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Asymptotically flat spacetimes
Conformal compatification ñ Penrose diagram (may E)

i0
i0

i+ i+

Pletora of boundaries : I`, I´, “i0”, i´, i` ( ‰ AdS)
Ingoing and outgoing energy flux at I`, I´ (‰ AdS)
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What does BMS holography may mean?
Reformulate the S-matrix and the Hamiltonian from a
non-gravitational field theory
Use dual description to microscopically count Kerr black
hole entropy

Attempts :
Asymptotic BMS quantization [Ashtekar, 1987] [Arcioni, Dappiaggi, 2003]

Limit from AdS{CFT [Polchinski, 1999]

Slicing with dS{AdS [de Boer, Solodukhin, 2003]

3d Einstein Ø Chern-Simons Ø Liouville [Barnich, Gonzalez, 2013]

BMS on black hole horizons [Strominger, Zhiboedov, 2014] [Hawking, Perry,

Strominger, 2016] [. . .]

Step zero : fully understand the (semi-)classical structure of
4d asymptotically flat spacetimes.

Recent renewal [Barnich, Troessaert, 2009] [Strominger, 2013] led to rethinking
about classical symmetries and memory effects.
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3 Poincaré invariant vacua with BMS charges

4 Black holes with classical BMS hair
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1. The BMS group
The space of solutions to Einstein gravity with “reasonable”
asymptotically flat boundary conditions can be expanded
close to null infinity in a fixed gauge.

ds2 “ ´du2 ´ 2dudr ` r2d2Ω` . . .

“ ´dv2 ` 2dvdr ` r2d2Ω` . . .

The group of diffeomorphisms which
preserve the form of the asymptotic metric, mapping one
metric to another but preserving the gauge,
are associated with finite and non-trivial canonical
charges

is the asymptotic symmetry group.
Using “reasonable” boundary conditions, the asymptotic
symmetry group was found to be the BMS group [Bondi, van der Burg,

Metzner, 1962] [Sachs, 1962].
G. Compère (ULB) 5 / 39



A translation in Minkowski spacetime

pt,x,y, zq

Bz

pt, r, θ, φq

cos θBr ´
1
r sin θBθ

pu, r, θ, φq, retarded time u “ t´ r

´cos θBu ` cos θBr ´
1
r sin θBθ
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The bms algebra

bms » sop3,1q i Supertranslations

Supertranslations are either translations or pure
supertranslations. Pure supertranslations are (abelian)
“higher harmonic angle-dependent translations”

Tpθ, φqBu `
1
2∇

2TBr ´
1
r pBθTBθ `

1
sin2 θ

BφTBφq ` . . .

The solutions to ∇2p∇2 ` 2qT “ 0 are the translations. Those
are the ` “ 0 and ` “ 1 spherical harmonics, T “ 1, T “ cos θ,
T “ sin θ cosφ, T “ sin θ sinφ.
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What are reasonable boundary conditions ?

Admit Kerr, gravitational waves and electromagnetic
fields
All canonical charges finite
Positive energy
Allow to describe memory effects [Zeldovich, Polnarev, 1974]

[Christodoulou, 1991]

Allow for small perturbations to decay (non-linear
stability) [Christodoulou, Klainerman, 1993]
Allow to describe a semi-classical S-matrix which obeys
all known theorems [Weinberg, 1965] [Cachazo, Strominger, 2014]

The list has been evolving over time.
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The memory effect

After the passage of either gravitational waves or null matter
between two detectors placed in the asymptotic null region,
or after a change of Bondi mass, the detectors generically
acquire a finite relative displacement and a finite time shift.
This is the memory effect.

Historically, it is refered to as the linear memory effect for
changes of Bondi mass or null radiation [Zeldovich, Polnarev, 1974] and
the non-linear memory or Christodoulou effect for
gravitational waves [Christodoulou, 1991].

Memory effects are a 2.5PN effect. [Damour, Blanchet, 1988]

It is an unobserved prediction of GR.
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Supertranslations and memories

Memory effects can be interpreted from the existence of the
supertranslation field Cpθ, φq which is effectively shifted by a
supertranslation after the passage of radiation as [Geroch, Winicour,

1981]

δTCpθ, φq “ Tpθ, φq.

The supertranslation field is the Goldstone boson of
spontaneously broken BMS invariance which labels
inequivalent Poincaré vacua. [He, Lysov, Mitra, Strominger, 2014]
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More precisely, supertranslation memories follow from an
angle-dependent energy conservation law deduced from
Einstein’s equations integrated over a finite retarded time
interval of I` : [Frauendiener, 1992] [Strominger, Zhiboedov, 2014]

´
1
4∇

2p∇2 ` 2qpC|u2 ´C|u1q “m|u2 ´m|u1 `
ż u1

u2
duTuu,

Tuu ”
1
4NzzN

zz ` 4πG lim
rÑ8

rr2Tmatteruu s.

The supertranslation shift can be constructed from the
radiation flux history. It allows to compute the shift of the
geodesic deviation vector sA, A “ θ, φ

sA|u2 ´ sA|u1 „
1
r B

ABBpC|u2 ´C|u1qsB

This is a classical effect of Einstein gravity, Op~0q.
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The extended bms algebra

[Barnich, Troessaert, 2010]

ext bms » Superrotations˚ i Supertranslations˚

where

Superrotations˚ » Vir˚ ‘ Vir˚,
Supertranslations˚ » Regular supert.‘Meromorphic supert.

The Lorentz subalgebra

sop3,1q » slp2,Rq ‘ slp2,Rq Ă Vir˚ ‘ Vir˚

is generated by global conformal transformations on the
sphere. The rest of the algebra has generators which contain
meromorphic functions, δz “ Rzpzq, with poles on S2.

G. Compère (ULB) 12 / 39



The extended bms algebra : comments

The algebra is not realized as asymptotic symmetry algebra,
at least in the standard sense :

The Kerr black hole has infinite meromorphic
supertranslation momenta. [Barnich, Troessaert, 2010]
Minkowski acted upon with a finite superrotation
diffeomorphism has negative energy. [G.C., Long, 2016]

The superrotations still have a role to play :
Superrotation charges are finite and can be non-trivial
[Barnich, Troessaert, 2011] [Flanagan, Nichols, 2015] [G.C., Long, 2016]

The subleading soft graviton theorem has been related to
the Ward identity of the superrotation algebra [Kapec, Lysov,

Pasterski, Strominger, 2014] [Campiglia, Laddha, 2015]
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2. Mapping Symmetries from I` to I´

Requiring BMS invariance of the S-matrix and consistency
with Weinberg soft graviton theorem requires a map between
BMS supertranslations at I´ and I`

BMS` ˆ BMS´ Ñ BMSdiagonal

[Strominger, 2013] [He, Lysov, Mitra, Strominger, 2014]

Similarly to Poincaré symmetry, there is only one BMS
symmetry asymptotically.
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Symmetries away from I` and I´

Either : Symmetries are defined only asymptotically

Either : Symmetries can be extended into the bulk

Only one statement is right, which one?
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Symmetries away from I` and I´

If : Symmetries are defined only asymptotically

Then : One can defines various symmetries at different
places : black hole horizon versus I`

[Carlip, 1998] [Guica, Hartman, Song, Strominger, 2008] [. . .]

If : Symmetries can be extended into the bulk

Then : Background structure in the bulk induced from the
asymptotic boundary conditions
Then : Symmetries at black hole horizon dictated by
symmetries at I`
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Symmetries can be extended into the bulk

Scenario explicitly realized in 3d in non-radiating
spacetimes. [Barnich, Troessaert, 2010] [Compère, Donnay, Lambert, Schulgin, 2014]

Example : BTZ black hole with Virasoro hair [Bañados, 1999]

ds2 “ `2
dr2
r2 ´

ˆ

rdx` ´ `2L´px
´qdx´
r

˙ˆ

rdx´ ´ `2L`px
`qdx`
r

˙

admits two copies of the Virasoro algebra everywhere in the
bulk. In the extremal case, one Virasoro algebra acts
everywhere from infinity to the near-horizon region.
[Compère, Mao, Seraj, Sheikh-Jabbari, 2015]

In the asymptotically flat, one gets cosmological solutions
with bulk BMS hair. [Barnich, Gomberoff, González, 2012]
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Bulk symmetries “ Symplectic symmetries
Underlying structure : asymptotic symmetries are symplectic
symmetries : It exists a presymplectic structure such that

ωrLξgµν , δgµν ;gµνs « 0

[Compère, Donnay, Lambert, Schulgin, 2014] [Compère, Hajian, Seraj, Sheikh-Jabbari, 2015]

This is a generalization of Killing symmetries which obey
Lξgµν « 0. Here roughly : ωµ „ δg^Dµδg.

The generalized Noether theorem for diffeomorphism
invariant theories [Iyer, Wald , 1993] [Barnich, Brandt, Henneaux, 1995] [Barnich, Brandt, 2001]

ωrLξgµν , δgµν ;gµνs « dkξrδgµν ;gµνs

and Stokes’ theorem then leads to conserved charges
everywhere in the bulk

Qξrgs “
ż g

ḡ

ż

S
kξrδgµν ;gµνs
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4d BMS Symmetries in the bulk ?

Motivated by these 3d results, we looked whether or not the
4d supertranslations and superrotation symmetries could be
extended in the bulk spacetime.

After overcoming technical problems, we found that they
can. [G.Compère, J. Long, 2016]

It leads to explicit metrics for Poincaré vacua and black holes
with BMS hair.
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3. Building BMS vacua/black holes
Algorithm :

Start with Minkowski/Schwarzschild spacetime.
Write a generic change of coordinates xµ Ñ x1µ which
exponentiates the infinitesimal change of coordinates
x1µ “ xµ ` ξµ ` . . . where ξµ is a generic supertranslation `
superrotation vector field at I`

Solve for the finite change of coordinates at each order in
the asymptotic radial expansion such that
gµν “ Bxβ

Bx1µ ηαβ
Bxα
Bx1ν fits in BMS gauge.

Resum the infinite radial expansion.
Rewrite the final metric in closed and beautiful form.

The result is the BMS orbit of Minkowski/Schwarzschild
spacetime. It is the representation of the BMS group on the
bulk metric.
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The Poincaré vacua of Einstein gravity
The vacuum metric with supertranslation field only is

ds2 “ ´dt2 ` dx2s ` dy2s ` dz2s “ ´dt2 ` dρ2 ` gABdθAdθB,

where θA “ θ, φ and

gAB “ pρ´Cq2γAB ´ 2pρ´CqDADBC`DADECDBDEC,
“ pργAC ´DADCC´ γACCqγCDpργDB ´DDDBC´ γDBCq

Under a supertranslation,

δTCpθ, φq “ Tpθ, φq.

It admits 10 Killing vectors. We checked that the 10 Poincaré
charges are zero ñ Poincaré vacua.

All supertranslation charges are zero.

G. Compère (ULB) 23 / 39



The Poincaré vacua of Einstein gravity

The vacua are non-trivial in the sense that they admit
canonical charges : superrotation charges

QR “ ´
1
4G

ż

S
d2ΩRA

ˆ

1
8DApCEFC

EFq `
1
2CABDEC

EB
˙

where CAB “ ´2DADBC` γABD2C. [Barnich, Troessaert, 2011]

Even thought the superrotation transformation δz “ Rzpzq,
δz̄ “ Rz̄pz̄q admit poles, the superrotation charges are finite.

There is therefore an obstruction in the bulk at shrinking the
surface of integration ñ Bulk defect.
Maybe our universe is patched with such vacua, originating
from a pregeometric phase. Are there bulk defects ?
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Supertranslation horizon

The static coordinates pt, ρ, θ, φq of the vacua

ds2 “ ´dt2 ` dρ2 ` gABdθAdθB,

break down where DetpgABq “ 0.

This location ρ “ ρSHpθ, φq defines the supertranslation
horizon.

The defect should be at or beyond the supertranslation
horizon.
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Isometric embedding of the supertranslation
horizon
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Finite supertranslation diffeomorphism

ds2 “ ´dt2s ` dρ2s ` γABdθAs dθBs “ ´dt2 ` dρ2 ` gABdθAdθB

The finite diffeomorphism from Minkowski to the vacua is

ts “ t`Cp0,0q, pz ” cot θ2e
iφq

ρs “

b

pρ´C`Cp0,0qq2 `DACDAC, pPythagoras1 ruleq

zs “
pz´ z̄´1qpρ´C`Cp0,0qq ` pz` z̄´1qpρs ´ zBzC´ z̄Bz̄Cq

2pρ´C`Cp0,0qq ` p1` zz̄qpz̄Bz̄C´ z̄´1BzCq
.

When C is a combination of the 4 lowest spherical harmonics,
it is the change between spherical coordinates to other
spherical coordinates at a translated origin.
Supertranslation diffeomorphisms are generalization of
“spatially translating the origin of coordinates” which
introduce a spacetime distortion.
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Vacua with superrotation field
The metric with supertranslation and superrotation fields can
also be constructed from a combined finite supertranslation
and superrotation diffeomorphism from Minkowski with in
particular zÑ Gpzq `Opr´1q.
The Bondi mass decreases with retarded time u,

BuM “ ´
1
8T

ABTAB

where the traceless, divergence-free tensor is

Tzz “
B3zG
BzG

´
3pB2zGq2
2pBzGq2

ñ Unbounded negative energy.
ñ Discard by imposing the Dirichlet boundary condition
Tzz “ 0.
ñ Only Lorentz transformations are asymptotic symmetries
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Remark on the canonical structure

The symplectic structure at I` for the vacua is

ΩI` ” ´
1
4G

ż

I`
dud2Ω δCAB ^ δTAB.

The supertranslation field and superrotation field are
canonically conjugate. Imposing a Dirichlet boundary
condition on TAB select the superrotation field as the source
and the supertranslation field as the vev.
Yet, conserved superrotation charges for the physical vacua
exist while the supertranslation charges are zero. This might
be interpreted as in AdS as “Turning on a source
infinitesimally to compute a vev”.
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4. Memories from 4d Gravitational Collapse
The final static (J “ 0) metric after spherical gravitational
collapse, if analytic, is diffeomorphic to the Schwarzschild
metric. [No hair theorems]
[Carter, Hawking, Robinson, 1971-1975] [Chrusciel, Costa, 2008] [Alexakis, Ionescu, Klainerman, 2009]

But memory effects accumulate before and during collapse,
so the final metric is in a different BMS vacuum that the
global vacuum.
A loophole of no hair theorems is that the diffeomorphism
might be singular inside the event horizon, so the black hole
can carry superrotation charges which characterize the
classical vacuum.
Two questions :

What is the metric gµνpM,Cpθ, φqq of the final state of
collapse ?
How does the supertranslation field Cpθ, φq compares to
the final mass M ?
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The Schwarzschild metric

It admits Weyl conformally flat sections. This is manifest in
isotropic coordinates pt, ρs, θs, φsq :

ds2 “ ´

´

1´ M
2ρs

¯2

´

1` M
2ρs

¯2dt
2 `

ˆ

1` M
2ρs

˙4
´

dρ2s ` γABdθAdθB
¯

where

γABdθAdθB “ dθ2s ` sin2 θsdφ2s ,
ρs “ 8 at spatial infinity

ρs “
M
2 at the event horizon
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The Schwarzschild metric embedded in the
BMS supertranslation vacuum

ds2 “ ´

´

1´ M
2ρs

¯2

´

1` M
2ρs

¯2dt
2 `

ˆ

1` M
2ρs

˙4
´

dρ2 ` gABdθAdθB
¯

where

gAB “ pργAC ´DADCC´ γACCqγCDpργDB ´DDDBC´ γDBCq
ρ2s “ pρ´Cq2 `DACDAC

Remarks :
When C “ 0, this is Schwarzschild
Obtained by finite supertranslation diffeomorphism
The non-trivial Poincaré charges are just the energy M
There are superrotation charges quadratic in C
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The Schwarzschild metric with BMS hair

In comparison with [“Soft hair on black holes”, Hawking, Perry, Strominger, 2016]

Agree : The hair is soft (zero energy). Supermomenta
commute with the Hamiltonian.
Op~0q, not Op~1q. The classical nature of the BMS hair is
rooted in the classical memory effect. The metric are
angles/distances which are classically observable (on the
contrary electromagnetic hair is encoded in phases
measurable only by a quantum apparatus). Op~0q
correction is compatible with quantum theory arguments
allowing for a resolution of Hawking’s paradox [Mathur, 2009]

Non-linear, not linear. A linearized diffeomorphism would
give only the linearized metric, valid close to I` or I´.
But non-linear effects in the bulk follow from Einstein’s
equations.
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How much supertranslation hair ?

What is the final value of Cpθ, φq ?

It depends upon the fluxes and Bondi mass at I` and I´.
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How much supertranslation hair ?

Assuming particular junction conditions joining I`´ and I´`
and boundary conditions on radiation [Christodoulou, Klainerman, 1993],
Einstein’s equations give

´
1
4∇

2p∇2 ` 2qpC|finalpθ, φq ´C|inpπ ´ θ, φ` πqq

“m|final ´m|in `
ż `8

´8

duTuupθ, φq ´
ż `8

´8

dvTvvpπ ´ θ, φ` πq

This is the global angle-dependent energy conservation law
for asymptotically flat spacetimes. [Geroch, Winicour, 1980] [Strominger,
Zhiboedov, 2014] [G.C., Long, 2016]

Spherically symmetric collapse of a null shell
ñ C|final “ 0 (metric described by Vaidya metric).
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How much supertranslation hair ?

Non-spherically symmetric collapse of a null shell is
constrained by the null energy condition

Tvvpθ, φq ě 0.

Assuming all matter arrives at v “ 0,

Tvv “
ˆM `M

ř

Pl,mYl,mpθ, φq
4πr2 `Opr´3q

˙

δpvq

we get the complicated constraint
ÿ

Pl,mYl,mpθ, φq ě ´1.
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How much supertranslation hair ?
In the ideal case (no outgoing radiation, no initial mass, only
ingoing collapsing radiation), the solution to the global
energy conservation law is

Cpθ, φq “M
ÿ

`ě2,m

4p´1q`
p`´ 1q`p`` 1qp`` 2qPl,mYl,mpθ, φq

with the constraint
ÿ

Pl,mYl,mpθ, φq ě ´1.

which bounds C from above and below (from compactness).
So, for a general non-spherically symmetric collapse we
expect (think binary black hole merger or accretion)

|Cpθ, φq| »M (leading order classical effect)
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Competition between supertranslation horizon
and infinite redshift surface

ds2 “ ´

´

1´ M
2ρs

¯2

´

1` M
2ρs

¯2dt
2 `

ˆ

1` M
2ρs

˙4
´

dρ2 ` gABdθAdθB
¯

where ρ2s “ pρ´Cq2 `DACDAC. The infinite redshift surface is
located at ρ “ ρHpθ, φq solution to

M2

4 “ pρH ´Cq2 `DACDAC.

When C !M, this is a black hole with event horizon
When DACDAC ą M2

4 , there is no infinite redshift surface.
ñ Probable violation of the weak cosmic censorship
But it turns out that for all cases studied, DACDAC ď M2

4
from the weak energy condition bound !
ñ New test of the weak cosmic censorship
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Summary
We constructed the supertranslation orbit of Minkowski
and recognized that these are Poincaré vacua with a
defect carrying superrotation charge which is hidden
behind the supertranslation horizon.
Superrotations do not belong to the asymptotic symmetry
group since they would lead to unbounded negative
energy but superrotation charges are well-defined.
In the center-of-mass frame, supertranslations are
spatial, except the zero mode (“ time translation).
Memory effects lead to a different final state of collapse :
the Schwarzschild black hole with supertranslation hair.
The hair is a large non-linear Op~0q effect. Assuming
suitable boundary conditions at spatial infinity, the final
hair is computable from past history of evolution and
collapse and is OpMq.
Much physics and maths remains to be understood.
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