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Infinite vs finite DC conductivity

If a conserved quantity (momentum) overlaps with the electric
current, the electric conductivity at zero frequency diverges

σ(ω) = σQ + iρ2

(ε+ p)ω

Recently in gauge/gravity duality: model metallic thermoelectric
transport realistically and account for momentum relaxation

σ(ω) = σ1 + ρ2

(ε+ p)(Γ− iω) .

If a symmetry is spontaneously broken (eg superfluid), the
Goldstone boson can also source a delta function in the conductivity

σ(ω) = σ0 + iρs
m2ω

This talk is about resolving this superfluid delta function, why it is
interesting and to which physical systems it applies.
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Superfluid hydrodynamics

In a superconductor, the U(1) of electromagnetism is spontaneously
broken. The phase of the complex order parameter couples to
hydrodynamics via the Josephson relation (gauge invariance):

m∂tuφ = −∇µ , uφ = 1
m∇φ

with the usual conservation equation for the charge density

∂tρ+∇ · j = 0

Writing down the constitutive relation in the strong disorder limit

j = ρs
muφ − D∇ρ

we obtain the conductivity advertised on the previous slide

σ(ω) = σ0 + iρs
m2ω

, σ0 = Dχ, χ = ∂ρ

∂µ
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Vortices in two dimensions

At finite temperature, vortices can proliferate due to thermal
fluctuations and destroy quasi long range order (BKT transition).
Around a vortex, quantized superfluid velocity circulation∮

vortex
uφ = 2πn

m
The superfluid velocity is no longer a pure gradient

uφ = 1
m (∇φ+ ε×∇ψ)

Mobile vortices will relax the supercurrent, ∂tuφ 6= 0, by
(un)winding the phase.
As vortex cores are not superconducting, mobile vortices produce
dissipation and regulate the conductivity

σ = σ0 + ρs
m2

1
−iω + Ω

Classically [Bardeen & Stephen’65]

Ω ∼ nf
σn

5



Outline of the talk

Can superfluid current relaxation happen at zero temperature?
Much debated in Condensed Matter: experimental evidence.

Memory matrix formulation of quantum superconducting phase
disordering.

With parity, we recover the Bardeen-Stephen result.

Without parity, alternate dissipation mechanism: emergent
Chern-Simons gauge field.

6



Superfluid/insulator transitions in thin superfluid films

[Haviland et al’89]

2D superfluid films exhibit two different kinds of
(quantum) superfluid/insulator phase transition,
disorder or magnetic field-driven.

[Hebard & Paalanen’90]
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Zero temperature metallic phases

[Mason & Kapitulnik’99]

For strong disorder, quantum
critical point separating the
superconducting from the
insulating phase.

[Steiner-Breznay-Kapitulnik’08]

For weak disorder, intervening
metallic phase.
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AC measurements: peaks in the conductivity

Zero temperature metallic phase in weakly-disordered films: Sharp
Drude-like peaks appear in the real part of the conductivity. Directly
motivates superfluid current relaxation.

[Liu-Pan-Wen-Kim-Sambandamurthy-Armitage’13]
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AC measurements: Phase diagram

The width Ω is B dependent and vanishes when superfluidity is restored:
quantum origin. Quantum critical point at the superfluid/metal
transition? [Liu-Pan-Wen-Kim-Sambandamurthy-Armitage’13]
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Memory matrix description of superfluid current relaxation

Approach inspired by momentum relaxation in gauge/gravity duality.
Slow superfluid relaxation: need hierarchy of time scales Ω� T , µ.
Separation between slow modes and fast modes.
Decompose the Hamiltonian as

H = H0 + ε∆H , ε� 1

[H0, Jφ] = 0 , [∆H, Jφ] 6= 0 , Jφ = 1
m

∫
d2x uφ

This leads to finite DC conductivities

σ =
χ2

JJφ

χJφJφ

1
−iω + Ω

We obtain a formula for the decay rate [Forster’75]

Ω = ε2

χJφJφ

lim
ω→0

ImGR
i[∆H,Jφ] i[∆H,Jφ]

ω
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Density-density interaction

Since φ and ρ are canonical variables

πφ = ∂L
∂φ̇

= ∂L
∂µ

= ρ

they obey a Heisenberg uncertainty relation

∆φ∆ρ & ~ ⇐⇒ [φ(x), ρ(y)] = iδ(x − y)

and phase fluctuations are enhanced by Coulomb interactions
[Doniach’81].

So pick

∆H = λ

2

∫
d2x ρ(x)2 =⇒ i [∆H, Jφ] = λ

m

∫
d2x ∇ρ(x)

Short range Coulomb interaction
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Dissipation from mobile vortices

The superfluid current is only defined outside of vortices

Jφ = 1
m

∫
T 2\{vortex cores}

d2x ∇φ

This leads to

i [∆H, Jφ] = λ

m

∫
T 2\{v.c.}

d2x ∇ρ(x) = − λm

∫
v.c.

d2x ∇ρ(x)

using single valuedness of the charge density.
Assuming a diffusive form for the density density retarded Green’s
function

GR
ρρ = k2Dχρρ

−iω + Dk2 , D = σn
χρρ

Ω ∼ k2 lim
ω→0

ImGR
ρρ

ω
∼ nf
σn

Exact quantum derivation of Bardeen-Stephen!
nf and σn are external inputs.
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Parity violation

With magnetic fields, parity is violated.
This leads to a (super)cyclotron pole in the complex conductivities

ω? = ±ΩH − iΩ
where both Ω and ΩH are related to memory matrix elements.
Interestingly, the peak only moves off the vertical axis once
ΩH > Ω/

√
3 (large enough parity violation).
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Chern-Simons interaction

Example of parity violation: emergent Chern-Simons gauge field

L = Lmatter + jµ(Aµ + aµ)− 1
2λ′ ε

µνρaµ∂νaρ

Integrating out the gauge field leads to the non-local interaction

∆H = λ′

2

∫ d2k
(2π)2

ρ−k (∇× j)z
k

k2 + h.c. ,

and
i [∆H, J i

φ] = −λ
′

m lim
k→0

εij jT j .

Using the eom for the CS gauge field aµ, b ∼ λ′ρ:
flow of charge ⇔ flow of magnetic flux ⇔ flow of vortices.

This leads to decay rates Ω, ΩH set by the conductivity of the
normal component σ0, σH

0 . No external ‘BKT’ input required.
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Summary

We have described superfluid current relaxation in a purely quantum
framework.

We have not assumed weakly coupled quasiparticles anywhere.

When parity is preserved, we recovered the classical result of
[Bardeen-Stephen’65] on flux flow resistance and contribution of the
vortex cores to the resistivity from short range Coulomb interactions.

Without parity, a supercyclotron pole appears. We gave an explicit
example of parity violating interaction (emergent CS) which
determines the conductivities in terms of the normal component of
the phase ordered superfluid.

For more details, arxiv:1602.08171
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Outlook

Back to the experimental data: suggestively, the peak seems to be
moving off the real axis for B & 5T .

A new fit including Ω and ΩH leads to ΩH ∼ 10−6 � Ω: Hall
conductivities are suppressed. Emergent particle-hole symmetry?
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