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“Lattice” effects at low energy

p
dt

® Broken translations affect transport
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® Oirigin translational symmetry breaking

= |attice distinct kr

= |mpurities (“disorder”) “ensemble average” ((-)) = /ddkL (ks
® Translational symmetry breaking can be weak or strong
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“Lattice” effects at low energy

® Broken translations affect transport

® Drude model
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Resistivities and relaxation

® Conductivity of the CFT dual to AdS-RN
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Finite DC conductivity = broken translational invariance

Momentum relaxation: (1) lattice or (2) impurities or ...
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Momentum relaxation in holography
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Massive Gravity and Experiment

® Momentum relaxation most generall Vegh;
& Y Andrade,Withers;
» AdS/CFT: Donos, Gauntlett; ...

C'F'T isometries = AdS diffeomorphisms

= Simplest way to break AdS diffs = massive gravity

de Rahm

Gabadadze S = /d4a§\/ [R — —m ((Tr/C)2 — Tr/Cz) =+

Tolley 242

specific reference metric

nglcg — guafozz/

= Resistivity in a charged black hole in massive gravity

2
7_—1 S Davison;

rel. 27T(€—|—P) Blake, Tong

no momentum dependence: disorder!

Wednesday, May 18, 16



® Resistivity in a charged black hole in massive gravity

1 sm?
=1 _

rel. 21 (e + P)

= Controlled by macroscopic properties !
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® Ordinary metals

= Momentum relaxes
before collective behavior
sets in

~ micro. physics

—1
Trel.
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= Momentum relaxes
after collective behavior
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Ordinary metals

= Momentum relaxes

before collective behavior
sets in
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Strongly correlated metals (no quasiparticles)
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Resistivity and hydrodynamics

® Hydrodynamics is a universal LEET
Davison, Schalm, Zaanen

Im<OO> Andreey, Kivelson, Spivak

ppc ~ lim | dkk?
w—0 w

= What choice for the impurity operator O ?

= Hydrodynamics: 71}, J, + 7irrelevant” ops

= For O =TY
<TOOTOO> ~ 1
w2 — k2 + iwk:cheJrLPkQ + ...
ppc ~ lim [ dkk(nk*+...) ~ s(T) n = i:3
w—0 47

m Caveat: theory must be locally quantum critical z >~ o0
Lucas, Sachdey, Schalm,

Hartnoll, Mahajan, Punk, Sachdev
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e Strange metals exhibit a universal linear resistivity
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Martin et al, PRB4| (1990) 846

= Follows fromp ~ s(T)  if s(T)~T+ ...

Wednesday, May 18, 16



A universal mechanism for a linear resistivity

e Entropy density at low’ [’ (free fermi gas)
s(T)~T+ ...

Davison, Schalm, Zaanen

= Then ppc ~ s(T)~T+ ...
= Can be confirmed in a massive gravity model

“Two-charge” AdS-black hole

1 3 6 1
4 = 77 2 o T 2 2
g — 2’{2 dA /= ( F,LWF 2]8/}1)\ + 3 cosh @ 5 (Tr(/C) Tr(K )))

spg ~ 1T+ ...
Resistivity from hydro + disorder

ppc ~ 1T + ...
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e Strange metals exhibit a universal linear resistivity

600 F
500 -
~— 400¢

Q
S 300}
2
< 200f Bi - 2201
100
O\J 1 1 1 1 1
0 200 400 600

Martin et al, PRB4| (1990) 846

= Follows from p ~ s(T) if s(T)~T+...

® Caveat: holography has many other “linear resistivity” scenarios
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graphene/lucas

® System collectivizes before momentum relaxes

O =J"

= pio + op(x)
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Dirac Fluid in Graphene

The Dirac Fluid

€Caoc — h’UFkI
_|_
Oleff
‘/int —
r

0 Q

» marginally irrelevant 1/r Coulomb interactions:

Q) 1 ¢

= , 0 R = ~ 0.9.
1+ (a0/4) log((10° K)/T)" ° 137 vpe

Oleff

» thermo/hydro nearly that of relativistic theory
> a.f ~0.3at T =100 K

e.g. [Sheehy, Schmalian, Physical Review Letters 99 226803 (2007)]

[Miiller, Fritz, Sachdev, Physical Review BT78 115406 (2008)]
= 9 = Crossno, Kim-et al.

Slides from A. Lucas Lucas, Crossno, Fong, Kim, Sachdev
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Dirac Fluid in Graphene

Graphene: an Ideal Experimental Platform

» fabricating ultra pure monolayer —
graphene:
[Dean et al, Nature Nanotechnology 5 hBN
722 (2010)] Ap~ 30K

hBN

monolayer graphene

hBN
' — Si0,
: Api ~ 300 K
o A 300
» weak disorder: charge puddles -
[Xue et al, Nature Materials 10 282 -3
(2011)]
= & = Crossno, Kimet al.

Slides from A. Lucas Lucas, Crossno, Fong, Kim, Sachdev
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Figure 1: A comparison of our hydrodynamic theory of transport with the experimental results of
[33] in clean samples of graphene at T' = 75 K. We study the electrical and thermal conductances
at various charge densities n near the charge neutrality point. Experimental data is shown
as circular red data markers, and numerical results of our theory, averaged over 30 disorder
realizations, are shown as the solid blue line. Our theory assumes the equations of state described
in (27) with the parameters Cy ~ 11, Cy =~ 9, Cy ~ 200, ny ~ 110, op ~ 1.7, and (28) with
ug ~ 0.13. The yellow shaded region shows where Fermi liquid behavior is observed and the
Wiedemann-Franz law is restored, and our hydrodynamic theory is not valid in or near this
regime. We also show the predictions of (2) as dashed purple lines, and have chosen the 3
parameter fit to be optimized for k(n).

Crossno, Kim et al.
Lucas, Crossno, Fong, Kim, Sachdev
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Figure 1: A comparison of our hydrodynamic theory of transport with the experimental results of
[33] in clean samples of graphene at T' = 75 K. We study the electrical and thermal conductances

at various charge densities n near the charge neutrality point.

Experimental data is shown

as circular red data markers, and numerical results of our theory, averaged over 30 disorder
realizations, are shown as the solid blue line. Our theory assumes the equations of state described
in (27) with the parameters Cy ~ 11, Cy =~ 9, Cy ~ 200, ny ~ 110, op ~ 1.7, and (28) with
ug ~ 0.13. The yellow shaded region shows where Fermi liquid behavior is observed and the
Wiedemann-Franz law is restored, and our hydrodynamic theory is not valid in or near this
regime. We also show the predictions of (2) as dashed purple lines, and have chosen the 3

parameter fit to be optimized for k(n).

Observation of the Dirac fluid

and the breakdown of the Wiedemann-Franz law in graphene
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Evidence for hydrodynamic electron flow in PdCoO ,

Philip J. W. Moll, 23 Pallavi Kushwaha, 3 Nabhanila Nandi, 3
Burkhard Schmidt, 3 Andrew P. Mackenzie, 3**

3.5

Fig. 4. Hydrodynamic effect on transport. (A, B) The measured resistivity of
PdCoO , channels normalised to that of the widest channel (p,), plotted against the inverse
channel width 1/W multiplied by the bulk momentum- relaxing mean free path £,z (closed
black circles). Blue solid line: prediction of a standard Boltzmann theory including boundary
scattering but neglecting momentum-conserving collisions (Red line:prediction of a model that
includes the effects of momentum-conserving scattering (see text). In (C) we show the

predictions of the hydrodynamic theory over a wide range of parameter space.

Negative local resistance due to viscous electron backflow in graphene

D. A. Bandurin®, I. Torre®?, R. Krishna Kumar™*, M. Ben Shalom™?, A. Tomadin®, A. Principi’, G. H. Auto

E. Khestanova®?, K. S. Novoselov’, I. V. Grigorieva®, L. A. Ponomarenko™, A. K. Geim®, M. Polini®

-1 0 1 2 3
A i stray-current contribution
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d - - -200K
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—
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0 1
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Fig. 1. Viscous backflow in doped graphene. (A,B) Calculated steady-state distribution of current
injected through a narrow slit for a classical conducting medium with zero v (A) and a viscous Fermi
liquid (B). (C) Optical micrograph of one of our SLG devices. The schematic explains the measurement
geometry for vicinity resistance. (D,E) Longitudinal conductivity o,, and Ry as a function of n
induced by applying gate voltage. I = 0.3 pA; L =1 um. The dashed curves in (E) show the
contribution expected from classical stray currents in this geometry (18).
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Resistivity and hydrodynamics

® Hydrodynamics is a universal LEET
Davison, Schalm, Zaanen

Im<OO> Andreey, Kivelson, Spivak

ppc ~ lim | dkk?
w—0 w

= What choice for the impurity operator O ?

= Hydrodynamics: 71}, J, + 7irrelevant” ops

= For O =TY
<TOOTOO> ~ 1
w2 — k2 + iwk:cheJrLPkQ + ...
ppc ~ lim [ dkk(nk*+...) ~ s(T) n = i:3
w—0 47

m Caveat: theory must be locally quantum critical z >~ o0
Lucas, Sachdey, Schalm,

Hartnoll, Mahajan, Punk, Sachdev
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Puzzle

® |ocal vs hyperscaling violating quantum critical

= emergent dynamical critical exponent

t— At , x— AV

Locally quantum critical Z = 00
Hyperscaling violating quantum critical z = finite
o o T(d=0)/2

® Previous model: locally quantum critical

I
ppc ~ lim [ dkk? m{O0)

w—0 w

/

no T dependence
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What if hyperscaling quantum critical

® Resistivity in hyperscaling violating quantum critical theories from
disorder

= Holographic model

1 Z(®) y
S=55 /dd+2x\/——g (R — = B P - 2|10, ®|° — V(cp))
L2
ds? — = [TQO/(d—Q)dTQ _ p2d(z=1)/(d=0) g2 | dxﬂ
o o T(d=0)/z
= Assume the presence of a relevant operator in addition to
hydro
tuned to the critical point
By
1 B(® B(®) = —2—20/(d=0)
s, = [ a2 (~50.08 - P00 ) (@)= 737

G¢¢(k7w = O) ~ k(l_g/d)(y—f—(BO)_V— (BO))
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Random field disorder

® The relevant operator is statistically averaged
= Construct an ensemble of solutions for ¢(k) # 0 with

Lucas, Sachdeyv, KS

(p(k)o(k)) = e*(k + k')
= Resistivity
ppc ~ s(T) dk k2o (k,11)> Holography:
0 Perturbation theory
breaks down
PDC ~ E2T2(0+A=2)/z TE=A+d=0)/2)/z <
Memory Matrix
T G3o(w, k)
PDC ~ 62/ d% k? lim Im—82
0 w—0 w
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from weak to strong
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Disorder and localization
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e Strong disorder

= Anderson: disorder can localize charged excitations

}32
free electron: —V¥ = EV
2m
A
éWmﬂmﬂ
E \/\l \_/ U POSITION
ka2

localized electron: T\If = U
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Strong disorder

o
= Anderson: disorder can localize charged excitations
High 7 o ¢ ° (a) I~ ‘ (c) :>£
. "n .‘__T A \B ><<<: &/
&% | P
T @ /e - Anderson Ty
N . " \ _
Impurities Localization i P Q\
Low7”T e & ° 5
< Zé\J\ Je S — g X
e 9 < 2 N e 3 b>
r'\'\\j\J . 1.‘ .‘/:{\ ‘J' N " - < \\Ij ’/
S * ® b S t A/
Impurities — /f /
g 3 e——"9
opposing interfering trajectories
constructive interference of

Einstein relationo = e?Dp(Er)

D=%v,§r

backscattering
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e Strong disorder

= Anderson: disorder can localize charged excitations

High T ® e

e

Index 1997

Anderson
Localization

(a) B (c) p

=>>
\ B <
X P,
=>>
VAR
p
Y >
(b) S N\
>:( : Ry
C S
S
< 14 y
—

opposing interfering trajectories
constructive interference of
backscattering
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Strong disorder

e Strong disorder in weakly interacting systems

= Anderson: disorder can localize charged excitations

relevant: d = 1,2  groundstate is always an insulator

marginal: d = 3

e Strong disorder in strongly interacting systems/many-body-
theory

= Many-body-localization Basko, Aleiner, Altschuler

Connected to quantum entanglement Sent;t=0 |A)®|B) ~ 108 (t)

(No eigenstate thermalization; no quantum chaos;

Failure to thermalize
“do not decohere” ... quantum computer)

A lot of work in |+ dimensions

|deal playground for holography
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® Generic holography (for CMT)

6] 2
Sbulk:/d4$ V=g <R+———>

L?  4e?
® Arbitrary disorder

ds* = —U(r)V(r,x)dt* + W (r,x)dr* + Gy; (r,x)dx;dx;

U(r)
A= P(r,x)dt d(x) = P(00, x)

® Observables are disorder averages
Blfl =17 [ &x f
E[{(j*)] =J" = 0" E;
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® Generic holography (for CMT)

Spur = [ d'z v=g(R+ > - & :
bulk = V=gt 75— 102
® Weak (mean-field) disorder (massive gravity)
1 4 Q3
o=—F 1t <0
e2  Sym?
ccs/pair incoherent/diss

= Only reliable for m? < 1

Wednesday, May 18, 16



® Generic holography (for CMT)

0 F?
Sbulk = /d4$ vV — 3 (R—|— ﬁ - )

4e2?

® Weak (mean-field) disorder (massive gravity)

1 N 47TQ(%
o = —
e2  Som?
ccs/pair incoherent/diss

= Only reliable for m? < 1

= Can this become an insulator for strong disorder?

Wednesday, May 18, 16



® Note: dilaton-driven insulators are not disorder-driven Baggioli, Pujolas
Gouteraux, Kiritsis, Li

1 Z (P Fadaf
S=:5 /dd+2x\/—g (R — %FWFW —2(0,®|? — V(CD)) i
K
= Metal-Insulator transition
IR: Z ((I)) — 0 due to backreaction from disorder...

This just gaps out charged d.o.f. analogous to soft/hard wall

1
g —

22

/dd+2x\/—7ge_2q} (R—...)

= Wall (confinement)

IR: ® —
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® |In this generic holographic disordered system
Grozdanov, Lucas, KS, Sachdev
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® |In this generic holographic disordered system

1
0'26—2:1

» Proof follows from Navier-Stokes on the horizon
U ~ 47 Tr 4o Donos, Gauntlett

¢ =rSx)9Ax)+...,
Gij = 7ij (%) + ...

Vi (TSv') =V; (Qu' + 04 (E"—08'u)) =0
Q(E; — d;p) + S(T¢; — 0;0) +2nV'V vjy = 0
= Disorder-averaged currents

J' =K [ﬁQUZ T UQﬁVij (Ej — jlu)} )
Q'=E [\/ﬁTSvi} .
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® Charge-less black holes
J'=E [\ (Ej — 9;p)]

o =B [y (0F ~ (B 0)] (BB =4

e Conservation equation
0i (V7" (Ej — 0jp)) =0

det(c) =1 £ o=1
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® Charged black holes: variational argument:

m Consider vector fields

vV =V, J"' =0, J =E[\J'], E[\//V'] =0

|dea: these are forcing currents
The power lost is then always positive semidefinite
J? J*Tk iy 97 0 0
I~ <E [2v< VIV Vi /g + (T = V) (J: — QVi) VA

o — Tor — T?a?

Proof follows by choosing
solution for chargeless BH

- <

J*=F [ﬁjﬁi} . J'=F -8
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® Generic holographic disordered system has no disorder-driven
insulating phase

1
0'26—2:1

= Note: this is not a I/N artifact. It is a strong coupling
phenomenon.

= Can prove a similar bound for thermal conductivity. Grozdanoy, Lucas, KS

1 T
1121671'3( ) d=1

1
1 — §Vmin S

A7 1
K > i : T d=2
3 1_6Vmin

Bound follows from the fact that any Area a distance R from the horizon obeys

AR Z Ahor
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Absence of localization in holography

® Classical gravity is infinitely strongly coupled system

= Hydrodynamics “always” applies

= No possibility for
“random interference”.

® A metal is a weakly coupled system §
>
= Wave interference LowT o % °
SR
e 9 NS - -
. °

Impurities

)\m.f.p.
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Disorder and conductivity in holographic metals

® Disorder does not localize in ultra-strongly coupled systems

® For localization in holography one has to go beyond the classical
approximation.
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Thank you
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