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Quantum Entanglement 
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spooky action at a distance 

Einstein-Podolsky-Rosen Paradox: 

• properties of pair of photons connected, 

  no matter how far apart they travel  

• different subsystems are correlated through 

   global state of full system 
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Quantum Entanglement 

“spukhafte Fernwirkung” = 

spooky action at a distance 

Einstein-Podolsky-Rosen Paradox: 

• properties of pair of photons connected, 

  no matter how far apart they travel  

• different subsystems are correlated through 

   global state of full system 

compare: 

Entangled!! 

No Entanglement!! 



 Entanglement Entropy 

• in QFT, typically introduce a (smooth) boundary or entangling 

  surface      which divides the space into two separate regions 

• integrate out degrees of freedom in “outside” region 

• remaining dof are described by a density matrix 

A 

B 

calculate von Neumann entropy: 

• general tool; divide quantum system into two parts and use 

  entropy as measure of correlations between subsystems 
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First Law of Entanglement 

• entanglement entropy: 

• make a small perturbation of state: 

S(½A) =¡tr(½A log½A)

~½ = ½A+ ±½

“1st law” of entanglement entropy 

½A = exp(¡HA)• modular (or entanglement) Hamiltonian: 

½A = exp(¡H=T)• this is the 1st law for thermal states: 



“1st law” of entanglement entropy: 

• generally         is “nonlocal mess” and flow is nonlocal/not  geometric 
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• by causality,       and        describe physics throughout 
   domain of dependence      ; eg, generate boost flows 

“1st law” of entanglement entropy: 

• generally         is “nonlocal mess” and flow is nonlocal/not  geometric 

HA =

Z
dd¡1x°¹º1 (x)T¹º +

Z
dd¡1x

Z
dd¡1y °¹º;½¾2 (x; y)T¹ºT½¾ + ¢ ¢ ¢

hence usefulness of first law is very limited, in general 

• famous exception: Rindler wedge 

HA = 2¼K

= 2¼

Z

A(x>0)

dd¡2y dx [x Ttt ] + c0

boost generator 

A B 
● 

HA

Σ 

Σ = (x = 0, t = 0) • any QFT in Minkowski vacuum; choose 

(Bisognano & Wichmann; Unruh) 



• another exception: CFT in vacuum of d-dim. flat space and entangling 
                                     surface which is Sd-2  with radius R 

HB = 2¼

Z

B

dd¡1y
R2 ¡ j~yj2

2R
Ttt(~y) + c0

(Casini, Huerta & RM;  
Hislop & Longo) 

“1st law” of entanglement entropy: 

B 

B 
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“1st law” of entanglement entropy: 

• small excitations of CFT vacuum in d-dim. flat space and entangling 
   surface which is Sd-2  with radius R: 

B 
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𝑥  



±S(R;~x) = 2¼
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• boundary-to-bulk propagator in d-dim de Sitter space! 

(eg, see: Xiao 1402.7080) 
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• small excitations of CFT vacuum in d-dim. flat space and entangling 
   surface which is Sd-2  with radius R: 
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• boundary-to-bulk propagator in d-dim de Sitter space! 
(eg, see: Xiao 1402.7080) 

ds2 =
L2

R2

¡
¡dR2 + d~x2

¢

• straightforward to show 𝛿𝑆 satisfies wave equation in dSd 

¡
r2
dS ¡m2

¢
±S = 0 m2L2 =¡dwith 

“1st law” of entanglement entropy: 



• wave equation                                    is singular as 𝑅 → 0  

Boundary data: 

ds2 =
L2

R2

¡
¡dR2 + d~x2

¢

¡
r2
dS ¡m2

¢
±S = 0

• de Sitter metric: 

with  m2L2 =¡d
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•           sets 𝛿𝑆 at very small 𝑅 and EE perturbations at larger scales 
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•                         : mass tachyonic!  → above precisely removes the  
                                                          “non-normalizable” or unstable modes  
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dd¡1y
R2 ¡ j~y¡ ~xj2

2R
hTtt(~y)i

• consider state: jÃi = j0i + ² Ttt(t0 + i¿; ~x0)j0i
regulate UV  
divergences 

small expansion 
parameter 

²=¿d ¿ 1

• expectation value is fixed by 2-pt function 

hÃjTtt(t; x)jÃi = ² CT

"
1

(¢x2 ¡ (¢t+ i ¿)2)d

Ã
(¢x2 + (¢t+ i ¿)2)2

(¢x2 ¡ (¢t+ i ¿)2)2
¡1

d

!
+c:c:

#

+ O(²2)

h0jTtt(t; ~x)Ttt(0;~0)j0i

with and 
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d = 3:  𝑡 = 5, 𝑦 = 𝑦0 

• sphere expanding out 
   from (𝑡0, 𝑥 0) at speed 
   of light 
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Alternate conformal frames: 

• wave equation                                    is covariant 
¡
r2
dS ¡m2

¢
±S = 0

can use any coordinate system on dS geometry 

• coord transformation in bulk corresponds to conformal transformation 
   in boundary theory             new holographic construction extends to 
   CFT in any conformally flat background 



Alternate conformal frames: 

• wave equation                                    is covariant 
¡
r2
dS ¡m2

¢
±S = 0

can use any coordinate system on dS geometry 

ds2 = L2(¡d¿2 +cosh(¿)2dd¡1)

• coord transformation in bulk corresponds to conformal transformation 
   in boundary theory             new holographic construction extends to 
   CFT in any conformally flat background 

CFT time slice is 𝑆𝑑−1, in cylindrical bkgd 𝑅 × 𝑆𝑑−1  

asymptotic boundary (           ) is round 𝑆𝑑−1 

• for example, consider same wave equation in global dS coord’s 
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Compare and Contrast: begin with d-dim. CFT 

ds2 =
L2

R2

¡
¡dR2 + d~x2

¢
• Entanglement Holography: 

• AdS/CFT correspondence: 

ds2 =
L2

z2

¡
+dz2 ¡ dt2 + d~x2

¢

spatial coordinates in 
(d–1)-dim. time slice 

spacetime coordinates 
for d-dim. CFT 

holo. coordinate = 
scale (radius of ball) 

holo. coordinate = 
scale (roughly) 

• two-derivative wave equation relies only on first law of entanglement 
                   appropriate states in any CFT in any number of dimensions  

Euclidean 

• two-derivative bulk theory relies on weak curvature and weak coupling 
                   holographic CFT requires strong coupling and large # of d.o.f. 

undetermined 
constant? 

fixed 
by ℓP  

Lorentzian 
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• geometry naturally gives partial ordering of spheres 

time-like 
separated 

time slice 

space-like 
separated 

null 
separated 

reference sphere 

suggests auxiliary/holographic geometry should be Lorentzian 

(ordering of intervals for d=2 discussed by Czech, Lamprou, McCandlish & Sully) 

Why is scale time-like? 



x

Bx

• 

@Bx Bx

Mapping deSitter ↔ Balls? 

• choose one of asymptotic boundaries of dS (eg,       )  ↔ time slice I+

• for any point 𝑥 in bulk and send out future light cone to  I+

• intersects      on a sphere and interior uniquely defines `dual’ ball 𝐵𝑥 I+

I+ = fR = 0; ~xg

dS bulk 
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By2

By3

y1

By1

• choose one of asymptotic boundaries of dS (eg,       )  ↔ time slice I+
Mapping deSitter ↔ Balls? 

I+ = fR = 0; ~xg

x

• proposed “ordering” of spheres = 
  Lorentzian ordering of bulk points 

• for any point 𝑥 in bulk and send out future light cone to  I+

• intersects      on a sphere and interior uniquely defines `dual’ ball 𝐵𝑥 I+
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@Bx Bx

By2

By3

y1

By1

• choose one of asymptotic boundaries of dS (eg,       )  ↔ time slice I+
Mapping deSitter ↔ Balls? 

I+ = fR = 0; ~xg

x

• proposed “ordering” of spheres = 
  Lorentzian ordering of bulk points 

• mapping/dS geometry does not imply 
   local dynamics respecting this structure  

• for any point 𝑥 in bulk and send out future light cone to  I+

• intersects      on a sphere and interior uniquely defines `dual’ ball 𝐵𝑥 I+



Comments: 

• same wave equation derived from AdS/CFT correspondence 

Nozaki, Numasawa, Prudenziati& Takayanagi: arXiv:1304.7100 
Bhattacharya, Takayanagi: arXiv:1308.3792 

• Eg, linearized Einstein eqs in AdS4 implied for holographic EE 
·
@2

@R2
¡ 1

R

@

@R
¡ 3

R2
¡ @2

@x2
¡ @2

@y2

¸
±S(t; x; y;R) = 0

• here, we see equation readily extends to any 𝑑 and follows purely 
   from underlying conformal symmetry 

·
¡R3

L2

@

@R

µ
1

R

@

@R

¶
+
R2

L2

@2

@x2
+
R2

L2

@2

@y2
+

3

L2

¸
±S(t; x; y;R) = 0

• can be recast as d=3 deSitter wave equation: 

mass term d’Alembertian on dS3 



Comments: 

• MERA (Multi-scale Entanglement Renormalization Ansatz) provides 
  efficient tensor network representation of ground-state wave-function 
  in d=2 critical systems (Vidal) 

• has been argued that MERA has (Lorentzian) causal structure with  
   coarse-graining direction being time-like! (Beny; Czech etal) 



Comments: 

• deSitter geometry appears in recent discussions of integral geometry 
   and the interpretation of MERA in terms of AdS3/CFT2 

(Czech, Lamprou, McCandlish & Sully: arXiv:1505.05515; arXiv:1512.01548) 

• consider space of intervals u<x<v on time slice of 2d holographic CFT 
              space of geodesics on 2d slice of AdS3  pts in 2d de Sitter 
AdS/CFT 

ds2 = L2 dudv

(v ¡ u)2



Comments: 

• deSitter geometry appears in recent discussions of integral geometry 
   and the interpretation of MERA in terms of AdS3/CFT2 

(Czech, Lamprou, McCandlish & Sully: arXiv:1505.05515; arXiv:1512.01548) 

• consider space of intervals u<x<v on time slice of 2d holographic CFT 
              space of geodesics on 2d slice of AdS3  pts in 2d de Sitter 
AdS/CFT 

ds2 = L2 dudv

(v ¡ u)2

dS scale? 

motivate the choice: L2 =
c

3

ds2 = @u@vS0 dudv

with S0 =
c

3
log

v ¡ u

±

volume in dS2 = length in AdS3 slice  

“hole-ography”: 



Recap: 

• 𝛿𝑆 satisfies wave equation in dSd where scale plays the role of time ¡
r2
dS ¡m2

¢
±S = 0 m2L2 =¡dwith 

•           sets 𝛿𝑆 at very small 𝑅 and EE perturbations at larger scales 
  determined by the local Lorentzian propagation into dS geometry 
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• EE of excitations of CFT vacuum arranged in novel holographic manner 

applies for any CFT in any d; relies only on the 1st law of 
entanglement; does not require strong coupling or large # dof 



Recap: 

• 𝛿𝑆 satisfies wave equation in dSd where scale plays the role of time ¡
r2
dS ¡m2

¢
±S = 0 m2L2 =¡dwith 

•           sets 𝛿𝑆 at very small 𝑅 and EE perturbations at larger scales 
  determined by the local Lorentzian propagation into dS geometry 

hTtti

• EE of excitations of CFT vacuum arranged in novel holographic manner 

applies for any CFT in any d; relies only on the 1st law of 
entanglement; does not require strong coupling or large # dof 

(dS/CFT correspondence with unitary boundary CFT?) 

 Is this only some “kinematic” constraint on entanglement in CFTs? 
or 

Is there a novel re-organization of CFT where nonlocal observables 
yield local field theory propagating in dS spacetime? 

Question: 



Question: Other dynamical fields in dS space? 



Extension to Higher Spin Charges: 

B@B B

t = 0

• 

• 

K¹

D

• CFT with conserved symmetric traceless currents 𝑇𝜇1⋯𝜇𝑠  with 𝑠 ≥ 1 

• modular Hamiltonian is flux of                              through B where 𝐾𝜈 
  is conformal Killing vector that leaves 𝜕𝐵 invariant 

J(2)¹ = T¹ºK
º

HB =

Z
d§¹ J(2)¹

• extends to higher spin charges: 

Q(s) =

Z
d§¹ J(s)¹ with J(s)¹ = T¹¹2¢¢¢¹sK

¹2 ¢ ¢ ¢K¹s
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• CFT with conserved symmetric traceless currents 𝑇𝜇1⋯𝜇𝑠  with 𝑠 ≥ 1 

• modular Hamiltonian is flux of                              through B where 𝐾𝜈 
  is conformal Killing vector that leaves 𝜕𝐵 invariant 

J(2)¹ = T¹ºK
º

HB =

Z
d§¹ J(2)¹

• extends to higher spin charges: 

Q(s) =

Z
d§¹ J(s)¹ with J(s)¹ = T¹¹2¢¢¢¹sK

¹2 ¢ ¢ ¢K¹s

• appear in discussion of modified density matrices 

½B » exp
h
¡
X

¹sQ
(s)
i

(s=1: Belin, Hung etal; 
 s≥3: Hijano & Kraus) 
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Extension to Higher Spin Charges: 

• extends to higher spin charges: 

Q(s) =

Z
d§¹ J(s)¹ with J(s)¹ = T¹¹2¢¢¢¹sK

¹2 ¢ ¢ ¢K¹s

Q(s) = (2¼)s¡1
Z

B

dd¡1y

µ
R2 ¡ j~x¡ ~yj2

2R

¶s¡1
Ttt:::t(~y)

• on t=0 slice, yields: 

bdry-to-bulk propagator 
for deSitter 

•            satisfies wave equation in dSd 
¡
r2
dS ¡m2

¢
Q(s) = 0

m2L2 =¡(s¡ 1)(d+ s¡ 2)

with 

Q(s)
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• higher spin charges de Sitter wave equation: 
¡
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¢
Q(s) = 0 m2L2 =¡(s¡ 1)(d+ s¡ 2)with 

• more general/generic observables?     (stay tuned for part 2) 

Question: Interacting fields in dS spacetime? 

• how describe finite excitations?                need to go beyond 1st law!! 

¡
r2
dS ¡m2

¢
±S = g ±S2 + ¢ ¢ ¢

• can higher spin charges be included, as well as 𝛿𝑆? 

e.g., ??? 

• do we have nonlinear but local equation on dS geometry? 

(stay tuned for part 2) 
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• so far focused on single time slice; natural to consider perturbations of 
   EE for all spheres throughout spacetime on any time slice & any frame 

• how is holographic geometry modified for perturbations of EE  
   around excited states?   

• how is holographic geometry modified for perturbations of EE  
   around CFT deformed by relevant operator?   

Question: How to new construction extend beyond CFT vacuum? 

(see also: Czech, Lamprou, McCandlish, Mosk & Sully) 

(see also: Asplund, Callebaut & ZuKowski) 

• in AdS/CFT, AdS scale set by coupling to gravity, ie, 𝐿
ℓ𝑃 

𝑑−2
∼ 𝐶𝑇 

need to understand dynamics of dS geometry 

Question: How is curvature scale in dS geometry fixed? 

Question: How does new framework connect to AdS/CFT? 



Recap: 

• 𝛿𝑆 satisfies wave equation in dSd where scale plays the role of time ¡
r2
dS ¡m2

¢
±S = 0 m2L2 =¡dwith 

•           sets 𝛿𝑆 at very small 𝑅 and EE perturbations at larger scales 
  determined by the local Lorentzian propagation into dS geometry 

hTtti

• EE of excitations of CFT vacuum arranged in novel holographic manner 

applies for any CFT in any d; relies only on the 1st law of 
entanglement; does not require strong coupling or large # dof 

(dS/CFT correspondence with unitary boundary CFT?) 

Question: 

 Is this only some “kinematic” constraint on entanglement in CFTs? 
or 

Is there a novel re-organization of CFT where nonlocal observables 
yield local field theory propagating in dS spacetime? 
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• 𝛿𝑆 satisfies wave equation in dSd where scale plays the role of time ¡
r2
dS ¡m2

¢
±S = 0 m2L2 =¡dwith 

•           sets 𝛿𝑆 at very small 𝑅 and EE perturbations at larger scales 
  determined by the local Lorentzian propagation into dS geometry 

hTtti

• EE of excitations of CFT vacuum arranged in novel holographic manner 

applies for any CFT in any d; relies only on the 1st law of 
entanglement; does not require strong coupling or large # dof 

(dS/CFT correspondence with unitary boundary CFT?) 

Question: 

 Is this only some “kinematic” constraint on entanglement in CFTs? 
or 

Is there a novel re-organization of CFT where nonlocal observables 
yield local field theory propagating in dS spacetime? 

Lots to explore!! 
(Stay tuned for Part 2) 


