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Regge behaviour in QCD

• Hadronic resonances fall in linear trajectories
Chapter 1. Introduction

Figure 1.2: The Chew–Frautschi plot. Spin J of the isospin I = 1 even parity mesons against
their mass squared. (From reference [4])

String Theory was discovered forty years ago as an attempt to understand hadronic physics.

By that time, QCD and String Theory competed as models of the strong force. Of course, this

QCD/String dispute was decided long ago in favor of QCD. However, the modern viewpoint

replaces dispute by duality, and rephrases the main question: Is QCD a String Theory?

1.1 Hadronic Spectrum & Strings

Although the fundamental particles of QCD are quarks and gluons, the confinement mechanism

disallows their direct observation. Instead, the observed spectrum is characterized by a long

list of colorless bound states of the fundamental particles. Most of these bound states are

unstable and are found as resonances in scattering experiments. At the present day, we are still

unable to accurately predict the observed hadronic spectrum directly from the QCD dynamics1.

Nevertheless, from a phenomenological perspective, the hadronic spectrum has several inspiring

features.

In figure 1.2 we plot the spin J of the lighter mesons against their mass squared m2. The

result is well modeled by a linear Regge trajectory

J = α
(

m2
)

= α(0) + α′m2 ,

where α(0) and α′ are known as the intercept and the Regge slope, respectively. In fact, most

1See [2] and [3] and references therein for attempts using the lattice formulation of QCD and the AdS/CFT
correspondence.
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I = 1          even parity mesons 

J = j(t) = j(0) + ↵0t

t =

1.1. Hadronic Spectrum & Strings

Figure 1.3: Regge trajectory determined from the large energy (20–200 GeV ) behavior of the
differential cross section of the process π− + p → π0 + n. The straight line is obtained by
extrapolating the trajectory in figure 1.2. (From reference [4])

of the hadronic resonances fall on approximately linear Regge trajectories with slopes around

1(GeV )−2 and different intercepts. A linear relation between spin and mass squared suggests a

description of the bound states as string like objects rotating at relativistic speeds. Indeed, the

spin of a classical open string with tension T rotating as a straight line segment, with endpoints

traveling at the speed of light, is given by α′ = (2πT )−1 times its energy squared2.

A related stringy feature of QCD is the high energy behavior of scattering amplitudes.

Experimentally, at large center–of–mass energy
√

s, the hadronic scattering amplitudes show

Regge behavior

A(s, t) ∼ β(t)sα(t) ,

where t is the square of the momentum transferred. The appropriate Regge trajectory α(t)

that dominates a given scattering process is selected by the exchanged quantum numbers. For

example, the process

π− + p → π0 + n

is dominated by the exchange of isospin I = 1 even parity mesons, i. e. the Regge trajectory

in figure 1.2. In figure 1.3 we plot the Regge trajectory obtained from the behavior of the

differential cross section at large s. Elastic scattering is characterized by the exchange of the

vacuum quantum numbers. In this case the scattering amplitude is dominated by the Pomeron

2See section 2.1.3 of [5] for details.
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�� + p� �0 + n

Total cross section

A(s, t) ⇠ �(t)s j(t)

(s � t)

� ⇠ s j(0)�1



Regge theory

• Scattering dominated by t-channel exchange of a Regge trajectory

J!s t
!

(s � t)

A(s, t) ⇡
X

J

gJ
sJ

t�m2(J)
⇠

X

J

gJ
sJ

J � j(t)

• Sommerfeld-Watson transform:
J
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2 4 6j(t)
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X

J

!
Z

dJ

sin⇡J



Soft Pomeron trajectory [Donnachie, Landshoff]

• Trajectory selected by exchanged quantum numbers. For elastic scattering 
these are the vacuum quantum numbers.

Total elastic cross sections

Chapter 1. Introduction

Figure 1.4: Total cross sections for elastic scattering at high energy. The cross sections rise
slowly due to pomeron exchange. (From reference [6])

trajectory[6, 4]

αP (t) ≃ 1, 08 + 0, 25 t , (GeV units) .

There is some evidence from lattice simulations that there are glueball states lying on this

trajectory starting from spin J = 2 [7, 8]. Furthermore, an even glueball state with spin 2

lying on the pomeron trajectory seems to have been found in experiments [9]. However, in real

QCD, glueball states mix with mesons and their identification is not clear [6]. An important

consequence of the pomeron intercept being larger than 1, is that hadrons effectively expand at

high energies. More precisely, the total cross section for elastic processes in QCD grows with

center–of–mass energy,

σ ∼ sαP (0)−1 ∼ s0.08 ,

as can be seen in figure 1.4. This expansion with energy reinforces the picture of hadrons as

stringlike objects. It is well known [10] that the average size of a fundamental string is given by

the divergent sum,

< R2 >∼ α′
∞
∑

n=1

1

n
,

coming from the contributions of zero point fluctuations of each string mode. However, in

a scattering experiment, only the modes with frequency smaller than the energy
√

s can be
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jP (t) ⇡ 1.08 + 0.25t (GeV units)

� ⇠ s jP (0)�1 ⇠ s0.08

Exchange of even spin glueballs (J � 2)

OJ ⇠ Tr
⇣
F↵[�1

D�2 . . . D�J�1F
↵

�J ]

⌘



Deep Inelastic Scattering

• Optical theorem

�

X
= Im

2

(t = 0)
X

P

γ γ

P

γ

P

P

X

γ
e� e�• Pomeron enters also in diffractive processes. 

For example DIS, where electron interacts with 
proton via exchange of off-shell photon

Is it the same Regge trajectory? 
One or two pomerons (soft and hard)?

• Regge limit corresponds to low x (s ⇠ Q

2
/x)

j0 ⇠ 1.1� 1.4

Q

BFKL pomeron explains well DIS data outside the confining region Q � �QCD

[ Kowalski, Lipatov, Ross, Watt 10]



Graviton/Pomeron Regge trajectory [Brower, Polchinski, Strassler, Tan 06]

• At strong coupling pomeron trajectory described by graviton Regge trajectory 
of string theory in Anti-de Sitter space (large N, conformal theory                   )

O

ja jb

O

J

N = 4 SYM

�
D2 �m2

�
ha1...aJ = 0

m2 = �(�� 4)� Jwith

Exchange of spin J field in AdS 
(symmetric, traceless and transverse)

AdS scattering
 process

,  AdS energy squaredS = zz0s ,  impact parameter
coshL =

z2 + z02 + l2?
2zz0

z

z0

R2
H3

l�
L

• AdS impact parameter representation. In Regge limit 
[Cornalba, MSC, Penedones, Schiappa 07]

AJ (s, t) ⇡ iV J
0
J s

Z
dl?e

iq?·l?
Z

dz

z3
dz0

z03
�1(z)�3(z)�2(z

0)�4(z
0)SJ�1GJ (L)



� = �(J)

AJ(s, t) ⇡ iV J
0
J s

Z
dl?e

iq?·l?
Z

dz

z3
dz0

z03
�1(z)�3(z)�2(z

0)�4(z)S
J�1GJ (L)

•             is the integrated propagator (                                  )GJ(L)

GJ(L) ⇠ i (zz0)(J�1)

Z
dw+dw�⇧+···+.�···�(z, z

0, w)

w = x� x

0 = (w+
, w

�
, l?)

and obeys scalar propagator equation in transverse space
h
⇤H3 � 3��(�� 4)

i
GJ (L) = ��H3(y, y

0)

R2
H3

l�
L

z

z0

y

y0

✓
� d

dz2
+ V (z)

◆
= t (z)

,  reduces to Schrodinger problem

V =

✓
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4
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z

VGJ(L) = eiq?·l?pz  (z)



• Sommerfeld-Watson transform J
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j0

At strong coupling,                        , we have

�(�� 4) ⇡ 2

↵0 (J � 2)

p
� =

1
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Branch cut starts for J < j0 = 2� 2p
�

↵ =
p

4 +�(�� 4)
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GRAVITON

. . .

Operators that contribute have twist 2 and even spin

OJ ⇠ Tr
�
F↵�1D�2 . . . D�J�1F

↵
�J

�



Applications to low-x QCD

• Fits low x data for DIS, DVCS, VMP including confining region Q � �QCD

DIS [Cornalba, MSC 08; Levin, Potashnikova 10; Brower, Djuric, Sarcevic, Tan 10];
DVSC [MSC, Djuric 12];  VMP [MSC, Djuric, Evans 13]

• DIS

(t = 0)
�(Q, x) ⇥ Im W � F2

��

P

Q

P

��
Q

• DVCS & VMP

d�

dt
(Q, x, t) � |W |2 �tot(Q, x)

��
Q

P P

�, V

and

• Fits for hard-wall model have 4 parameters j0 , 2 , z⇤ , z0



DIS - AdS Pomeron [Brower, Djuric, Sarcevic, Tan 10]

P lots

F igure: Global �ts to the combined Z E US-H1 small-x data. Dot ted red lines are
for single conformal B PS T Pomeron and dot ted blue lines are for single hard-wall
B PS T Pomeron.

Djurić — Small-x AdS Deep Inelastic Scattering 25/37

HERA combined data by H1 and ZEUS 
experiments                           with[Aaron et al 10]

0.10 < Q2 < 400 GeV 2, x < 10�2

For hard wall model obtained excellent fit 
with (249 points)

�2
d.o.f. = 1.07
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Figure 9: The fit of the hard-wall pomeron model to the data. The first five figures are for the
di�erential cross section data and the last one for the cross section. W is the center of mass energy
and we use units of GeV. To avoid cluttering the last figure we did not plot all of the Q2 values.
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�2
d.o.f. = 0.51

All data (52 points)

DVSC (differential cross section) [MSC, Djuric 12]



VMP (                      ) [MSC, Djuric, Evans 13]J/ , !, �, ⇢0



Soft pomeron in holographic QCD [Bayona, MSC, Djuric, Quevedo 15]

Constructed to match QCD perturbative beta function

Reproduces:  - heavy quark-antiquark linear potential

- glueball spectrum from lattice simulations

- thermodynamic properties of QGP (bulk viscosity, 
drag force and jet quenching parameters)

Judicious choice of potential with only 2 free parameters

[Gursoy, Kiritsis, Nitti 07]• 5D dilaton-gravity model constructed to reproduce QCD

z

IRUV

x

↵

Boundary

ds

2 = e

2A(z)
�
dz

2 + ⌘↵�dx
↵
dx

�
�

� = �(z)

S =
1

22

Z
d

5
x

p
�g e

�2�
h
R+ 4(@�)2 + V (�)

i



2

4

1 2 4

⇠ ln J

BFKL

J

�� 2

GRAVITON

�(�� 4) ⇡ 2

l2s
(J � 2)

• In the region             we takeJ < 2

. . .

Spin J field in holographic QCD

Spin J equation must:

• In AdS limit reduce to  
�
D2 �m2

�
ha1...aJ = 0

m2 = �(�� 4)� J , � = �(J)

• For            reproduce TT metric fluctuationsJ = 2

Proposed equation for propagating mode
⇣
r2�2�̇rz��(�� 4) +JȦ2e�2A

⌘
h↵1...↵J = 0

• Construct spin J field dual to gluon operator

Decompose symmetric, traceless and transverse field               
with respect to global                  boundary symmetry. Propagating 
modes have boundary indices 

ha1...aJ

SO(1, 3)
h↵1...↵J

OJ ⇠ Tr
�
F↵�1D�2 . . . D�J�1F

↵
�J

�



Soft pomeron Regge trajectories

O O

J

O0 O0

• Consider 5D exchange of spin J field in the Regge limit

AJ (s, t)

V (z) =
15

4
Ȧ2 � 5Ȧ�̇+ �̇2 +�(�� 4) e2A(z)

Problem reduces to a Schrodinger problem



• Sum over spin J exchanges in 5D dual theory

J

� � �
2 4 6

j2(t)

j1(t)

j3(t)

Poles in the J-plane at t = tn(J) ) J = jn(t)

X

J

!
Z

dJ

sin⇡J



• Obtained approximate linear Regge trajectories. Spin J equation has one free 
parameter,    , to fit soft pomeron intercept and slop.ls

where              is a parameter of the holographic QCD model

↵0⇤2
QCD = 0.018

ls = 0.178 GeV�1 )
j0 = 1.08

⇤QCD

-                                 to match            from lattice then  ⇤QCD = 0.292 GeV

⇤QCD = 0.265 GeV

m0++

-                                 to match possible value of           at pomeron 
trajectory then  

m2++

↵0 = 0.21 GeV�2

↵0 = 0.25 GeV�2
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Figure 1.2: The Chew–Frautschi plot. Spin J of the isospin I = 1 even parity mesons against
their mass squared. (From reference [4])

String Theory was discovered forty years ago as an attempt to understand hadronic physics.

By that time, QCD and String Theory competed as models of the strong force. Of course, this

QCD/String dispute was decided long ago in favor of QCD. However, the modern viewpoint

replaces dispute by duality, and rephrases the main question: Is QCD a String Theory?

1.1 Hadronic Spectrum & Strings

Although the fundamental particles of QCD are quarks and gluons, the confinement mechanism

disallows their direct observation. Instead, the observed spectrum is characterized by a long

list of colorless bound states of the fundamental particles. Most of these bound states are

unstable and are found as resonances in scattering experiments. At the present day, we are still

unable to accurately predict the observed hadronic spectrum directly from the QCD dynamics1.

Nevertheless, from a phenomenological perspective, the hadronic spectrum has several inspiring

features.

In figure 1.2 we plot the spin J of the lighter mesons against their mass squared m2. The

result is well modeled by a linear Regge trajectory

J = α
(

m2
)

= α(0) + α′m2 ,

where α(0) and α′ are known as the intercept and the Regge slope, respectively. In fact, most

1See [2] and [3] and references therein for attempts using the lattice formulation of QCD and the AdS/CFT
correspondence.
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• Recall that Donnachie-Landshoff fits require the                    meson 
trajectories that are subleading

⇢ ,! , f2 , a2

� = X s j0�1 + Y s j00�1

Fits allow for intercept      in the rangej00

0.433
The second pomeron trajectory is precisely in this range!!

0.35� 0.55



Concluding Remarks

• Holographic QCD model reproduces physics of Donnachie-Landshoff 
pomeron, with sensible results for intercept and slope.
Importance of second pomeron trajectory?

• Ultimate goal:  a single holographic model for scattering of soft probes, as 
well as DIS, DVSC and VMP based, on the graviton Regge trajectory.

• Connection with hard-pomeron, i.e. unify hard and soft pomerons.
 Understand running of effective exponent

We can also ⇥t the data to `e�ect ive Pomerons', by ⇥xing Q2 , and then
⇥t t ing

F2(x,Q
2) � (1/x)�eff

By doing this we get the following

F igure: Q2-dependence for e�ect ive Pomeron intercept ,  P = 1 +  eff .

Djurić — Small-x AdS Deep Inelastic Scattering 30/37

[Brower, Djuric, Sarcevic, Tan 10]
� ⇠ f(Q)

✓
1

x

◆✏eff (Q)

- Add next sub-leading poles and study behavior 
with a varying probe scale Q?
- Understand better asymptotics of spin J field 
near the boundary to reproduce QCD anomalous 
dimension. What is analytic structure in J-plane?
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