Homes' law in holographic superconductors

Gwangju Institute of Science and Technology Motivation:

What is Homes' law?

Why is Homes' law interesting?

A universal scaling relation in hightemperature superconductors

C. C. Homes¹, S. V. Dordevic¹, M. Strongin¹, D. A. Bonn², Ruixing Liang², W. N. Hardy², Seiki Komiya³, Yoichi Ando³, G. Yu⁴, N. Kaneko⁵*, X. Zhao⁵, M. Greven^{5,6}, D. N. Basov⁷ & T. Timusk⁸

History for finding universality: Uemura's law

Another universality: resistivity

Universal properties in cuprates

Cuprate phase diagram

Contents

Motivations Holographic superconductor with momentum relaxation Massless scalar model Q-lattice model Summary and outlook

arXiv.org > hep-th > arXiv:1002.1722

High Energy Physics - Theory

Introduction to Holographic Superconductors

Gary T. Horowitz

8.1 Open problems

We close with a list of open problems¹⁵. They are roughly ordered in difficulty with the easier problems listed first. (Of course, this is my subjective impression. With the right approach, an apparently difficult problem may become easy!)

1. In the probe limit below the critical temperature, there is an infinite discrete set

10. The high temperature cuprate superconductors satisfy a simple scaling law relating the superfluid density, the normal state (DC) conductivity and the critical temperature [36]. Can this be given a dual gravitational interpretation?

Homes' law in Holographic context

arXiv.org > hep-th > arXiv:1206.5305

High Energy Physics - Theory

Towards a Holographic Realization of Homes' Law

Johanna Erdmenger, Patrick Kerner, Steffen Muller

arXiv.org > hep-th > arXiv:1501.07615

High Energy Physics - Theory

S-Wave Superconductivity in Anisotropic Holographic Insulators

Johanna Erdmenger, Benedikt Herwerth, Steffen Klug, Rene Meyer, Koenraad Schalm

arXiv.org > hep-th > arXiv:1604.06205

High Energy Physics - Theory

Ward Identity and Homes' Law in a Holographic Superconductor with Momentum Relaxation

Keun-Young Kim, Kyung Kiu Kim, Miok Park

arXiv:1605.XXXXX

Homes' law in Holographic Superconductor with Q-lattices

Keun-Young Kim and Chao Niu

Homes' relation for $q = 6 \& \kappa = 0$

Homes' law in Holographic context

arXiv.org > hep-th > arXiv:1206.5305

High Energy Physics - Theory

Towards a Holographic Realization of Homes' Law

Johanna Erdmenger, Patrick Kerner, Steffen Muller

arXiv.org > hep-th > arXiv:1501.07615

High Energy Physics - Theory

S-Wave Superconductivity in Anisotropic Holographic Insulators

Johanna Erdmenger, Benedikt Herwerth, Steffen Klug, Rene Meyer, Koenraad Schalm

arXiv.org > hep-th > arXiv:1604.06205

High Energy Physics - Theory

Ward Identity and Homes' Law in a Holographic Superconductor with Momentum Relaxation

Keun-Young Kim, Kyung Kiu Kim, Miok Park

arXiv:1605.XXXXX

Homes' law in Holographic Superconductor with Q-lattices

Keun-Young Kim and Chao Niu

arXiv.org > hep-th > arXiv:1409.8346

High Energy Physics - Theory

Coherent/incoherent metal transition in a holographic model

Keun-Young Kim, Kyung Kiu Kim, Yunseok Seo, Sang-Jin Sin

arXiv.org > hep-th > arXiv:1501.00446

High Energy Physics - Theory

10

A Simple Holographic Superconductor with Momentum Relaxation

Keun-Young Kim, Kyung Kiu Kim, Miok Park

Homes' relation for q=6 & $\kappa=0$

Goals and method

Goals

Homes' law
$$\rho_s(T=0) = C\sigma_{DC}(T_c)T_c$$
Uemura's law $\rho_s(T=0) = BT_c$

Holographer's tool box

- 1. Need a holographic superconductor ~ hairy black hole (0803.3295: Hartnoll, Herzog, Horowitz)
- 2. Conductivity?

Original holographic superconductor: HHH

[Hartnoll, Herzog, Horowitz: 0803.3295]

The first holographic superconductor

$$S_{HHH} = \int d^4x \sqrt{-g} \left[R + 6 - \frac{1}{4}F^2 - |(\partial - iqA)\Phi|^2 - m_{\Phi}^2 \Phi \Phi^* \right]$$

• Homes' law
$$\rho_s(T=0) = C\sigma_{DC}(T_c)T_c$$

 $\Phi \neq 0 \label{eq:phi}$ Holographic superconductor

Optical conductivity

• Homes' law
$$ho_s(T=0)=C\sigma_{DC}(T_c)T_c$$

 $\operatorname{Im} \sigma \sim 1/\omega \quad \Leftrightarrow \quad \operatorname{Re} \, \sigma(\omega) \sim \delta(\omega)$

Kramers-Kronig relation

$$\chi(\omega) = \chi_R(\omega) + i\chi_I(\omega)$$

$$\chi_R(\omega) = \frac{1}{\pi} \mathcal{P} \int \frac{\chi_I(\omega')}{\omega' - \omega} d\omega', \qquad \chi_I(\omega) = -\frac{1}{\pi} \mathcal{P} \int \frac{\chi_R(\omega')}{\omega' - \omega} d\omega'$$

Translation invariance + finite density

Gauntlett' talk on Monday

Holographic superconductor with momentum relaxation

The first holographic superconductor + momentum relaxation

$$S_{HHH} = \int d^4x \sqrt{-g} \left[R + 6 - \frac{1}{4}F^2 - |(\partial - iqA)\Phi|^2 - m_{\Phi}^2 \Phi \Phi^* \right]$$

1106.4324: Hartnoll

Optical conductivity

Optical conductivity

• Homes' law $ho_s(T=0)=C\sigma_{DC}(T_c)T_c$

$$S_{HHH} = \int d^4x \sqrt{-g} \left[R + 6 - \frac{1}{4}F^2 - |(\partial - iqA)\Phi|^2 - m_{\Phi}^2 \Phi \Phi^* \right]$$

 $\begin{array}{l} \mbox{Massless scalar} & [\mbox{Andrade, Withers: 1311.5157}] \longrightarrow \begin{bmatrix} \mbox{Andrade, Gentle: 1412.6521} \\ & [\mbox{KYK, Kim, Park: 1501.00446}] \end{bmatrix} \\ & S_{MS} = \int \mathrm{d}^4 x \sqrt{-g} \left[-\frac{1}{2} \sum_{I=1,2} (\partial \psi_I)^2 \right] & \psi_I = (\beta x, \beta y) \end{bmatrix} \\ \hline & \psi_I = (\beta x, \beta y) \end{bmatrix} \\ \hline & \mathbf{Q}$ $\begin{array}{l} \mbox{Q-lattice} & [\mbox{Donos, Gauntlett: 1311.3292}] & \qquad \begin{bmatrix} \mbox{Ling, Lin, Nin, Wn, Xian: 1410.6761} \\ & \mbox{Andrade, Gentle: 1412.6521} \end{bmatrix} \\ & S_Q = \int \mathrm{d}^4 x \sqrt{-g} \left[-|\partial \Psi|^2 - m_{\Psi}^2 |\Psi|^2 \right] & \qquad \Psi = e^{ikx} z \psi(z) \\ & \psi(0) = \lambda \end{bmatrix} \end{array}$

Helical lattice:[Erdmenger, Herwerth, Klug, Meyer, Schalm: 1501.07615]Erdmenger's talk on TuesdayMassive gravity:[Zeng, Wu: 1404.532][Baggioli and Goykhman: 1504.05561]

More on momentum relaxation: Gauntlett' talk on Monday

• Homes' law $\rho_s(T=0) = C\sigma_{DC}(T_c)T_c$

We want to check if C is universal (independent of momentum relaxation parameters)

Contents

Motivations

Holographic superconductor with momentum relaxation

Massless scalar model

Q-lattice model

Summary and outlook

Model

Action
$$S = \int d^4x \sqrt{-g} \left[R + 6 - \frac{1}{4} F^2 - |(\partial - iqA)\Phi|^2 - m_{\Phi}^2 \Phi \Phi^* - \frac{1}{2} \sum_{l=1,2} (\partial \psi_l)^2 \right]$$

Ansatz $A = A_l(r)dt \Phi = \Phi(r) \psi_l = (\beta x, \beta y)$
 $ds^2 = -U(r)e^{-\chi(r)}dt^2 + \frac{dr^2}{U(r)} + r^2(dx^2 + dy^2)$
Solutions $0 \frac{d\theta}{dy} \frac{\theta}{dy} \frac{$

Critical temperature

• Homes' law
$$\rho_s(T=0) = C\sigma_{DC}(T_c)T_c$$

Optical electric conductivities: superconducting phase

21

06

Conductivities

,

Action
$$S = \int d^{4}x \sqrt{-g} \left[R + 6 - \frac{1}{4}F^{2} - |(\partial - iqA)\Phi|^{2} - m_{\Phi}^{2}\Phi\Phi^{*} - \frac{1}{2}\sum_{I=1,2}(\partial\psi_{I})^{2} \right]$$

Background
$$A = A_{t}(r)dt \quad \Phi = \Phi(r) \qquad \psi_{I} = (\beta x, \beta y)$$
$$ds^{2} = -U(r)e^{-x(r)}dt^{2} + \frac{dr^{2}}{U(r)} + r^{2}(dx^{2} + dy^{2})$$

+
Fluctuations
$$4A_{x}(t, r) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi}e^{-i\omega t}a_{x}(\omega, r)$$
$$\delta g_{tx}(t, r) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi}e^{-i\omega t}r^{2}h_{tx}(\omega, r)$$
$$\delta \psi_{1}(t, r) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi}e^{-i\omega t}\xi(\omega, r)$$
$$\xi = \xi^{(0)} + \frac{1}{r^{2}}\xi^{(2)} + \frac{1}{r^{3}}\xi^{(3)} + \cdots,$$

$$S_{\rm ren}^{(2)} = \frac{V_2}{2} \int_0^\infty \frac{\mathrm{d}\omega}{2\pi} \left(-\rho \bar{a}_x^{(0)} h_{tx}^{(0)} - \epsilon \bar{h}_{tx}^{(0)} h_{tx}^{(0)} + \bar{a}_x^{(0)} a_x^{(1)} - 3\bar{h}_{tx}^{(0)} h_{tx}^{(3)} + 3\bar{\xi}^{(0)} \xi^{(3)} \right)$$

Numerical method for multi fields

$$S_{\rm ren}^{(2)} = \frac{V_2}{2} \int_0^\infty \frac{\mathrm{d}\omega}{2\pi} \left(-\rho \bar{a}_x^{(0)} h_{tx}^{(0)} - \epsilon \bar{h}_{tx}^{(0)} h_{tx}^{(0)} + \bar{a}_x^{(0)} a_x^{(1)} - 3\bar{h}_{tx}^{(0)} h_{tx}^{(3)} + 3\bar{\xi}^{(0)} \xi^{(3)} \right)$$

Structure

Structure

$$S_{\text{ren}}^{(2)} = \frac{V_2}{2} \int_0^\infty \frac{d\omega}{(2\pi)} \left[\bar{J}^a \mathbb{A}_{ab} J^b + \bar{J}^a \mathbb{B}_{ab} R^b \right]$$

$$R^a = \mathbb{M}_b^a J^b$$

$$J^a = \begin{pmatrix} a_x^{(0)} \\ h_{tx}^{(0)} \\ \xi^{(0)} \end{pmatrix}, \quad R^a = \begin{pmatrix} a_x^{(1)} \\ h_{tx}^{(3)} \\ \xi^{(3)} \end{pmatrix}, \quad \mathbb{A} = \begin{pmatrix} 0 & -\rho & 0 \\ 0 & -\epsilon & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathbb{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

$$S_{\text{ren}}^{(2)} = \frac{V_2}{2} \int_0^\infty \frac{d\omega}{(2\pi)} \left[\bar{J}^a \mathbb{A}_{ab} + \mathbb{B}_{ac} \mathbb{M}_b^c \right] J^b \right]$$

$$\left[\begin{pmatrix} \sigma & \alpha T \\ \bar{\alpha} T & \bar{\kappa} T \end{pmatrix} = \begin{pmatrix} \frac{-iG_{11}}{\omega} & \frac{i(G_{11\mu} - G_{12})}{\omega} \\ \frac{i(G_{22} + \mu(-G_{12} - G_{21} + G_{11\mu}))}{\omega} \end{pmatrix} \right]$$
How to compute \mathbb{M}_b^a

Entrance: Four quick Digressions

Digression1: thermoelectric conductivities and DC limits

[KYK, Kim, Sin, Seo: 1409.8346]

Digression2: coherent vs incoherent

First numerical evidence of coherent/incoherent transition with [Davison and Gouteraux: 1411.1062]

Digression3: FGT sum rule

Sum rule works!

$$\mathrm{FGT} \equiv \int_{0^+}^{\infty} \mathrm{d}\omega \mathrm{Re}[\sigma_n(\omega) - \sigma_s(\omega)] - \frac{\pi}{2} K_s = 0$$

Ferrell-Glover-Tinkham(FGT)

Digression3: FGT sum rule

Digression4: Ward identities

Derivation from field theory

Ward 4:
$$\alpha + \frac{\mu}{T}\sigma - i\frac{n}{\omega T} + \beta \frac{\langle JS \rangle}{\omega^2 T} = 0$$
,
Ward 5: $\bar{\kappa} + 2\mu\alpha + \frac{\mu^2\sigma}{T} - i\frac{\epsilon'}{\omega T} + \beta \frac{\langle QS \rangle}{\omega^2 T} + \beta \frac{\mu \langle JS \rangle}{\omega^2 T} = 0$
Ward 6: $\langle ST \rangle + i\beta \frac{\langle SS \rangle}{\omega} = 0$,

Confirmation by numerical holography

Digression4: Ward identities

Exit: Four quick Digressions

Homes' law and Uemura's law

Are we ready?

Homes' law
$$\rho_s(T=0) = C\sigma_{DC}(T_c)T_c$$
Uemura's law $\rho_s(T=0) = BT_c$

$$\sigma_{DC} = \sigma(\omega = 0)$$
$$\sigma(\omega) \sim i \frac{\rho_s}{\omega}$$

 $\lambda/\mu = 4.5, 4.8, 5.1, 5.4, 5.7$

Contents

Motivations

Holographic superconductor with momentum relaxation

Massless scalar model

Q-lattice model

Summary and outlook

Homes' law: Q-lattice

Comparison: Helical lattice and Q-lattice

[KYK, Niu: 1605.XXXXX]

Comparison: Helical lattice and Q-lattice

[KYK, Niu: 1605.XXXXX]

k/μ

Uemura's law: Q-lattice

Contents

Motivations

Holographic superconductor with momentum relaxation

Massless scalar model

Q-lattice model

Summary and outlook

Summary and outlook

Homes' law
$$\rho_s(T=0) = C\sigma_{DC}(T_c)T_c$$
 Uemura's law $\rho_s(T=0) = BT_c$

$$\begin{split} S_{HHH} &= \int d^4x \sqrt{-g} \left[R + 6 - \frac{1}{4} F^2 - |(\partial - iqA)\Phi|^2 - m_{\Phi}^2 \Phi \Phi^* \right] \\ S_{MS} &= \int d^4x \sqrt{-g} \left[-\frac{1}{2} \sum_{I=1,2} (\partial \psi_I)^2 \right] - \psi_I = (\beta x, \beta y) \\ S_Q &= \int d^4x \sqrt{-g} \left[-|\partial \Psi|^2 - m_{\Psi}^2 |\Psi|^2 \right] - \Psi = e^{ikx} z \psi(z) \ \psi(0) = \lambda \end{split}$$
 Homes' law Uemura's law

Massless scalar model

Summary and outlook

Q-lattice model

Physical understanding

Helical lattice model

 $\kappa = 0$

