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Quantum Entanglement

« different subsystems are correlated through
global state of full system

Einstein-Podolsky-Rosen Paradox:

* properties of pair of photons connected,
no matter how far apart they travel

Photon source
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Entanglement Entropy

 general tool; divide quantum system into two parts and use
entropy as measure of correlations between subsystems

* In QFT, typically introduce a (smooth) boundary or entangling
surface 22 which divides the space into two separate regions

* integrate out degrees of freedom in “outside” region
* remaining dof are described by a density matrix pa

——> calculate von Neumann entropy: Sgr = =17 [pa log p 4]

(t = constant)




Holographic Entanglement Entropy: (Ryu & Takayanagi)

AdS boundary
Py B boundary
conformal field
theory

AdS bulk Bekenstein-
. vV .
spacetime Hawking
formula
Ay
S(A) = ext =
ved 4G N

* 2006 conjecture —> many detailed consistency tests
(Ryu, Takayanagi, Headrick, Hung, Smolkin, RM, Faulkner, .. .)

* 2013 proof (for static geometries) (Maldacena & Lewkowycz)
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First Law of Entanglement

* entanglement entropy: S(p4) = —tr(palogpa)

* make a small perturbation of state: p = p4 + dp

—> 08 = —tr(6plog pa) — tr(pa py' dp) + O(6p%)
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First Law of Entanglement

* entanglement entropy: S(p4) = —tr(palogpa)

* make a small perturbation of state: p = p4 + dp

—> 08 = —tr(6plog pa) — tr(pa py' dp) + O(6p%)

':Tr(ép):O

= —tr(6plog pa) + O(6p?)

* modular (or entanglement) Hamiltonian: p4 = eXp(—HA)

054 = 6(Ha) = Tr(dpHa)

“1st law” of entanglement entropy

* this is the 15 law for thermal states: p4 = exp(—H/T)



“Istlaw” of entanglement entropy: S, = (5<HA>

e generally H 4 is “nonlocal mess” and flow is nonlocal/not geometric
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“Istlaw” of entanglement entropy: S, = (5<HA>

e generally H 4 is “nonlocal mess” and flow is nonlocal/not geometric

Hy = /dd_la}’yiw(:c) T —I—/dd_lx/dd_lyfyg’y;pg(g;,y) Ty Tpo + -+

—> hence usefulness of first law is very limited, in general

* famous exception: Rindler wedge
* any QFT in Minkowski vacuum; choose ¥ = (x = 0,t = 0)

H 4 = 27 K <— boost generator

:27'('/ dd_deZU [CE Ttt] —|—C,
A(z>0) B

At

* by causality, p4 and H 4 describe physics throughout

domain of dependence D ; eg, generate boost flows
(Bisognano & Wichmann; Unruh)



“Istlaw” of entanglement entropy: S, = (5<HA>

* another exception: CFT in vacuum of d-dim. flat space and entangling
surface which is S92 with radius R

R2 712
HB — 27‘(‘/dd1y |y‘ Ttt(y_’) + C/
- 2R
(Casini, Huerta & RM;
D Hislop & Longo)

ool




“Istlaw” of entanglement entropy: S, = (5<HA>

* small excitations of CFT vacuum in d-dim. flat space and entangling
surface which is S92 with radius R:

R —1y1* .
05 =0(Hp) = 27r/dd1y ] (Tt (Y))

. 2R
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“Istlaw” of entanglement entropy: S, = (5<HA>

* small excitations of CFT vacuum in d-dim. flat space and entangling
surface which is S92 with radius R:

5S(R, %) = 2n / d4 1y 3 (T3 (9))
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“Istlaw” of entanglement entropy: S, = (5<HA>

* small excitations of CFT vacuum in d-dim. flat space and entangling
surface which is S92 with radius R:

. a1, B —ly—2° »
05(R, %) =2m [d" "y R (T3 (9))
B
* boundary-to-bulk propagator in d-dim de Sitter space!
R=0 « ™ (eg, see: Xiao 1402.7080)
_—____;;;:,,ﬂ I"‘
e
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“Istlaw” of entanglement entropy: S, = (5<HA>

* small excitations of CFT vacuum in d-dim. flat space and entangling
surface which is S92 with radius R:

2 = =2
5S(R,a‘:’):27r/dd_1y R ly— 4l

i T @)

* boundary-to-bulk propagator in d-dim de Sitter space!
(eg, see: Xiao 1402.7080)

2
- (—dR? + dz?)

* straightforward to show 0S5 satisfies wave equation in dS,

(V?zs — mz) 68 =0 with m?L*=—d

ds?



Boundary data:
. . L? L
e de Sitter metric:  ds? = =7 (—dR? + dz?)

* wave equation (V2 —m?) 65 =0 with m?L?=—d
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Boundary data:
L2
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* wave equation (V5q —m?) §S =0 issingularas R - 0

e de Sitter metric:  ds? = dR* + di?)

—> 2 independent sol’s: §§ R=0 F(f)/R + f(f) R¢ 4+ ...
A=-1—" “—A=d
. “1st aw” solution: . a1, B2—lg—2* .
15t law” solution: 55(R,x)zzw/d Y 3 Ty (7))
B
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* (Ty4) sets &S at very small R and EE perturbations at larger scales
determined by the local Lorentzian propagation into dS geometry



Boundary data:
. . L? ,
e de Sitter metric:  ds? = =7 (—dR? + dz?)

* wave equation (V5q —m?) §S =0 issingularas R - 0

—> 2 independent sol’s: §§ R=0 (f)/R + f(f) R¢ 4+ ...
A=-1—" N A=d
. “1st aw” solution: . a1, B2—lg—2* .
15t law” solution: 55(R,x)zzﬁ/d Y 3 Ty (7))
B
e LT )
F(@)=0; f(@)= T (443 (T3:(%))
(5°)

* (Ty4) sets &S at very small R and EE perturbations at larger scales
determined by the local Lorentzian propagation into dS geometry

* m? > = —d: mass tachyonic! — above precisely removes the
“non-normalizable” or unstable modes
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. _ , B2
Example: 5S(R, T) :27T/dd Ly y— | (T (Y))

» consider state: |) = |0) + € Ty (tg + 17, Zo)|0)

small expansion regulate UV
parameter divergences

e/T% < 1
» expectation value is fixed by 2-pt function (0|T} (¢, Z) T+ (0, 0)|0)

1 ((AmQ + (At 4i7)2)2 1>+C.C.

(Y| Ty (t, z)|[b) = € Cr

(Az2 — (At +i7)2)d \ (Ax2 — (At +i7)2)? d

+ O(€?)
with Az? = |7 — %2 and A% = |t — y)?
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Example: 5S(R,az)=27T/dd Ly v 7] (T (Y))

» consider state: |) = |0) + € Ty (tg + 17, Zo)|0)

small expansion regulate UV
parameter divergences
/T < 1
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Example: 5S(R, ) = 27T/

B
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(T4 (9))

» consider state: |) = |0) + € Ty (tg + 17, Zo)|0)

small expansion
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Alternate conformal frames:

* wave equation (V34 —m?) S = 0 is covariant
——> can use any coordinate system on dS geometry

* coord transformation in bulk corresponds to conformal transformation
in boundary theory —— new holographic construction extends to
CFT in any conformally flat background



Alternate conformal frames:
* wave equation (V34 —m?) S = 0 is covariant
—> cah use any coordinate system on dS geometry

* coord transformation in bulk corresponds to conformal transformation
in boundary theory —— new holographic construction extends to
CFT in any conformally flat background

* for example, consider same wave equation in global dS coord’s
ds* = L*(—dr* + cosh(7)*d23_1)

——> asymptotic boundary (+ — 0) is round S¢~1

—> CFT time slice is S%71, in cylindrical bkgd R x S4~1



Compare and Contrast: begin with d-dim. CFT
* Entanglement Holography:

2 L2 2
ds = 72 ( dR* + dx )
* AdS/CFT correspondence:
L2
ds* = — (+dz2 —dt® + d:E'z)



Compare and Contrast: begin with d-dim. CFT
* Entanglement Holography:

2
ds® = % (—dR? +]da?)

spatial coordinates in
(d—1)-dim. time slice

* AdS/CFT correspondence:

2
ds® = = (+d2?|= dt* + d?)

2

spacetime coordinates
for d-dim. CFT
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holo. coordinate = spacetime coordinates
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* two-derivative bulk theory relies on weak curvature and weak coupling
—> holographic CFT requires strong coupling and large # of d.o.f.
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Why is scale time-like?

e geometry naturally gives partial ordering of spheres

—> suggests auxiliary/holographic geometry should be Lorentzian
reference sphere

time slice

time-like null space-like
separated separated separated

(ordering of intervals for d=2 discussed by Czech, Lamprou, McCandlish & Sully)



Mapping deSitter < Balls?
* choose one of asymptotic boundaries of dS (eg, Z* ) < time slice

e for any point x in bulk and send out future light coneto Z+

* intersects Z*on a sphere and interior uniquely defines “dual’ ball B,

It ={R=0,%}

dS bulk
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Mapping deSitter < Balls?
* choose one of asymptotic boundaries of dS (eg, Z* ) < time slice

e for any point x in bulk and send out future light coneto Z+

* intersects Z"on a sphere and interior uniquely defines ‘dual’ ball B,

—(R=0,7

3/4

3/3

* proposed “ordering” of spheres =
Lorentzian ordering of bulk points

* mapping/dS geometry does not imply
local dynamics respecting this structure



Comments:

* same wave equation derived from AdS/CFT correspondence

Nozaki, Numasawa, Prudenziati& Takayanagi: arXiv:1304.7100
Bhattacharya, Takayanagi: arXiv:1308.3792

* Eg, linearized Einstein eqs in AdS, implied for holographic EE

2 19 3 8 0
- —_ - - - } —
[8R2 ROR RZ 012 0y ] o5(t, 2,y R) =0

* can be recast as d=3 deSitter wave equation:

RPO (10\ RO R 3
[_L2 OR <R<‘9R)+L2 922 " IZ 7 _] o5y, R) =0

d’Alembertian on dS, mass term

* here, we see equation readily extends to any d and follows purely
from underlying conformal symmetry



Comments:

 MERA (Multi-scale Entanglement Renormalization Ansatz) provides
efficient tensor network representation of ground-state wave-function

in d=2 critical systems (Vidal)
.( -

o —m Cla ==

2TTELTIEE LS
AW & AWVAW A A

DDDDDDDDDDDDDDDDDDDU 00000000000

* has been argued that MERA has (Lorentzian) causal structure with
coarse-graining direction being time-like! (Beny: Czech etal)



Comments:

* deSitter geometry appears in recent discussions of integral geometry

and the interpretation of MERA in terms of AdS,/CFT,
(Czech, Lamprou, McCandlish & Sully: arXiv:1505.05515; arXiv:1512.01548)

* consider space of intervals u<x<v on time slice of 2d holographic CFT

<€—> space of geodesics on 2d slice of AdS; €«—> ptsin 2d de Sitter
AdS/CFT dui do

(v —u)?

ds®> = L?




Comments:

* deSitter geometry appears in recent discussions of integral geometry

and the interpretation of MERA in terms of AdS,/CFT,
(Czech, Lamprou, McCandlish & Sully: arXiv:1505.05515; arXiv:1512.01548)

* consider space of intervals u<x<v on time slice of 2d holographic CFT

<€—> space of geodesics on 2d slice of AdS; €«—> ptsin 2d de Sitter
AdS/CFT dui do

d 2:L2
’ (v —u)?

dS scale? /'
C

motivate the choice: [2 — —

—> ds* = 0,,0,Sy du dv
v —Uu

J

with So = g log
“hole-ography”:

volume in dS, = length in AdS; slice



Recap:

* EE of excitations of CFT vacuum arranged in novel holographic manner

* 05 satisfies wave equation in dS;, where scale plays the role of time
(V?zs — m2) 0S =0 with m?[?%=_d

e (T}t) sets S at very small R and EE perturbations at larger scales
determined by the local Lorentzian propagation into dS geometry

—> applies for any CFT in any d; relies only on the 1% [aw of
entanglement; does not require strong coupling or large # dof



Recap:

* EE of excitations of CFT vacuum arranged in novel holographic manner

* 05 satisfies wave equation in dS;, where scale plays the role of time
(V?is — m2) 0S =0 with m?[?%=_d

e (T}t) sets S at very small R and EE perturbations at larger scales
determined by the local Lorentzian propagation into dS geometry

—> applies for any CFT in any d; relies only on the 1% [aw of
entanglement; does not require strong coupling or large # dof

Question:
Is this only some “kinematic” constraint on entanglement in CFTs?
or
Is there a novel re-organization of CFT where nonlocal observables
yield local field theory propagating in dS spacetime?

(dS/CFT correspondence with unitary boundary CFT?)




Question: Other dynamical fields in dS space?



Extension to Higher Spin Charges:

* CFT with conserved symmetric traceless currents T, ..., withs =1

* modular Hamiltonian is flux of J£L2) = T,,, K" through B where K"

is conformal Killing vector that leaves dB invariant
—> Hp=— /dE“ J;SQ)
* extends to higher spin charges:

Q(S) — /dz,u J/SLS) with ‘],L(LS) — T,UJ,LLQH-/,LSKM2 .. K,us
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Extension to Higher Spin Charges:

* CFT with conserved symmetric traceless currents T, ..., withs =1

* modular Hamiltonian is flux of J£L2) = T,,, K" through B where K"

is conformal Killing vector that leaves dB invariant
—> Hp=— /dE“ J;SQ)

* extends to higher spin charges:

Q(S) — /dE}u J/ELS) with J,L(LS) — T,UJ,LLQH-/,LSKM2 .. K,us

* appear in discussion of modified density matrices

pB ~ €Xp |:_ ZMSQ(S)} F—0 -

OB i B B

(s=1: Belin, Hung etal;
s=>3: Hijano & Kraus)




Extension to Higher Spin Charges:

» extends to higher spin charges:

QY = /dE“ J/(f) with J(S) = Ty KH2 - P

* on t=0slice, yields:

S S— — RQ_f_gQ o —
Q¥ =yt [at iy (T ) T

b \ l
|
bdry-to-bulk propagator J
for deSitter D
t=0

KM

OB \ B B




Extension to Higher Spin Charges:

» extends to higher spin charges:

QY = /dE“ J/(f) with J(S) = Ty KH2 - P

* on t=0slice, yields:

S S— — RQ_ f__)Q . —»
Q¥ =yt [at iy (T ) T

B \ l
|
bdry-to-bulk propagator J
for deSitter D
« Q') satisfies wave equation in dS, =0 K*
(Vis —m?) Q¥ =0 (4 1 1 ]20) =
with
m?*L? = —(s—1)(d+ s —2)
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* higher spin charges de Sitter wave equation:
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* more general/generic observables? (stay tuned for part 2)



Question: Other dynamical fields in dS space?

* higher spin charges de Sitter wave equation:
(V3g —m?) Q¥ =0 with m?L*= —(s—1)(d+5—2)

* more general/generic observables? (stay tuned for part 2)

Question: Interacting fields in dS spacetime?

* how describe finite excitations? — need to go beyond 15t [aw!!

* do we have nonlinear but local equation on dS geometry?
eg, (Vig—m?®)dS=gdS>+--.

e can higher spin charges be included, as well as §57?

(stay tuned for part 2)
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EE for all spheres throughout spacetime on any time slice & any frame
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Question: What about time dependence in CFT?

* so far focused on single time slice; natural to consider perturbations of
EE for all spheres throughout spacetime on any time slice & any frame

(see also: Czech, Lamprou, McCandlish, Mosk & Sully)
Question: How to new construction extend beyond CFT vacuum?

* how is holographic geometry modified for perturbations of EE
around excited states? (see also: Asplund, Callebaut & ZuKowski)

* how is holographic geometry modified for perturbations of EE
around CFT deformed by relevant operator?

Question: How is curvature scale in dS geometry fixed?
d—2
* in AdS/CFT, AdS scale set by coupling to gravity, ie, (L/{)P) ~ Cr

——> need to understand dynamics of dS geometry

Question: How does new framework connect to AdS/CFT?



Recap:

* EE of excitations of CFT vacuum arranged in novel holographic manner

* 05 satisfies wave equation in dS, where scale plays the role of time
(V?is — m2) 0S =0 with m?[?%=_d

e (T}t) sets S at very small R and EE perturbations at larger scales
determined by the local Lorentzian propagation into dS geometry

—> applies for any CFT in any d; relies only on the 1% [aw of
entanglement; does not require strong coupling or large # dof

Question:
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or
Is there a novel re-organization of CFT where nonlocal observables
yield local field theory propagating in dS spacetime?

(dS/CFT correspondence with unitary boundary CFT?)




Recap:

* EE of excitations of CFT vacuum arranged in novel holographic manner

* 05 satisfies wave equation in dS, where scale plays the role of time
(V?zs — m2) 0S =0 with m?[?%=_d

e (T}t) sets S at very small R and EE perturbations at larger scales
determined by the local Lorentzian propagation into dS geometry

—> applies for any CFT in any d; relies only on the 1% [aw of
entanglement; does not require strong coupling or large # dof

Question:

Is this onl tin CFTs?

Lots to explore!!

Is there a yservables

(Stay tuned for Part 2) |-

(dS/CFT correspondence with unitary boundary CFT?)




