according to a mean field Hamiltonian HMF that we describe in more detail

shortly.

It is important to note that not all states yield sensible mean field evolutions. Moreover,

as will be clear, the mean field Hamiltonian depends on the state. State dependence of the

holographic construction was emphasized in ... We conjecture that states close to smooth

bulk spacetimes do have useful mean field descriptions, and that the mean field evolution is

dual to the usual time evolution with respect to the bulk Hamiltonian.

The mean field approximation to the time evolution of a density matrix is considered in

some generality in [12]. Begin with an initial pure state of product form

| (0)i = | 1iH1 ⌦ · · ·⌦ | NiHN (8)

Then one may build a state dependent mean field Hamiltonian

HMF
=

X

x

HMF
x (t)

HMF
x =

X

y

try

�
Hhx,yi MF

y (t)
�

where  MF evolves according to HMF starting from the same initial state | (0)i. A key

point is that with these definitions, and choice of initial state, the mean field Hamiltonian

never generates entanglement between different sites, remains in the same product form as

the initial state.

One then wishes to calculate the timescale for which the trace norm distance between

 x(t) and  MF
x (t) is small. This problem was solved in [10] for the spin model considered

above, via careful application of Lieb-Robinson bounds applied to an expansion of the matrix

element
⌦
 (0)| � MF

x (t)| (0)↵ = 1� ⌦
 

MF
x (t)| x(t)| MF

x (t)
↵

(9)
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by making a Dyson series expansion in H � HMF
x . This matrix element in turn places a

bound on the trace distance between the states (4). Using the result of [9], this in turn

places a bound on the von Neumann entropy H( x(t)). One finds

⌦
 

MF
x (t)| x(t)| MF

x (t)
↵  c0

D
ec

00t (10)

where c0and c00 are constants independent of N . For D = N � 1 these quantities become of

order 1 when t ⇠ logN .

Making contact with black hole physics, the holographic description should be useful both

inside and outside the black hole horizon. An initial state of the form (8) is relevant outside

the black hole horizon, so is not immediately relevant for the physics of interior degrees of

freedom.

However suppose instead we choose an initial state where we have a pairwise entanglement

between H2k and H2k+1 for all k � 1. Then we can almost map the problem into the one

just considered by coarse graining, and viewing H2k ⌦ H2k+1 as a pure state on a single

coarse grained site. The new feature is that the coarse grained Hamiltonian now has a self-

interaction term. Such a term must be treated exactly in the mean field approximation. For

this initial state, we therefore define

HMF
=

X

x

HMF
x (t)

HMF
x = Hhx,xi +

X

y\x
try

�
Hhx,yi MF

y (t)
�

where the sums are over coarse grained sites x = 1, · · · , N/2. This illustrates the state

dependence of the mean field approximation. With this Hamiltonian, we may then proceed

as above to compute the trace distance between the mean field state and the exact evolution,

or equivalently the von Neumann entropy of the exact reduced density matrix, obtaining

the same scaling with N (though different constants c0 and c00).

This is now a nice model for an old evaporating black hole, where the interior degrees

of freedom are maximally entangled with the exterior Hawking radiation. The decoher-

ence time, defined according to the definition (3) is now of order t ⇠ logN matching the

scrambling time.
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The information paradox highlights the incompatibility between general 
relativity (locality + equivalence principle) and quantum physics (unitarity).

Breakdown of local effective field theory, even on "nice" time slices that avoid 
strong curvature region.

Gauge theory - gravity correspondence implies unitary black hole evolution.

Black hole complementarity provides a "phenomenological" description, which 
preserves unitarity and the equivalence principle, but requires giving up locality.

Stretched horizon for outside observers can be motivated from QFT in black 
hole background.

Typical infalling observers do not see drama on their way towards a black hole 
formed from a generic pure state. (Special pure states, as well as special 
observers, exist for which this is not true.)

An approximate description of observers in the black hole interior can be given 
in terms of an effective field theory, defined on a limited set of time slices, such 
that no drama is seen until near the singularity.

Summary


