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DEFINITION 
1 Warped Weyl fermion: from the plane to the cylinder

x+ ! x+ + g(x! )

x! ! f (x! ) (1.1)

where f and g are arbitrary functions. It is clear that both directions are not on the same footing:

x! has scaling symmetry while x+ does not. It is also evident that a WCFT is non-relativistic. The

global isometry group of the theory is SL(2, R) " U(1), while the local symmetries are described

by a Virasoro-Kac-Moody algebra. Further properties of this algebra are described in appendix A.

A WCFT possesses two global charges associated to energy and angular momentum:

H = # i ! t = # i (! + + ! ! ) , J = # i ! ! = # i (! + # ! ! ) , (1.2)

where

x! + x+ = 2t , x + # x! = 2" . (1.3)

We want to define states in this theory at t = 0 by doing radial quantization in the complex

plane and gluing these states to the Lorentzian cylinder (1.3). For this purpose it is convenient to

define the following complex coordinate

z = e! ix !
= e! i (t ! ! ) = etE + i ! , (1.4)

where tE = # it corresponds to euclidean time. We have chosen z such that it contains all time

evolution. Very early time in the Euclidean cylinder corresponds to the origin in the z plane. Now

we define a second coordinate that does not involve time, namely:

w = x+ # x! = 2" . (1.5)

It is important that both (1.4) and (1.5) are included in the finite coordinates transformations

generated by (1.1). They are therefore –up to anomalies– symmetries of our theory.

In terms of the zero modes of the Virasoro-Kac-Moody defined on the cyllinder, we can write

H = Pcyl
0 + L cyl

0 , J = Pcyl
0 # L cyl

0 . (1.6)

On the other hand, in the plane coordinates (z, w) our charges (1.2) are given, up to anomalies, by

H = # z! z , J = # 2 i ! w + z! z . (1.7)
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MOTIVATION 

CFT are the building blocks of relativistic  QFTs. 

What are the building blocks of non-relativistic QFTs? 

¥! Very few examples.  
¥! Exotic fixed points are easy to miss. 



Can one build an interesting example of a WCFT? 

YES 



PLAN 

Massive Weyl  Fermion: 
1.! Spectrum 
 
2.! Modular invariance 

New geometric structures: 
1.! Thermodynamics 
 
2.! Entanglement entropy 

[AC, D. Hofman , G. Sarosi, arxiv:1508.06302] 

[AC, D. Hofman , N. Iqbal , arxiv:1511.00707] 



MASSIVE 
WEYL 
FERMION 

A NON TRIVIAL EXAMPLE 



1. SPECTRUM 



ACTION 

To start: a single complex anti-commuting field 

It is important that both ( 1.5) and (1.6) are included in the Þnite coordinates transformations

generated by (1.2). They are therefore Ðup to anomaliesÐ symmetries of our theory.

In terms of the zero modes of the Virasoro-Kac-Moody deÞned on the cyllinder, we can write

H = Pcyl
0 + L cyl

0 , J = Pcyl
0 ! L cyl

0 . (1.7)

On the other hand, in the plane coordinates (z, w) our charges (1.3) are given, up to anomalies, by

H = ! z! z , J = ! 2 i ! w + z! z . (1.8)

These di! erential operators correspond to charges deÞned on the plane by usual radial quantiza-

tion. We can write them in terms of plane Virasoro-Kac-Moody charges and include as well the

contribution from anomalies. The transformation we perform is a standard map from the cylinder

to the plane combined with a spectral ßow transformation, with spectral ßow parameter" = ! 1
2 .

Using (A.4), the exact relations are

H = L 0 !
c

24
!

k
4

, J = 2P0 ! L 0 +
c

24
!

3
4

k , (1.9)

where k is the Kac-Moody level andc the Virasoro central charge.

1.1 Warped Weyl Fermion

A free Warped Weyl fermion [?] is a complex anti-commuting Þeld" whose dynamics is described

by the action

I =
!

dx+ dx! "
i ø" ! + " + m ø""

#
. (1.10)

In particular note that scaling invariance x! " #x! is preserved, provided" transforms as a weight
1
2 operator under warped conformal transformations [?]. This example, while simple, has no CFT

counterpart due to the mass term. This introduces new features as we quantize the theory by using

radial quantization.

Our starting point is to understand the on-shell properties of the fermion. ItÕs equations of

motion are given by

! + " ! im " = 0 , ! + ø" + im ø" = 0 . (1.11)

The solutions to these equations are given by

" (x+ , x! ) = eimx +
$ (x! ) , ø" (x+ , x! ) = e! imx + ø$ (x! ) , (1.12)

with arbitrary Grassmann functions $ and ø$ . However, the Þeld should have a deÞnite periodicity

2

Mass term: not allowed for CFT 

Not Lorentz invariant 
[Hofman  & Rollier 2014] 
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Under scaling                       fermion has weight !.  

1 Warped Weyl fermion: from the plane to the cylinder
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where f and g are arbitrary functions. It is clear that both directions are not on the same

footing: x! has scaling symmetry whilex+ does not. It is also evident that a WCFT is non-

relativistic. The global isometry group of the theory is SL(2, R) " U(1), while the local symmetries

are described by a Virasoro-Kac-Moody algebra. Further properties of this algebra are described

in appendix A.

A WCFT possesses two global charges associated to energy and angular momentum:

H = # i ! t = # i (! + + ! ! ) , J = # i ! ! = # i (! + # ! ! ) , (1.3)

where

x! + x+ = 2 t , x + # x! = 2 " . (1.4)

We want to deÞne states in this theory at t = 0 by doing radial quantization in the complex

plane and gluing these states to the Lorentzian cylinder (1.3). For this purpose it is convenient to

deÞne the following complex coordinate

z = e! ix !
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It is important that both ( 1.4) and (1.5) are included in the Þnite coordinates transformations
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1

Global symmetries 

[Hofman  & Rollier 2014] 
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My favorite things about this example: 
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¥! Not a CFT 
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¥! Unitary WCFT 
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CYLINDER TO PLANE 
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SL(2, R) " SL(2, R)

A WCFT possesses two global charges associated to energy and angular momentum:

H = # i ! t = # i (!
+

+ ! ! ) , J = # i ! ! = # i (!
+

# ! ! ) , (1.3)

where

x! + x+ = 2 t

x+ # x! = 2 " (1.4)

z = e! ix !
= e! i (t ! ! ) = etE +i !
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1

radial quantization.

Our starting point is to understand the on-shell properties of the fermion. ItÕs equations of

motion are given by

! + ! ! im ! = 0 , ! + ø! + im ø! = 0 . (1.12)

The solutions to these equations are given by

! (x+ , x! ) = eimx +
" (x! ) , ø! (x+ , x! ) = e! imx + ø" (x! ) , (1.13)

with arbitrary Grassmann functions " and ø" . However, the Þeld should have a deÞnite periodicity

on the cylinder. Given that we set # " # + 2$, we can demand periodic boundary condition, which

we denote by ÒRÓ, and in this case we must have

R : " (x! ! 2$) = e! 2! i m " (x! ) , ø" (x! ! 2$) = e2! i m ø" (x! ) . (1.14)

If we instead impose anti-periodic (NS) boundary conditions, we need

NS : " (x! ! 2$) = ! e! 2! i m " (x! ) , ø" (x! ! 2$) = ! e2! i m ø" (x! ) . (1.15)

Taking into account that " (x! ) and ø" (x! ) transform as a weight 1
2 operator, the Þelds (! , ø! )

in terms of the coordinates (z, w) are

! = eimw z! m !
iz ! 1" 1

2 " (z) , ø! = e! imw zm !
iz ! 1" 1

2 ø" (z) . (1.16)

Looking at the above expression, it is convenient to introduce a pair of plane Þelds (%, ø%) such that

! = eimw %(z) ø! = e! imw ø%(z) . (1.17)

In this notation, the boundary conditions ( 1.14) and (1.15) now read

R : %(e2! i z) = e2! i (! 2m! 1
2 )%(z) , ø%(e2! i z) = e2! i (2m! 1

2 ) ø%(z) , (1.18)

and

NS : %(e2! i z) = ! e2! i (! 2m! 1
2 )%(z) , ø%(e2! i z) = ! e2! i (2m! 1

2 ) ø%(z) . (1.19)

This means we can write the following mode expansion for the (%, ø%) Þelds

%(z) =
#

n

z! n! 2m! 1
2 %n , ø%(z) =

#

n

z! n+2 m! 1
2 ø%n , (1.20)

where the sum is over integers in the R sector and semi-integers in the NS sector. The fact that!

3
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Looking at the above expression, it is convenient to introduce a pair of plane Þelds ($, ø$) such that

! = eimw $(z) ø! = e! imw ø$(z) . (1.16)

In this notation, the boundary conditions ( 1.13) and (1.14) now read

R : $(e2! i z) = e2! i (! 2m! 1
2 )$(z) , ø$(e2! i z) = e2! i (2m! 1

2 ) ø$(z) , (1.17)

and

NS : $(e2! i z) = " e2! i (! 2m! 1
2 )$(z) , ø$(e2! i z) = " e2! i (2m! 1

2 ) ø$(z) . (1.18)

This means we can write the following mode expansion for the ($, ø$) Þelds

$(z) =
#

n

z! n! 2m! 1
2 $n , ø$(z) =

#

n

z! n+2 m! 1
2 ø$n , (1.19)

where the sum is over integers in the R sector and semi-integers in the NS sector. The fact that!

and ø! are complex conjugate Þelds implies that

$ 
n = ø$! n , (1.20)

and canonical quantization dictates that

{ ø$n, $n! } = %n+ n! . (1.21)

3

and ø! are complex conjugate Þelds implies that

!  
n = ø! ! n , (1.21)

and canonical quantization dictates that

{ ø! n , ! n! } = "n+ n! . (1.22)

Using these mode anti-commutators one can obtain the following OPE:

ø! (z)! (z") !
1

z " z" (1.23)

For this particular Þeld theory we can deÞne two holomorphic conserved currents related tox!

and x+ translations respectively. Namely,

z # f (z) : T(z) = "
1
2

(ø!# z! + !# z ø! )

w # w + g(z) : P(z) = m ø! ! (1.24)

The OPE (1.23) then implies

T(z)T(z") !
1/ 2

(z " z")4 +
2

(z " z")2 T(z") +
1

z " z"#z! T(z")

T(z)P(z") !
1

(z " z")2 P(z") +
1

z " z"#z! P(z")

P(z)P(z") !
m2

(z " z")2 (1.25)

which ensures the canonical Virasoro-Kac-Moody algebra atc = 1 and k = 2m2.

We can now deÞne vacua on the plane by demanding that the! , ø! Þelds do not create large

singularities at the origin. We would like our original Þeld in the cylinder to be regular once

analytically continued onto the plane. This requires:

! n |0$= 0 if n + 2m +
1
2

>
1
2

,

ø! n |0$= 0 if n " 2m +
1
2

>
1
2

. (1.26)

These requirements Þx the two point functions on the plane to be

%ø! (z)! (z")$=
1

&
zz"

!

! # 2m

"
z"

z

# ! ! 2m

. (1.27)

4
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A Brief summary on WCFTs

In this appendix we gather some basic properties of WCFTs. The following equations are based

on the results in [?], with the minor caveat that we have adapted some of their expressions to our

notation.

Consider the theory deÞned on the (z, w) plane as in (1.6)-(1.7). On this plane, we denoteT (z)

as the right moving energy momentum tensor andP (z) a right moving U (1) Kac Moody current.

We deÞne

Ln = !
i

2!

!
dz "n (z)T (z) Pn = !

1
2!

!
dz #n(z)P (z) (A.1)

where we choose the test functions as"n = zn+1 and #n = zn . In terms of the plane charges

(Ln , Pn) the commutations relations are

[Ln , Ln! ] = ( n ! n!)Ln+ n! +
c

12
n(n2 ! 1)$n," n!

[Ln , Pn! ] = ! n!Pn! + n

[Pn , Pn! ] = k
n

2
$n," n! (A.2)

which is a Virasoro-Kac-Moody algebra with central chargec and level k.

T (z) generates inÞnitesimal coordinates transformations inz, and P (z) generates a gauge trans-

formation in the gauge bundle alongw. This is the content of the commutation relations (A.2).

We can think of these transformations as Þnite coordinate transformations

w " w = w! + g(z!) , z " z = f (z!) , (A.3)

and in this case, the Þnite transformation properties are

P !(z!) =
%z
%z!

"
P (z) +

k

2
%w!

%z

#
,

T !(z!) =
"

%z
%z!

# 2 $
T (z) !

c

12
{ z!, z}

%
+

%z
%z!

%w
%z!P (z) !

k

4

"
%w
%z!

# 2

, (A.4)

where

{ z!, z} =
! 3z!

! z3

! z!

! z

!
3
2

&
! 2z!

! z2

! z!

! z

' 2

. (A.5)

Among these Þnite transformations, there is one that is rather interesting. Consider doing a

tilt of the w direction:

z = z! w = w! + 2&z! (A.6)
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%z!
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P(z) +

k
2

%w!

%z

#
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T !(z!) =
"

%z
%z!

# 2 $
T(z) !

c
12

{ z!, z}
%

+
%z
%z!

%w
%z! P(z) !

k
4

"
%w
%z!
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we need to rescale the values of our ground state charges as

!L 0" # N !L 0" , !P0" # N !P0" . (1.44)

This implies in our theory of free fermions1

c = N , k = 2Nm 2 . (1.45)

c = 1 k = 2m2 . (1.46)

The quantization condition for the di ! erence of angular momentum between vacua becomes

NQ
2

$
N
8

%
Z
2

# N = 4n with n %Z . (1.47)

Finally, we as well need that each individual vacuum has a quantized angular momentum. For

the R sector this implies

6k + c $ 3N = 12p with p %Z . (1.48)

If we use (1.46), this just becomes

6k + c = 12p p %Z (1.49)

where we have redeÞnedp. Using c = N = 4n, we have

k = 2p $
N
6

= 2p $
2
3

n . (1.50)

Therefore, the smallest theories contain 4 complex fermions andk = 4
3, 10

3 , 16
3 , . . ..

It might also be possible to construct a theory that only contains the R sector (see section2).

If this is the case, the quantization constraints are relaxed and only (1.47) must be imposed, which

for N complex fermions reads as

k =
N
3

+ 2p , p %Z . (1.51)

In particular, there exist theories satisfying these constraint with just one complex fermion and

k = 2p + 1
3 = 1

3, 7
3, 13

3 , . . ..

1More generally, we could have c = N + c0 where c0 corresponds to the central charge coming from neutral (under
P0) degrees of freedom, if there where any. For a free Warped Weyl fermion c0 = 0.
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Spectral flow transformation 

We can think of these transformations as Þnite coordinate transformations

w ! w = w! + g(z!) , z ! z = f (z!) , (A.3)

and in this case, the Þnite transformation properties are

P!(z!) =
! z
! z!

✓
P(z) +

k
2

! w!

! z

◆
,

T !(z!) =
✓

! z
! z!

◆
2 ⇣

T(z) "
c

12
{ z!, z}

⌘
+

! z
! z!

! w
! z! P(z) "

k
4

✓
! w
! z!

◆
2

, (A.4)

where

{ z!, z} =
! 3z!

! z3

! z!

! z

"
3
2

 
! 2z!

! z2

! z!

! z

!
2

. (A.5)

Among these Þnite transformations, there is one that is rather interesting. Consider doing a

tilt of the w direction:

z = z! w = w! + 2 " z! (A.6)

Under this tilt, the currents transform as

P!(z!) = P(z) " k"

T !(z!) = T(z) " 2" P(z) " k" 2 (A.7)

which implies that the modes on the plane transform as

L n ! L (" )
n = L n + 2 " Pn + " 2 k #n,0

Pn ! P (" )
n = Pn + " k #n,0 (A.8)

This is the usual spectral ßow transformation, which leaves the commutations relations (A.2)

invariant.

Our Þnal remark is regarding unitary representations. The currentsT(z) and P(z) are hermi-

tian, and hence

L " n = L  
n , P" n = P 

n . (A.9)

This choice is tied to the sign ofk, which we assume to be a real positive number. A primary state

is deÞned as a state|p, h# who is an eigenstate of the zero modes

P
0

|p, h#= p|p, h# , L
0

|p, h#= h|p, h# , (A.10)

and is annihilated by (L n , Pn) with n > 0. Descendants are created by acting withL " n and P" n
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P(z) +

k
2

! w!
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"
,

T !(z!) =
!

! z
! z!
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T(z) "

c
12

{ z!, z}
$

+
! z
! z!

! w
! z! P(z) "

k
4

!
! w
! z!

" 2
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"
3
2

%
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SPECTRUM 

1 Warped Weyl fermion: from the plane to the cylinder

x+ ! x+ + g(x! )

x! ! f (x! ) (1.1)

x+ ! g(x+ )

x! ! f (x! ) (1.2)

where f and g are arbitrary functions. It is clear that both directions are not on the same

footing: x! has scaling symmetry whilex+ does not. It is also evident that a WCFT is non-

relativistic. The global isometry group of the theory is SL(2, R) " U(1), while the local symmetries

are described by a Virasoro-Kac-Moody algebra. Further properties of this algebra are described

in appendix A.

SL(2, R) " SL(2, R)

A WCFT possesses two global charges associated to energy and angular momentum:

H = # i ! t = # i (! + + ! ! )

J = # i ! ! = # i (! + # ! ! ) (1.3)

where

x! + x+ = 2 t

x+ # x! = 2 " (1.4)

z = e! ix !
= e! i (t ! ! ) = etE + i !

w = x+ # x! = 2 " (1.5)

We want to deÞne states in this theory at t = 0 by doing radial quantization in the complex

plane and gluing these states to the Lorentzian cylinder (1.4). For this purpose it is convenient to

1

deÞne the following complex coordinate

z = e! ix !
= e! i (t ! ! ) = etE + i ! , (1.6)

where tE = ! it corresponds to euclidean time. We have chosenz such that it contains all time

evolution. Very early time in the Euclidean cylinder corresponds to the origin in the z plane. Now

we deÞne a second coordinate that does not involve time, namely:

w = x+ ! x! = 2 ! . (1.7)

It is important that both ( ??) and (??) are included in the Þnite coordinates transformations

generated by (??). They are therefore Ðup to anomaliesÐ symmetries of our theory.

In terms of the zero modes of the Virasoro-Kac-Moody deÞned on the cyllinder, we can write

H = Pcyl
0 + L cyl

0 , J = Pcyl
0 ! L cyl

0 . (1.8)

On the other hand, in the plane coordinates (z, w) our charges (??) are given, up to anomalies, by

H = ! z" z , J = ! 2 i " w + z" z . (1.9)

These di! erential operators correspond to charges deÞned on the plane by usual radial quantiza-

tion. We can write them in terms of plane Virasoro-Kac-Moody charges and include as well the

contribution from anomalies. The transformation we perform is a standard map from the cylinder

to the plane combined with a spectral ßow transformation, with spectral ßow parameter# = ! 1
2 .

Using (??), the exact relations are

H = L 0 !
c

24
!

k
4

J = 2P0 ! L 0 +
c

24
!

3
4

k , (1.10)

where k is the Kac-Moody level andc the Virasoro central charge.

1.1 Warped Weyl Fermion

A free Warped Weyl fermion [?] is a complex anti-commuting Þeld" whose dynamics is described

by the action

I =
!

dx+ dx! "
i ø" " + " + m ø""

#
. (1.11)

2



SPECTRUM 
radial quantization.

Our starting point is to understand the on-shell properties of the fermion. ItÕs equations of

motion are given by

! + ! ! im ! = 0 , ! + ø! + im ø! = 0 . (1.12)

The solutions to these equations are given by

! (x+ , x! ) = eimx +
" (x! ) , ø! (x+ , x! ) = e! imx + ø" (x! ) , (1.13)

with arbitrary Grassmann functions " and ø" . However, the Þeld should have a deÞnite periodicity

on the cylinder. Given that we set # " # + 2$, we can demand periodic boundary condition, which

we denote by ÒRÓ, and in this case we must have

R : " (x! ! 2$) = e! 2! i m " (x! ) , ø" (x! ! 2$) = e2! i m ø" (x! ) . (1.14)

If we instead impose anti-periodic (NS) boundary conditions, we need

NS : " (x! ! 2$) = ! e! 2! i m " (x! ) , ø" (x! ! 2$) = ! e2! i m ø" (x! ) . (1.15)

Taking into account that " (x! ) and ø" (x! ) transform as a weight 1
2 operator, the Þelds (! , ø! )

in terms of the coordinates (z, w) are

! = eimw z! m !
iz ! 1" 1

2 " (z) , ø! = e! imw zm !
iz ! 1" 1

2 ø" (z) . (1.16)

Looking at the above expression, it is convenient to introduce a pair of plane Þelds (%, ø%) such that

! = eimw %(z) ø! = e! imw ø%(z) . (1.17)

In this notation, the boundary conditions ( 1.14) and (1.15) now read

R : %(e2! i z) = e2! i (! 2m! 1
2 )%(z) , ø%(e2! i z) = e2! i (2m! 1

2 ) ø%(z) , (1.18)

and

NS : %(e2! i z) = ! e2! i (! 2m! 1
2 )%(z) , ø%(e2! i z) = ! e2! i (2m! 1

2 ) ø%(z) . (1.19)

This means we can write the following mode expansion for the (%, ø%) Þelds

%(z) =
#

n

z! n! 2m! 1
2 %n , ø%(z) =

#

n

z! n+2 m! 1
2 ø%n , (1.20)

where the sum is over integers in the R sector and semi-integers in the NS sector. The fact that!

3

R : periodic fields 

NS: anti-periodic fields 



CONSTRAINTS 

A Brief summary on WCFTs

In this appendix we gather some basic properties of WCFTs. The following equations are based

on the results in [?], with the minor caveat that we have adapted some of their expressions to our

notation.

Consider the theory deÞned on the (z, w) plane as in (1.6)-(1.7). On this plane, we denoteT(z)

as the right moving energy momentum tensor andP(z) a right moving U(1) Kac Moody current.

We deÞne

L
n

= � i
2⇡

Z
dz ⇣

n

(z)T(z) , P
n

= � 1
2⇡

Z
dz�

n

(z)P(z) , (A.1)

where we choose the test functions as⇣
n

= zn+1 and �
n

= zn. In terms of the plane charges

(L
n

, P
n

) the commutations relations are

[L
n

, L
n

! ] = ( n � n!)L
n+ n

! +
c

12
n(n2 � 1)�

n," n

! ,

[L
n

, P
n

! ] = �n!P
n

! + n

,

[P
n

, P
n

! ] = k
n
2
�
n," n

! , (A.2)

which is a Virasoro-Kac-Moody algebra with central chargec and level k.

T(z) generates inÞnitesimal coordinates transformations inz, and P(z) generates a gauge trans-

formation in the gauge bundle alongw. This is the content of the commutation relations (A.2).

We can think of these transformations as Þnite coordinate transformations

w ! w = w! + g(z!) , z ! z = f (z!) , (A.3)

and in this case, the Þnite transformation properties are

P!(z!) =
@z
@z!

✓
P(z) +

k
2
@w!

@z

◆
,

T !(z!) =
✓
@z
@z!

◆2 ⇣
T(z) � c

12
{ z!, z}

⌘
+
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@w
@z! P(z) � k

4

✓
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, (A.4)

where

{ z!, z} =
! 3

z

!

! z3

! z!

! z

� 3
2

 
! 2

z

!

! z2

! z!

! z

!2

. (A.5)

Among these Þnite transformations, there is one that is rather interesting. Consider doing a

tilt of the w direction:

z = z! w = w! + 2�z! (A.6)
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Quantization of Angular Momentum J: 

Exploit spectral flow: To end, consider one last time (1.10); in an arbitrary spectral ßow frame we will have

H = L (! )
0 + 2 ! P(! )

0 !
c

24
!

k
4

!
1 ! 4! 2"

J = 2(1 ! ! )P (! )
0 ! L (! )

0 +
c

24
!

3
4

k + k! (2 ! ! ) (1.56)

The lowest energy state is a Kac-Moody primary which saturates the unitarity bound, i.e. h! =
p2

!
k .

For these states we Þnd

H =
1
k

(p! + ! k)2 !
c

24
!

k
4

J = !
1
k

(p! + ( ! ! 1)k)2 +
c

24
+

k
4

(1.57)

The appealing feature of this formula is that we isolated the dependence on the spectral ßow

parameters relative to the anomalies. If we casted the anomalous piece in CFT language, we would

Þnd

cR = c + 6k , cL = 0 . (1.58)

This identiÞcation is obviously ambiguous; the only appealing feature is thatcR is the combination

that dictates quantization condition of J .

2 On to the Torus

In this section we construct partition functions for the free fermion system in section1.1. Our aim

is to highlight properties and consequences of modular invariance in WCFTs, and use the fermion

as an explicit realization of these properties.

As our starting point, we Þrst review how warped symmetries act on the torus. Consider a

theory compactiÞed on the" circle with period 2# as in the previous section. Let us put this

theory at temperature $! 1 and angular potential µ. In this frame our identiÞcations are

(x! , x+ ) " (x! ! 2#, x+ + 2#) " (x! ! 2#%, x+ + 2#ø%) , (2.1)

where as before

x+ = t + " , x! = t ! " , (2.2)

and we have deÞned

2#%= µ ! i$ , 2#ø%= µ + i$ . (2.3)

The Þrst identiÞcation in (2.1) corresponds to the spatial identiÞcation, while the second one

is thermal. The modular group is described by two transformations: S which corresponds to
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counterpart in a CFT. Nevertheless, we now show that this feature is general for any WCFT. To

see this explicitly, consider againJ expressed in term of plane charges (1.10):

J = 2P0 ! L 0 +
c

24
!

3
4

k . (1.51)

We can remove the dependence onP0 by simply doing a spectral ßow transformation. Using (A.8)

with ! = 1 gives

J = ! L (! =1)
0 +

c
24

+
k
4

. (1.52)

The spectrum of L (! =1)
0 is bounded from below by the unitarity bounds discussed in appendixA,

and hence

J " Jmax #
c

24
+

k
4

(1.53)

The important distinction, is that in a CFT one does not have access to spectral ßow transfor-

mations that implement spacetime rotations. This is the key to write J in terms of a bounded

operator.

We can as well in a simple manner derive consequences of quantizing the spectrum ofJ . From

(1.52) this will obviously require that L (! =1)
0 has integer spacing. Furthermore, if we denote byh

the lowest eigenvalue ofL (! =1)
0 we have

h +
c

24
+

k
4

$
Z
2

, (1.54)

where we are allowing for half integer quantization. This is in agreement with the constraints (1.47)

sinceh is an integer for the fermion.

It is useful to make another comparison with CFTs. If we blindly follow CFT lore, we would

argue that the existence of the identity operator is correlated with requiring that the vacuum state

on the plane satisÞes%L 0&= 0. This argument clearly fails for a WCFT. The reason is that the

map used leaves out a dependence on" through the variable w which is considered Þxed on the

z plane. This means that regularity conditions on the plane do not translate to the appropriate

quantization conditions on the cylinder. This is clear, since in (1.26) we demanded regularity which

turned in to %L 0& '= 0 in ( 1.34). What is universally true is that for the vacuum state the unitarity

bound is saturated, i.e.

%L 0&=
%P2

0 &
k

. (1.55)

These primaries are as well preserved by the globalSL(2,R) ( U(1) symmetries of the theory.
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Angular momentum  
is bounded. 

we need to rescale the values of our ground state charges as

hL 0i ! N hL 0i , hP0i ! N hP0i . (1.44)

This implies in our theory of free fermions1

c = N , k = 2Nm 2 . (1.45)

The quantization condition for the di ! erence of angular momentum between vacua becomes

NQ
2

� N
8

2 Z
2
! N = 4n with n 2 Z . (1.46)

Finally, we as well need that each individual vacuum has a quantized angular momentum. For

the R sector this implies

6k + c� 3N = 12p with p 2 Z . (1.47)

If we use (1.46), this just becomes

6k + c = 12p p2 Z (1.48)

where we have redeÞnedp. Using c = N = 4n, we have

k = 2p� N
6

= 2p� 2
3

n . (1.49)

Therefore, the smallest theories contain 4 complex fermions andk = 4
3, 10

3 , 16
3 , . . ..

It might also be possible to construct a theory that only contains the R sector (see section2).

If this is the case, the quantization constraints are relaxed and only (1.47) must be imposed, which

for N complex fermions reads as

k =
N
3

+ 2p , p2 Z . (1.50)

In particular, there exist theories satisfying these constraint with just one complex fermion and

k = 2p + 1
3 = 1

3, 7
3, 13

3 , . . ..

1.2 General Properties of Radial Quantization

One rather interesting and surprising feature of quantizing the warped Weyl fermion is the behavior

of angular momentum. In particular we found in (1.41) an upper bound for J . This has no

1More generally, we could have c = N + c0 where c0 corresponds to the central charge coming from neutral (under
P0) degrees of freedom, if there where any. For a free Warped Weyl fermion c0 = 0.
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These primaries are as well preserved by the globalSL(2, R) ! U(1) symmetries of the theory.

To end, consider one last time (1.10); in an arbitrary spectral ßow frame we will have

H = L (! )
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24
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1 " 4! 2"
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c

24
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3
4
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The lowest energy state is a Kac-Moody primary which saturates the unitarity bound, i.e. h! =
p2

!
k .

For these states we Þnd

H =
1
k

(p! + ! k)2 "
c

24
"

k
4

J = "
1
k

(p! + ( ! " 1)k)2 +
c

24
+

k
4

(1.58)

The appealing feature of this formula is that we isolated the dependence on the spectral ßow

parameters relative to the anomalies. If we casted the anomalous piece in CFT language, we would

Þnd

cR = c + 6k , cL = 0 . (1.59)

This identiÞcation is obviously ambiguous; the only appealing feature is thatcR is the combination

that dictates quantization condition of J .

2 On to the Torus

In this section we construct partition functions for the free fermion system in section1.1. Our aim

is to highlight properties and consequences of modular invariance in WCFTs, and use the fermion

as an explicit realization of these properties.

As our starting point, we Þrst review how warped symmetries act on the torus. Consider a

theory compactiÞed on the" circle with period 2# as in the previous section. Let us put this

theory at temperature $! 1 and angular potential µ. In this frame our identiÞcations are

(x! , x+ ) # (x! " 2#, x+ + 2#) # (x! " 2#%, x+ + 2#ø%) (2.1)

x+ = t + " x! = t " " (2.2)

2#%= µ " i$ 2#ø%= µ + i$ (2.3)

The Þrst identiÞcation in (2.1) corresponds to the spatial identiÞcation, while the second one
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The Þrst identiÞcation in (2.1) corresponds to the spatial identiÞcation, while the second one

is thermal. The modular group is described by two transformations: S which corresponds to

interchanging thermal and spatial cycles; andT which accounts for adding the spatial cycle to the

thermal cycle.

However, we could have chosen our cycles rather di! erently. This will be important for what

follows, so let us consider a rather arbitrary torus deÞned by the following identiÞcations

(u, v) ! (u " 2!" , v + 2 ! ø") ! (u " 2!# , v + 2 ! ø#) . (2.4)

In this new parametrization, u is the scaling direction while v deÞnes theU(1) axis. The partition

function is, thus,2

Z ø! |! (ø#|#) = Tr ø! ,!

!
e2" i ø#P cyl

0 e! 2" i #L cyl
0

"
. (2.5)

We can now use a change of coordinates to connect this partition function to a canonical one where

u deÞnes the spatial identiÞcation with period 2! . This can be done by the change of coordinates:

öu =
u
"

, öv = v +
ø"
"
u . (2.6)

Keeping track of the anomalies, we obtain

Z ø! |! (ø#|#) = e
" ik ø!

!
ø#! ! ø"

2"

"

Z0|1(ø# "
ø"#
"

|
#
"

) # e
" ik ø!

!
ø#! ! ø"

2"

"

öZ (ø# "
ø"#
"

|
#
"

) , (2.7)

where we deÞned the functionöZ (á|á) by the equation above. In relation to our choice of spatial

cycle in section1 we have

Z1|1(ø#|#) = e" ik (ø#! !
2 ) öZ (ø# " #|#) . (2.8)

It is the function öZ that has nice modular properties so we can just calculate this partition

function and obtain all other possible ones from the formulae above. This is evident by the following

argument: under the exchange of the spatial and thermal circles we expect

Z0|1(ø#|#) = Zø#|#(0| " 1) , (2.9)

which deÞnesS invariance on the torus. We will come back to (2.9) in subsection 2.3; for now we

2It is important to note that L cyl
0 and P cyl

0 in ( 2.5) are the generators of translations in the ( u, v) directions; we
are using the same notation as in (1.8) to avoid clutter, and to distinguish them from the plane charges. The choice
of torus, and hence the relevant zero modes, will be made explicit by the subscript (! , ø! ) in the partition function.
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where we deÞned the functionöZ (á|á) by the equation above. In relation to our choice of spatial

cycle in section1 we have

Z1|1(ø#|#) = e" ik (ø#! !
2 ) öZ (ø# " #|#) . (2.8)

It is the function öZ that has nice modular properties so we can just calculate this partition

function and obtain all other possible ones from the formulae above. This is evident by the following

argument: under the exchange of the spatial and thermal circles we expect

Z0|1(ø#|#) = Zø#|#(0| " 1) , (2.9)

which deÞnesS invariance on the torus. We will come back to (2.9) in subsection 2.3; for now we

declare it as a symmetry of the system. Then, using (2.7) on Zø#|#(0| " 1), we arrive at3

öZ (z|#) = e" ik z2

2! öZ (
z
#

| "
1
#

) . (2.10)

2It is important to note that L cyl
0 and P cyl

0 in ( 2.5) are the generators of translations in the ( u, v) directions; we
are using the same notation as in (1.8) to avoid clutter, and to distinguish them from the plane charges. The choice
of torus, and hence the relevant zero modes, will be made explicit by the subscript (! , ø! ) in the partition function.

3In this section z = ø" ! " , with ! = ø! = 1. It should not be confused with the complex coordinate used in section
(1.6). We hope the context makes clear the deÞnition of z.
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Invariance under S: exchange of thermal and spatial cycle.  

Invariance under T: add the spatial cycle to the thermal.  
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This implies that under S the partition function Z1,1 transforms as

Z1|1(ø! |! ) = e! ik ø! 2

2! öZ (
ø! ! !

!
| !

1
!

)

= e! ik (ø! ! 1) 2

2! Z1|1(
ø! ! ! ! 1

!
| !

1
!

) . (2.11)

Clearly the transformation properties of Z1,1 are rather unnatural relative to öZ ; this makes the

frame (ø", ") = (0 , 1) preferred.

Invariance under T is tied to quantization of angular momentum along the compact spatial

direction, and hence (anti-)periodicity of our Þelds along that direction. Say we quantized the

system as in section1; then the partition function should satisfy 4

Z1|1(ø! + 1 |! + 1) = Z1|1(ø! |! ) , (2.12)

and from (2.8) this implies that

öZ (z|! ) = e! i k
2 öZ (z|! + 1) . (2.13)

The derivations presented so far are in complete agreement with [?]. What is highlighted here,

and will be important in the following, is that relations such as (2.10) are dependent of the choice

of axis used to parametrize the torus. öZ (z|! ) is preferred from this point of view relative to, for

example,Z1|1(ø! , ! ).

2.1 Warped Weyl Fermion

The task ahead of us is to classify possibleöZ Õs built from characters of the R and NS sectors for

the free Warped Weyl fermion. We will demand that these partition functions transform according

to (2.10) under S along with appropriate invariance under T.

Written as a trace, the partition function öZ expressed in terms of plane generatorsöL 0, öP0 reads

öZ (z|! ) = Tr
!

e2! iz öP0 e! 2! i " ( öL 0! c
24 )

"
. (2.14)

Notice that these coordinates are privileged as the vacuum is generated by the identity operators,

i.e. the vacuum state is neutral underP0. We can use the following formulae to connect with the

4One could of course relax (2.12) such that the partition is invariant under, for example, T 2. This would amount
to quantizing J in half integer units.
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cycle in section1 we have

Z1|1(ø#|#) = e" ik (ø#! !
2 ) öZ (ø# " #|#) . (2.8)

It is the function öZ that has nice modular properties so we can just calculate this partition

function and obtain all other possible ones from the formulae above. This is evident by the following

argument: under the exchange of the spatial and thermal circles we expect

Z0|1(ø#|#) = Zø#|#(0| " 1) , (2.9)

which deÞnesS invariance on the torus. We will come back to (2.9) in subsection 2.3; for now we

declare it as a symmetry of the system. Then, using (2.7) on Zø#|#(0| " 1), we arrive at3

öZ (z|#) = e" ik z2

2! öZ (
z
#

| "
1
#

) . (2.10)

2It is important to note that L cyl
0 and P cyl

0 in ( 2.5) are the generators of translations in the ( u, v) directions; we
are using the same notation as in (1.8) to avoid clutter, and to distinguish them from the plane charges. The choice
of torus, and hence the relevant zero modes, will be made explicit by the subscript (! , ø! ) in the partition function.

3In this section z = ø" ! " , with ! = ø! = 1. It should not be confused with the complex coordinate used in section
(1.6). We hope the context makes clear the deÞnition of z.
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This implies that under S the partition function Z1,1 transforms as

Z1|1(ø! |! ) = e! ik ø! 2

2! öZ (
ø! ! !

!
| !

1
!

)

= e! ik (ø! ! 1) 2

2! Z1|1(
ø! ! ! ! 1

!
| !

1
!

) . (2.11)

Clearly the transformation properties of Z1,1 are rather unnatural relative to öZ ; this makes the

frame (ø", ") = (0 , 1) preferred.

Invariance under T is tied to quantization of angular momentum along the compact spatial

direction, and hence (anti-)periodicity of our Þelds along that direction. Say we quantized the

system as in section1; then the partition function should satisfy 4

Z1|1(ø! + 1 |! + 1) = Z1|1(ø! |! ) , (2.12)

and from (2.8) this implies that

öZ (z|! ) = e! i k
2 öZ (z|! + 1) . (2.13)

The derivations presented so far are in complete agreement with [?]. What is highlighted here,

and will be important in the following, is that relations such as (2.10) are dependent of the choice

of axis used to parametrize the torus. öZ (z|! ) is preferred from this point of view relative to, for

example,Z1|1(ø! , ! ).

2.1 Warped Weyl Fermion

The task ahead of us is to classify possibleöZ Õs built from characters of the R and NS sectors for

the free Warped Weyl fermion. We will demand that these partition functions transform according

to (2.10) under S along with appropriate invariance under T.

Written as a trace, the partition function öZ expressed in terms of plane generatorsöL 0, öP0 reads

öZ (z|! ) = Tr
!

e2! iz öP0 e! 2! i " ( öL 0! c
24 )

"
. (2.14)

Notice that these coordinates are privileged as the vacuum is generated by the identity operators,

i.e. the vacuum state is neutral underP0. We can use the following formulae to connect with the

4One could of course relax (2.12) such that the partition is invariant under, for example, T 2. This would amount
to quantizing J in half integer units.
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IMPLEMENTATION 

öZRR = q! 1
24 Tr R

!
(! 1)F y

öP0
m q

öL 0

"
öZRNS = q! 1

24 Tr R

!
y

öP0
m q

öL 0

"

öZNSNS = q! 1
24 Tr NS

!
y

öP0
m q

öL 0

"
öZNSR = q! 1

24 Tr NS

!
(! 1)F y

öP0
m q

öL 0

"
(2.21)

where we deÞned

y = e2! imz , q = e! 2! i " . (2.22)

Note that inserting ( ! 1)F amounts to y " ! y. We can now calculate these functions by creating

all states with fermionic oscillators:5

öZRR (z|! ) = ! iy
1
2 q

1
12

#

n" 0

$
1 ! qn+1 y

% $
1 ! qny! 1%

=
"1(mz| ! ! )

#(! ! )
,

öZRNS(z|! ) = y
1
2 q

1
12

#

n" 0

$
1 + qn+1 y

% $
1 + qny! 1%

=
"2(mz| ! ! )

#(! ! )
,

öZNSNS(z|! ) = q! 1
24

#

n" 0

&
1 + qn+ 1

2 y
' &

1 + qn+ 1
2 y! 1

'
=

"3(mz| ! ! )
#(! ! )

,

öZNSR(z|! ) = q! 1
24

#

n" 0

&
1 ! qn+ 1

2 y
' &

1 ! qn+ 1
2 y! 1

'
=

"4(mz| ! ! )
#(! ! )

. (2.23)

The prefactors ofq and y account for the vacuum values in (2.16) and (2.17); the factor of i in öZRR

is just for ease of writing it in terms of known modular forms. Our conventions on theta functions

and DedekindÕs eta function are in appendixB.

With these explicit expression for the characters, it is straight forward to extract their trans-

formation properties under S and T. We can use the Jacobi identities (B.4) to write

öZRR (z|! ) = iei ! m2 z2

! öZRR (
z
!

| !
1
!

) ,

öZRNS(z|! ) = ei ! m2 z2

! öZNSR(
z
!

| !
1
!

) ,

öZNSNS(z|! ) = ei ! m2 z2

! öZNSNS(
z
!

| !
1
!

) ,

öZNSR(z|! ) = ei ! m2 z2

! öZRNS(
z
!

| !
1
!

) . (2.24)

This should be compared with theS transformation ( 2.10). Recall that m2 = k
2 , hence the phase

factors are those capturing the anomalous term inS! However, the individual characters do not

satisfy (2.10). For instance, the factor of i spoils S covariance for öZRR , unless we consider two

complex fermions Ðallowing invariance in the double coverÐ or 4 complex fermions for full invariance.

5The fact that the theta functions have a minus signs is due to our conventions ( 2.1)-( 2.5). These minus signs
have no physical repercussions.
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Can we build a modular invariant partition function for the fermion? 
Start by building the characters for each sector 

Each character involves a specific theta function; for example  

Notice that these states do not minimize the Hamiltonian in the last section! They will be useful

however to calculate the partition function explicitly.

Now let us calculate öZ for our free fermion system. We introduce di! erent boundary conditions

in the thermal circle by including (or not) the operator

(! 1)F = e! ! i
öP0
m . (2.20)

So we deÞne the usual partition functions

öZRR = q! 1
24 Tr R

!
(! 1)F y

öP0
m q

öL 0

"
öZRNS = q! 1

24 Tr R

!
y

öP0
m q

öL 0

"

öZNSNS = q! 1
24 Tr NS

!
y

öP0
m q

öL 0

"
öZNSR = q! 1

24 Tr NS

!
(! 1)F y

öP0
m q

öL 0

"
(2.21)

where we deÞned

y = e2! imz , q = e! 2! i " . (2.22)

Note that inserting ( ! 1)F amounts to y " ! y. We can now calculate these functions by creating

all states with fermionic oscillators:5

öZRR (z|! ) = ! iy
1
2 q

1
12

#

n" 0

$
1 ! qn+1 y

% $
1 ! qny! 1%

=
"1(mz| ! ! )

#(! ! )
,

öZRNS(z|! ) = y
1
2 q

1
12

#

n" 0

$
1 + qn+1 y

% $
1 + qny! 1%

=
"2(mz| ! ! )

#(! ! )
,

öZNSNS(z|! ) = q! 1
24

#

n" 0

&
1 + qn+ 1

2 y
' &

1 + qn+ 1
2 y! 1

'
=

"3(mz| ! ! )
#(! ! )

,

öZNSR(z|! ) = q! 1
24

#

n" 0

&
1 ! qn+ 1

2 y
' &

1 ! qn+ 1
2 y! 1

'
=

"4(mz| ! ! )
#(! ! )

. (2.23)

The prefactors ofq and y account for the vacuum values in (2.16) and (2.17); the factor of i in öZRR

is just for ease of writing it in terms of known modular forms. Our conventions on theta functions

and DedekindÕs eta function are in appendixB.

With these explicit expression for the characters, it is straight forward to extract their trans-

formation properties under S and T. We can use the Jacobi identities (B.4) to write

öZRR (z|! ) = iei ! m2 z2

! öZRR (
z
!

| !
1
!

) ,

5The fact that the theta functions have a minus signs is due to our conventions ( 2.1)-( 2.5). These minus signs
have no physical repercussions.
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INVARIANT COMBINATIONS 

Impose three conditions: 

¥! Invariance under S 

¥! Invariance under T  

¥! Positive integer coefficients 



INVARIANT COMBINATIONS Ramond sector while keeping all coe! cients positive. In particular, we have

Z0 =
!

öZNSNS(
z

!
8n

|! )
" 8n

+
!

öZRNS(
z

!
8n

|! )
" 8n

+
!

öZNSR(
z

!
8n

|! )
" 8n

Z+ = Z0 +
!

öZRR (
z

!
8n

|! )
" 8n

Z! = Z0 "
!

öZRR (
z

!
8n

|! )
" 8n

= 2q! n/ 3
#

ör " 2Z

y
ör!
8n

q
ör 2

16n

" (q)
(#0,ör (q) + #1,ör (q)) , (2.44)

and

Z! =
!

öZNSNS(
z

!
8n

|! )
" 8n

+
!

öZRNS(
z

!
8n

|! )
" 8n

+
!

öZNSR(
z

!
8n

|! )
" 8n

"
!

öZRR (
z

!
8n

|! )
" 8n

= 2q! n/ 3
#

ör " 2Z

y
ör!
8n

q
ör 2

16n

" (q)
#0,ör (q) + 2 q! n/ 3

#

ör " 2Z+1

y
ör!
8n

q
ör 2

16n

" (q)
#1,ör (q) . (2.45)

These two last expressions are rather unique to WCFTs; there is no counterpart of these combina-

tions in a regular CFT. They also hint to a rather novel version of bosonization in WCFT. It would

be interesting to explore if these combinations could be realized by a bosonic Þeld on a lattice.

2.3 On modular invariance for trace partition functions

An important principle we have used throughout is invariance under S. Around (2.10) we used

that the partition function that has a trivial modular invariant exchange property is Z0|1(ø! |! ). In

particular we declared as a symmetry of the system that

Z0|1(ø! |! ) = Zø! |! (0| " 1) . (2.46)

We can use this expression together with (2.7) to construct the general exchange formula

Z ø"|" (ø! |! ) = e#ik ø! ø"Zø! |! (" ø$| " $) . (2.47)

The sign change is necessary so we deÞne the partition function where it is manifestly convergent.

Along these lines, the generalization ofT invariance is

Z ø"|" (ø! + ø$|! + $) = Z ø"|" (ø! |! ) , (2.48)
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No CFT counterpart! No surprises: very similar to 8n chiral fermions. 



INVARIANT COMBINATIONS 

the plane. Then (2.32) can be organized as

öZ (z|! ) = q! c/ 24
!

p

e2! izp q
p2

k

" (q)

!

öh

#öh(q)q
öh , (2.34)

Here the sums run over values oföh and p in the spectrum; note that öh could still have residual

dependence onp, so the ordering of the summation is a priori non-trivial. The descendants created

by acting with P! nÕs on|öh, p! are accounted by the Euler phi function

" (q) =
""

n=1

(1 " qn) , (2.35)

while the descendants arising from the action ofL ! nÕs are counted by an ordinary Virasoro character

with central charge c " 1: #öh(q).

Our aim is to decompose the partition functions for the Warped Weyl fermion system as in

(2.34). To start we consider again (2.23), now expressed as a sum; the structure of each fermionic

character can be summarized as follows

öZ (ab) (z|! ) = q! 1/ 24
!

r # Z+ a/ 2

(" 1)bryr q
r 2

2

" (q)
, (2.36)

The parameters (a, b) control boundary conditions around the spatial and temporal cycle respec-

tively; for example, a = 0 and b = 1 corresponds to öZNSR. (2.36) already resembles the structure

in (2.34) with öh = 0, p = mr , k = 2m2 and #öh(q) = 1 since a single fermion hasc = 1.

However, the combinations of interest are those in (2.28) and (2.30) which involve powers of
öZ (ab) . In this case, we have that theN -th power of (2.36) is

q! N
24

!

ör # Z+ aN
2

(" 1)bör y
ör!
N

q
ör 2

2N

" (q)

#

$
!

{ r i } # Z+ a
2 |

!
i r i =ör

q
1
2 (r 2

1 + ...+ r 2
N )! ( r 1+ ... + r N ) 2

2N

" (q)N ! 1

%

& (2.37)

In comparison to (2.34), we need to show that the term in parentheses can be interpreted as the sum

of N " 1 bosonic characters withnon-negative primary weights, i.e. a legitimate unitary Virasoro

character. Indeed, we may write the weights as

r 2
1 + ... + r 2

N "
(r 1 + ... + rN )2

N
=

N!

i,i "=1

r i ($ii " "
1
N

)r i " . (2.38)

The symmetric matrix Aii " = ( $ii " " 1
N ) has one vanishing eigenvalue corresponding to the total
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And each of these cases can be casted in terms of Vir-KM primaries 

Ramond sector while keeping all coe! cients positive. In particular, we have

Z0 =
!

öZNSNS(
z

!
8n

|! )
" 8n

+
!

öZRNS(
z

!
8n

|! )
" 8n

+
!

öZNSR(
z

!
8n

|! )
" 8n

Z+ = Z0 +
!

öZRR (
z

!
8n

|! )
" 8n

Z! = Z0 "
!

öZRR (
z

!
8n

|! )
" 8n

= 2q! n/ 3
#

ör " 2Z

y
ör!
8n

q
ör 2

16n

" (q)
(#0,ör (q) + #1,ör (q)) , (2.44)

and

Z! =
!

öZNSNS(
z

!
8n

|! )
" 8n

+
!

öZRNS(
z

!
8n

|! )
" 8n

+
!

öZNSR(
z

!
8n

|! )
" 8n

"
!

öZRR (
z

!
8n

|! )
" 8n

= 2q! n/ 3
#

ör " 2Z

y
ör!
8n

q
ör 2

16n

" (q)
#0,ör (q) + 2 q! n/ 3

#

ör " 2Z+1

y
ör!
8n

q
ör 2

16n

" (q)
#1,ör (q) . (2.45)

These two last expressions are rather unique to WCFTs; there is no counterpart of these combina-

tions in a regular CFT. They also hint to a rather novel version of bosonization in WCFT. It would

be interesting to explore if these combinations could be realized by a bosonic Þeld on a lattice.

2.3 On modular invariance for trace partition functions

An important principle we have used throughout is invariance under S. Around (2.10) we used

that the partition function that has a trivial modular invariant exchange property is Z0|1(ø! |! ). In

particular we declared as a symmetry of the system that

Z0|1(ø! |! ) = Zø! |! (0| " 1) . (2.46)

We can use this expression together with (2.7) to construct the general exchange formula

Z ø"|" (ø! |! ) = e#ik ø! ø"Zø! |! (" ø$| " $) . (2.47)

The sign change is necessary so we deÞne the partition function where it is manifestly convergent.

Along these lines, the generalization ofT invariance is

Z ø"|" (ø! + ø$|! + $) = Z ø"|" (ø! |! ) , (2.48)
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No CFT counterpart! 



CONSTRAINTS 

S2: 

T: 

(ST)3: 

oddities of our Þndings are:

1. In section ?? we showed that the angular momentumJ is bounded from above. This is

intimately related to spectral ßow transformations; we are not aware of any relativistic system

that has this same property.

2. A WCFT has a preferred frame; one where the spatial cycle is (ø! , ! ) = (0 , 1). In this frame,

modular properties of the torus partition function resemble those of weak Jacobi modular

forms, but with some important di ! erences which we will discuss below.

3. The partition function of periodic (Ramond) fermions in a WCFT is non-trivial. Using this

new character, we built two new fermionic partition functions in section ??; the spectrum is

unitary and the functions are modular covariant.

4. If the spectrum of P0 is real and evenly quantized, which is the case for the Weyl fermion, the

canonical and micro-canonical entropy at high temperatures is governed by only the spectral

ßow invariant combinations. However, if the spectrum ofP0 deviates from this case we cannot

estimate the density of states universally.

There are some further generalizations of our discussion that are worth highlighting. In section

?? we have demanded quantization on a particular circle (ø! = ! = 1). This is arbitrary and

obscures the rescaling invariance of the levelk in a U(1) Kac-Moody algebra. The generalization

is straight forward and goes as follows: if one wanted to demand angular momentum quantization

in an arbitrary circle parameterized by (ø! , ! ), one is led to the quantization condition (for a theory

including the NS sector):

6ø! 2k + c = 24p , (4.1)

where c is the total central charge and p an arbitrary integer. Notice this agrees with our previous

formulae in section??. Also, this is manifestly dimensionless ask has units of ø! ! 2. As such we see

that the only thing that can be Þxed is the dimensionless quantitykø! 2, which one can interpret as

magnetic ßux from the spectral ßow perspective. Indeedø! 2k is just the P0 charge of the state that

corresponds to the vacuum in the canonical circle (ø! , ! ) = (0 , 1). This is a physical parameter of

our theory and plays a role similar to the central charge.

In addition to the quantization condition ( ??), we can infer another quantization condition

from modular properties of öZ . Recall that in the canonical circle (ø! , ! ) = (0 , 1), the S and T

transformations are given by (??) and (??) respectively. Acting with S2 we Þnd

öZ (z|" ) = öZ (! z|" ) , (4.2)
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P0 has a reflection symmetry. 

corresponds to the vacuum in the canonical circle (ø! , ! ) = (0 , 1). This is a physical parameter of

our theory and plays a role similar to the central charge.

In addition to the quantization condition ( 4.1), we can infer another quantization condition

from modular properties of öZ . Recall that in the canonical circle (ø! , ! ) = (0 , 1), the S and T

transformations are given by (2.10) and (2.13) respectively. Acting with S2 we Þnd

öZ (z|" ) = öZ (! z|" ) , (4.2)

which gives a reßection symmetry of the spectrum ofP0. Acting with ( ST)3 on the partition

function gives
öZ (z|" ) = ei ! 3k

2 öZ (! z|" ) . (4.3)

Combining (4.2) and (4.3) we Þnd that consistency of the modular transformations requires

k "
4
3

n , n " Z . (4.4)

In combination with ( 4.1) this implies that any modular invariant WCFTs must have a central

chargec that is a multiple of 8.

WCFTs were originally encountered as the asymptotic symmetry algebra of three dimensional

warped black holes [?], and later made its appearance in more general extremal black holes, see e.g.

[?, ?, ?]. These holographic examples do have some peculiarities that are not easy to account for

using our fermionic system. For instance, to match the black hole entropy using the thermal prop-

erties of a WCFT one needs that öP!
0 is purely imaginary [?]. If there is an imaginary contribution

to the spectrum of öP!
0 it is not clear how to perform the contour integrals in (3.20); and in the cases

where we can perform the integral the Þrst term in (3.17) drops out. This is an important open

question regarding the number of microstates of extremal black holes; gravity typically computes

canonical quantities through the holographic dictionary, but it is not evident that these quantities

are counting a micro-canonical density of states.

The modular properties of warped partition functions share many similarities with weak Jacobi

forms. These modulars forms are those relevant for the counting of dyons inN = 4 string states,

and also crucial to account for the Bekenstein Hawking entropy of BPS black holes [?, ?, ?, ?, ?].

In this context, P0 is an R-charge in a supersymmetric algebra, and without loss of generality can

be taken to be quantized in units of the U(1) level. If this is the case, the statistical mechanics

interpretation of weak Jacobi forms is [?]

#(p, h) =
! 1

0
dz e" 2! izp

! "+ i #

"" i #

d$
2%i

e2!# hZ (z|" ) , " = ! i$ . (4.5)
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Fermion or, as in holography, öP!
0 becomes imaginary, it is not clear how to interpret microcanoni-

cally the term in the canonical entropy depending on the ø! potential.

4 Discussion

WCFTs are interesting non-relativistic Þeld theories, with some rather peculiar and novel features.

To display some of these peculiarities, we have discussed in length the simplest realization of a

WCFT: a massive Weyl fermion in two spacetime dimensions. To summarize, the most striking

oddities of our Þndings are:

1. In section 1.2 we showed that the angular momentumJ is bounded from above. This is

intimately related to spectral ßow transformations; we are not aware of any relativistic system

that has this same property.

2. A WCFT has a preferred frame; one where the spatial cycle is (ø", ") = (0 , 1). In this frame,

modular properties of the torus partition function resemble those of weak Jacobi modular

forms, but with some important di ! erences which we will discuss below.

3. The partition function of periodic (Ramond) fermions in a WCFT is non-trivial. Using this

new character, we built two new fermionic partition functions in section 2.2; the spectrum is

unitary and the functions are modular covariant.

4. If the spectrum of P0 is real and evenly quantized, which is the case for the Weyl fermion, the

canonical and micro-canonical entropy at high temperatures is governed by only the spectral

ßow invariant combinations. However, if the spectrum ofP0 deviates from this case we cannot

estimate the density of states universally.

There are some further generalizations of our discussion that are worth highlighting. In section

1 we have demanded quantization on a particular circle (ø" = " = 1). This is arbitrary and obscures

the rescaling invariance of the levelk in a U(1) Kac-Moody algebra. The generalization is straight

forward and goes as follows: if one wanted to demand angular momentum quantization in an

arbitrary circle parameterized by (ø", "), one is led to the quantization condition (for a theory

including the NS sector):

6ø"2k + c = 24p , (4.1)

where c is the total central charge and p an arbitrary integer. Notice this agrees with our previous

formulae in section1.2. Also, this is manifestly dimensionless ask has units of ø"" 2. As such we see

that the only thing that can be Þxed is the dimensionless quantitykø"2, which one can interpret as

magnetic ßux from the spectral ßow perspective. Indeedø"2k is just the P0 charge of the state that
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We can use this expression together with (2.7) to construct the general exchange formula

Z ø! |! (ø! |! ) = e" ik ø#ø! Zø#|#(! ø"| ! ") . (2.47)

The sign change is necessary so we deÞne the partition function where it is manifestly convergent.

Along these lines, the generalization ofT invariance is

Z ø! |! (ø! + ø"|! + ") = Z ø! |! (ø! |! ) , (2.48)

provided we quantized angular momentum using the spatial cycle (ø", "). From here one can infer

that the generalization of (2.13) is

öZ (z|! ) = e" ik
ø! 2

2 öZ (z|! + 1) . (2.49)

It is not unexpected that ( 2.47) has a anomalous piece, since the symmetry is anomalous.

However, the exponent is not a priori evident: a di! erent exponent would modify (2.46) and spoil

our analysis for the fermion. In the following we would like to explain why our conditions are

natural and physically motivated.

One way to do so is by writing the partition function in a language that makes manifest the

warped geometry. The symmetry is anomalous, so the partition function could depend on quantities

that are not invariant under warped conformal transformations. A good starting point is then to

list the invariant combinations. DeÞne vectors

#p = (øp, p) , #w = ( øw, w) , (2.50)

which are deÞned in the (v, u) plane. In this notation u is the scaling direction in the warped

geometry, and under this scaling a vector transforms as

#p = (øp, p) " (øp,$p) . (2.51)

There are two combinations that invariant under (2.51) [?]:

#p # #w

|#p|
1
2 | #w|

1
2

,
|#p|
| #w|

, (2.52)

where

|#p| $ p , #p # #w $ p øw ! øpw . (2.53)

Notice that |#p| is not necessarily positive. The combinations (2.52) are more over invariant under

warped conformal transformations; we refer the reader to [?] for details and derivations.
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We can use this expression together with (2.7) to construct the general exchange formula

Z ø! |! (ø! |! ) = e" ik ø#ø! Zø#|#(! ø"| ! ") . (2.47)

The sign change is necessary so we deÞne the partition function where it is manifestly convergent.
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Z ø! |! (ø! + ø"|! + ") = Z ø! |! (ø! |! ) , (2.48)

provided we quantized angular momentum using the spatial cycle (ø", "). From here one can infer
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öZ (z|! ) = e" ik
ø! 2

2 öZ (z|! + 1) . (2.49)
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corresponds to the vacuum in the canonical circle (ø! , ! ) = (0 , 1). This is a physical parameter of

our theory and plays a role similar to the central charge.

In addition to the quantization condition ( 4.1), we can infer another quantization condition

from modular properties of öZ . Recall that in the canonical circle (ø! , ! ) = (0 , 1), the S and T

transformations are given by (2.10) and (2.13) respectively. Acting with S2 we Þnd

öZ (z|" ) = öZ (! z|" ) , (4.2)

which gives a reßection symmetry of the spectrum ofP0. Acting with ( ST)3 on the partition

function gives
öZ (z|" ) = ei ! 3k

2 öZ (! z|" ) . (4.3)

Combining (4.2) and (4.3) we Þnd that consistency of the modular transformations requires

k =
4
3

n , n " Z . (4.4)

In combination with ( 4.1) this implies that any modular invariant WCFTs must have a central

chargec that is a multiple of 8.

c = 8n (4.5)

WCFTs were originally encountered as the asymptotic symmetry algebra of three dimensional

warped black holes [?], and later made its appearance in more general extremal black holes, see e.g.

[?, ?, ?]. These holographic examples do have some peculiarities that are not easy to account for

using our fermionic system. For instance, to match the black hole entropy using the thermal prop-

erties of a WCFT one needs that öP!
0 is purely imaginary [?]. If there is an imaginary contribution

to the spectrum of öP!
0 it is not clear how to perform the contour integrals in (3.20); and in the cases

where we can perform the integral the Þrst term in (3.17) drops out. This is an important open

question regarding the number of microstates of extremal black holes; gravity typically computes

canonical quantities through the holographic dictionary, but it is not evident that these quantities

are counting a micro-canonical density of states.

The modular properties of warped partition functions share many similarities with weak Jacobi

forms. These modulars forms are those relevant for the counting of dyons inN = 4 string states,

and also crucial to account for the Bekenstein Hawking entropy of BPS black holes [?, ?, ?, ?, ?].

In this context, P0 is an R-charge in a supersymmetric algebra, and without loss of generality can

be taken to be quantized in units of the U(1) level. If this is the case, the statistical mechanics
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3 Thermodynamics

We will now discuss the thermodynamic properties of WCFTs. We will use modular invariant

properties of the preferred frame (ø! |! ) = (0 |1) to extract properties of the system at Òhigh temper-

atures.Ó From here we can evaluate the entropy and other thermodynamic properties in any other

frame.

These calculations are done in the canonical ensemble, and in this ensemble we will recover and

extend the results in [?]. It is also of interest to comment on the relation of these calculations to

the micro-canonical counterpart. In concrete terms, we will discuss the consequences of modular

invariance on the density of states of WCFTs.

3.1 Canonical ensemble

Given a partition function Z , it is possible to deÞne a canonical entropyS through

Sø! |! (ø" |" ) ⌘ (1 � ø"#ø" � "#" ) log Z ø! |! (ø" |" ) . (3.1)

Notice that this quantity can only have statistical meaning as a canonical entropy whenever the

thermodynamic potentials ø" and " are purely imaginary. In that case Z is a statistical partition

function. If this was not the case, it would be some kind of index and we could still calculateS,

although we have to be careful in interpreting it physically.

Making use of (2.7), we can easily obtainSø! |! in terms of the entropy deÞned in the preferred

frame (ø! |! ) = (0 , 1). We have

Sø! |! (ø" |" ) = (1 � ø"#ø" � "#" ) log[e
#ik ø!

!
ø" ! ! ø"

2"

"

öZ (ø" �
ø!"
!

|
"
!

)]

= (1 � z#z � t#t ) log öZ (z|t)
!
!
!
z=ø" ! ø! !

" , t= !
"

= öS(ø" � ø!
"
!

|
"
!

) . (3.2)

The entropy, in terms of thermodynamic potentials, is blind to the anomalous transformation ofZ .

This is to be expected if one wants to give statistical meaning toS and at the same time view (2.7)

as a coordinate transformation. All observers must agree on the results of the counting problem.

Hence, without loss of generality, we will evaluateöS.

Now, using modular invariance we can calculate the entropy of WCFTs in the Òhigh tempera-

22

minimization problem:

öP!
0 : min { Re(z) öP0 +

öP2
0

k
} ! öP!

0 = "
k
2

Re(z) = "
k
2

Re(ø! ) . (3.14)

It is important to make clear that we are assuming the spectrum is dense enough that there exists

a state with a charge in the neighborhood of this value. Still , if the spectrum is discrete we should

stress that no di! erential operator involving z acts non trivially on öP!
0 . We can therefore adapt

our old formulae to this case. In particular, the expectation values of the charges are now

#P0$=
"
!

k
2

i Im(ø! ) , (3.15)

and

#L 0$= "
"

! 2

!
k
4

(Im(ø! ))2 +
c

24

"
. (3.16)

We see they are independent of the real part of ø! . As such, the expression for the entropy in this

limit is necessarily changed to

Sø! |! = 4#i
öP!

0 #öP0$
k

+ 2#

#
c
6

!
#L 0$ "

#P0$2

k

"
, (3.17)

where #öP0$ is the expectation value of the charge in the preferred circle and related to the general

result by

#P0$=
kø"
2

+ #öP0$ . (3.18)

This result yields an interesting consequence. Di! erent limits in the canonical entropy yield

di! erent results for the same expectations values of the charges! This casts doubts on the interpre-

tation of the Þrst term as a microcanonical result. While this might seem obvious given that the

contribution is imaginary, in cases of interest in holography this contribution might be real [?] and

we might wonder whether it can be interpreted as microcanonical counting. In any case, for the

case of interest in this work, the Warped Weyl Fermion, we see that charges are quantized in units

of
$

k
2 . Therefore the naive microcanonical density of states is

$naive % eS = e
2"

!
c
6

"
"L 0#$ ! P0 " 2

k

#

e2" in = e
2"

!
c
6

"
"L 0#$ ! P0 " 2

k

#

, (3.19)

where n = 2
öP #

0 " öP0#
k & Z. Hence, there seems to be no ambiguity in this case.
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High temperature regime 

Now, using modular invariance we can calculate the entropy of WCFTs in the Òhigh tempera-

tureÓ regime, i.e.! ! " i0, and recover the results in [?]. We can use (2.61) to write

öS(z|t) = (1 " z" z " t" t ) log[e
! ik

2
z2

t öZ (
z
t
| "

1
t
)] = (1 " z" z " t" t ) log öZ (

z
t
| "

1
t
) . (3.3)

Once again, the anomalous factor drops out of the calculation. If we understand the! ! " i0 limit

of this expression we can calculate the entropy. Here we proceed as in standard CFT. We can argue

that the partition function will be dominated by the most important term in the trace over states.

In particular,

öZ (
z
t
| "

1
t
) = Tr

!
e2! i z

t
öP0+2 ! i 1

t ( öL 0! c
24 )

"
! e2! i z

t
öP !

0 +2 ! i 1
t ( öL !

0 ! c
24 ) , (3.4)

where öL "
0 is the minimum value of öL 0 in the spectrum and öP"

0 is the charge of that state. It is

important to notice that this result is only strictly valid for imaginary values of z and when the

spectrum of öP0 is real up to an overall shift. If this was not the case the result above has to be

revised and we will comment on it shortly. If we plug this in the expression for the entropy (3.3)

we obtain
öS(z|t) = 2 #i

z
t

öP"
0 + 4#i

1
t

!
öL "

0 "
c

24

"
. (3.5)

This is the result quoted in [?] for the preferred quantization circle (ø$|$) = (0 |1). We notice that

the Þrst term is unusual, if compared to standard CFT results.

The minimal value of L 0 is given by primaries that saturate the unitarity bound; see (1.57). In

that case

öL "
0 =

öP" 2
0

k
, (3.6)

and we must Þnd the state with lowest absolute value oföP0. It is natural to assume that the

spectrum contains a neutral state, which givesöP"
0 = 0, and hence the entropy is8

öS(z|t) = " #i
c
6t

. (3.7)

And in a generic frame the entropy is given by

Sø"|" (ø! |! ) = " #i$
c

6!
, (3.8)

when #
" ! " i0. Notice that the entropy does not exhibit any dependence on the thermodynamic

potential ø! , nor the circle data ø$. These manipulations so far are valid for the Warped Weyl Fermion

8In general we cannot prove that a neutral state exists for any WCFT. However, by using ( 2.10) twice gives
öZ (z|! ) = öZ (! z|! ); this further implies that the spectrum is invariant under öP0 " ! öP0. If the neutral state is not
present, we would simply write a generalization of ( 3.7) that accounts for the reßection symmetry.

23

Is this piece counting states? 

No contribution for the Weyl  Fermion 

[Hartman,Hofman  & Detournay , 2012] 
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matrix induced by this identiÞcation. More concretely

! D = U! H U  , ! H = exp
!

ø" Pcyl
0 ! " L cyl

0

"
, (3.6)

where U is a unitary transformation that implements the coordinate transformation ( ??). Thus

SEE = ! Tr ( ! D log ! D ) = Sthermal (H ) . (3.7)

For the above equality between entanglement and thermal entropy to hold, we need to be

rather careful with the divergent pieces of each observable. On general grounds, we expect the

entanglement entropy to have a UV divergence arising from the boundary of the interval, requiring

the introduction of a short distance cuto! . Whereas for H , we expect the thermal entropy to be

IR divergent due to the inÞnite size ofx in the domain of interest. To relate these divergences, we

need to obtain the length of D in the coordinate system (t, x ). The naive answer gives an inÞnite

range, so we introduce a cuto! parameter # which deÞnes the new regulated interval as

D : (T, X ) "
#
(

ø$
2

!
ø$
$
#, !

$
2

+ #) , (!
ø$
2

+
ø$
$
#,

$
2

! #)
$

. (3.8)

Notice the factor in front of the cuto ! in the T direction; this is necessary to guarantee the units

are correct and that the regulated interval is actually contained in the original interval. Using the

map (??) gives the image of this interval in the (t, x ) coordinates; we obtain

(t, x ) "
#
(

ø"
2%

&!
$
2

øL
L

+
ø$
2

, !
"
2%

&) , (!
ø"

2%
&+

$
2

øL
L

!
ø$
2

,
"
2%

&)
$

, (3.9)

where

&= log
%

L
%#

sin
%$
L

&
+ O(#) . (3.10)

Notice in (??) we kept terms that are subleading relative to & in the small # expansion; in the

following we will keep these terms since they could contribute to the Þnal answer.

3.1.1 Entropy calculation

Having established a relation between single interval entanglement and thermal entropy via (??)-

(??), we now proceed to evaluateSthermal . Following the notation in ( ??), we denote the partition

function for H

Zøa|a(ø' |' ) , (3.11)

12

Task: evaluate EE for the 
vacuum state on the cylinder. 

We will consider an interval inside this cylinder also oriented arbitrarily

D : (T, X ) !
!
(

ø!
2

, "
!
2

), ("
ø!
2

,
!
2

)
"

. (3.2)

Notice that if
ø!
! #=

øL
L then the segment is misaligned with the identiÞcation direction.

To quantify entanglement entropy in D we will make use of warped conformal mappings: we

will show that the density matrix " D describing the vacuum state onD is related via a unitary

transformation to a thermal density matrix " H . This generalizes the results of [3, 4] to a case

with fewer symmetries than a conformal theory, and appropriate comparisons with a CFT2 will be

made along the way. To relate" D to a thermal observer we Þrst construct a mapping the cylinder

(T, X ) to a set of coordinates that cover only the ÒinsideÓ of the interval. In comparison with a

relativistic system (see appendixA), ÒinsideÓ the interval it is not the causal domain of (3.2). For

a warped system we are only allowed transformations of the form (2.1), and for the task at hand

the appropriate transformation is

tan " X
L

tan "!
2L

= tanh
#x
$

, T +
øL
L

X = t +
ø$
$

x . (3.3)

We have introduced two scales,$ and ø$, in the above map; these scales are arbitrary, and the

independence of the Þnal result on them will be used as a consistency check. In particular notice

that in the ( t, x ) coordinates the slice where the spatial identiÞcation is performed in the (T, X )

coordinates gets mapped to the line:

t +
ø$
$

x = 0 . (3.4)

This transformation has several favorable features. First, the map (3.3) respects the cylinder

identiÞcation (3.2). The real line "$ < x < $ covers the region" !
2 < X < !

2 and not the

rest of the cylinder. The domain of causaility, which turns out to be a strip, is depicted in Þgure

??. Moreover, the expected surprise that is a direct consequence of this fact is that the map (3.3)

induces an identiÞcation in the (t, x ) coordinates as:

H : (t, x ) % (t " i ø$, x + i$) , (3.5)

We interpret this result as the fact that the observer in (t, x ) coordinates perceives a thermal density

matrix induced by this identiÞcation. More concretely

" D = U" H U  , " H = exp
#

ø$Pcyl
0 " $L cyl

0

$
, (3.6)
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2 Basic properties of WCFT

We start by gathering some basic properties of WCFTs. The following equations are based on the

results in [?, ?]; the reader familiar with these results can skip this section.

Consider the theory deÞned on the (z, w) plane as in (??)-(??). On this plane, we denoteT(z)

as the right moving energy momentum tensor andP(z) a right moving U(1) Kac Moody current.

We deÞne

L n = !
i

2!

!
dz "n(z)T(z) , Pn = !

1
2!

!
dz #n(z)P(z) , (2.1)

where we choose the test functions as"n = zn+1 and #n = zn. In terms of the plane charges

(L n , Pn) the commutations relations are

[L n , L n! ] = ( n ! n!)L n+ n! +
c

12
n(n2 ! 1)$n," n! ,

[L n , Pn! ] = ! n!Pn! + n ,

[Pn , Pn! ] = k
n
2

$n," n! , (2.2)

which is a Virasoro-Kac-Moody algebra with central chargec and level k.

T(z) generates inÞnitesimal coordinates transformations inz, and P(z) generates a gauge trans-

formation in the gauge bundle alongw. This is the content of the commutation relations (2.2). We

can think of these transformations as Þnite coordinate transformations

w " w = w! + g(z!) , z " z = f (z!) , (2.3)

and in this case, the Þnite transformation properties are

P!(z!) =
%z
%z!

"
P(z) +

k
2

%w!

%z

#
,

T !(z!) =
"

%z
%z!

# 2 $
T(z) !

c
12

{ z!, z}
%

+
%z
%z!

%w
%z! P(z) !

k
4

"
%w
%z!

# 2

, (2.4)
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3 Entanglement entropy: Þeld theory

In this section we will compute entanglement entropy in a WCFT by using the ÒRindler method,Ó

i.e. via suitable coordinate maps we will show how to cast the entanglement entropy of an interval

as the thermal entropy of a Rindler observer [?,?]. While some technical features and outcomes of

this method di! er from those in a CFT2, we show that the applicability of the method is equally

powerful in a WCFT.

3.1 Rindler method

Our Þrst task will be to calculate the entanglement entropy of a single interval when the system is

on its ground state. The background geometry is a space-time cylinder described by coordinates

(T, X ). Following up on our previous discussion, hereT is the classicallyU(1) preferred axis and

X is the quantum anomaly selected axis with a scalingSL(2, R) symmetry. In order to keep the

discussion general, the identiÞcation that deÞnes the spatial circle is given by

(T, X ) ! (T + øL, X " L) . (3.1)

We will consider an interval inside this cylinder also oriented arbitrarily

D : (T, X ) #
!
(

ø!
2

, "
!
2

), ("
ø!
2

,
!
2

)
"

. (3.2)

Notice that if
ø!
! $=

øL
L then the segment is misaligned with the identiÞcation direction. For later

reference we denote these two endpoints byX 1, X 2, where in an abuse of notationX 1 refers to both

of the (T, X ) coordinates.

To quantify entanglement entropy in D we will make use of warped conformal mappings: we

will show that the density matrix " D describing the vacuum state onD is related via a unitary

transformation to a thermal density matrix " H . This generalizes the results of [?,?] to a case with

symmetries di! erent from that of a conformal theory, and appropriate comparisons with a CFT2

will be made along the way. To relate " D to a thermal observer we Þrst construct a mapping

from the cylinder (T, X ) to a set of coordinates that cover only the ÒinsideÓ of the interval. In

comparison with a relativistic system (see appendix??), we can interpret ÒinsideÓ the interval as

the causal domain of (??). For a warped system we are only allowed transformations of the form

(??), and for the task at hand the appropriate transformation is

tan " X
L

tan "!
2L

= tanh
#x
$

, T +
øL
L

X = t +
ø$
$

x . (3.3)
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sum, the partition function is well approximated by
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0 + á á á, (3.18)

where Pvac
0 and L vac

0 are the cylinder values of the charges in the vacuum state in the canonical

circle. Notice that because the phase factorz" is constant in the limit all we need to do is to

minimize L 0 in (3.18): for a given value of P0 we expect the minimum value ofL 0 is given by the

unitarity bound

L vac
0 =

(Pvac
0 )2

k
!

c
24

. (3.19)

If the spectrum of P0 is real, as expected in a unitary WCFT we obtain3

L vac
0 = !

c
24

, Pvac
0 = 0 . (3.20)

If we allow the spectrum of P0 to be complex, which occurs often in holographic duals to WCFTs

[?,?], the minimum value is

Pvac
0 = ! iQ , L vac

0 = !
Q2

k
!

c
24

, (3.21)

where Q is a real vacuum charge.

Gathering these results, the thermal entropy of the observerH is

öS(z|! ) = iP vac
0 "

! øL
L

!
ø"
"

#
! 4L vac

0 # , (3.22)

where we ignored subleading terms in# due to subleading corrections in (3.18). Finally, using ( 3.7)

and (3.10), we Þnd

SEE = iP vac
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! øL
L

!
ø"
"

#
! 4L vac

0 log
!

L
$%

sin
$"
L

#
. (3.23)

While one might imagine that the Þrst term is subleading it might be interesting to consider

as a response of the leading value to a misalignment of the segment with respect to the circle

identiÞcation. Notice it is extensive on the size of the cylinder and not periodic. As we derive this

same answer using twist Þeld correlation functions and holographically, the interpretation of these

contributions will become more clear.
3In other words, we assume that there is a state invariant under the global SL(2, R) ! U(1) isometries of the

system.
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SUMMARY 



¥! We found interesting constraints:  
1.! Bound from above of angular momentum. 
2.! Quantization of central charge and U(1) level. 

¥! Implementation of modular invariance:  
 Preferred frame to quantize. 

¥! New nontrivial fermionic  sector:  
1.! New modular invariant combinations. 
2.! What is bosonization  in WCFTs?  



SECRET 
AGENDA 

WHAT I HAVE NOT TOLD YOU 



HOLOGRAPHY 

EXTREMAL (ZERO TEMPERATURE) BLACK HOLES 

1 Warped Weyl fermion: from the plane to the cylinder

x+ ! x+ + g(x! )

x! ! f (x! ) (1.1)

x+ ! g(x+ )

x! ! f (x! ) (1.2)

where f and g are arbitrary functions. It is clear that both directions are not on the same

footing: x! has scaling symmetry whilex+ does not. It is also evident that a WCFT is non-

relativistic. The global isometry group of the theory is SL(2, R) " U(1), while the local symmetries

are described by a Virasoro-Kac-Moody algebra. Further properties of this algebra are described

in appendix A.

A WCFT possesses two global charges associated to energy and angular momentum:

H = # i ! t = # i (! + + ! ! ) , J = # i ! ! = # i (! + # ! ! ) , (1.3)

where

x! + x+ = 2 t , x + # x! = 2 " . (1.4)

We want to deÞne states in this theory at t = 0 by doing radial quantization in the complex

plane and gluing these states to the Lorentzian cylinder (1.3). For this purpose it is convenient to

deÞne the following complex coordinate

z = e! ix !
= e! i (t ! ! ) = etE + i ! , (1.5)

where tE = # it corresponds to euclidean time. We have chosenz such that it contains all time

evolution. Very early time in the Euclidean cylinder corresponds to the origin in the z plane. Now

we deÞne a second coordinate that does not involve time, namely:

w = x+ # x! = 2 " . (1.6)

It is important that both ( 1.4) and (1.5) are included in the Þnite coordinates transformations

generated by (1.1). They are therefore Ðup to anomaliesÐ symmetries of our theory.

1

Global symmetries 



More concretely, WCFTs appear in holography  

¥! Warped AdS 3 : Topological massive gravity 

¥! Warped AdS 3 : Massive vector fields 

¥! AdS3 Gravity: Mixed boundary conditions  

¥! Lower spin gravity: Newton- Cartan  formulation 

 

[Compere & Detournay , 2008] 

[Guica  et al, É ] 

[Troessaert, 2012; Compere, Strominger  & Song, 2012] 

[Hofman  & Rollier, 2014] 
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0 are the cylinder values of the charges in the vacuum state in the canonical

circle. Notice that because the phase factorz" is constant in the limit all we need to do is to

minimize L 0 in (3.18): for a given value of P0 we expect the minimum value ofL 0 is given by the
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If the spectrum of P0 is real, as expected in a unitary WCFT we obtain3
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If we allow the spectrum of P0 to be complex, which occurs often in holographic duals to WCFTs

[?,?], the minimum value is
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where Q is a real vacuum charge.

Gathering these results, the thermal entropy of the observerH is
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where we ignored subleading terms in# due to subleading corrections in (3.18). Finally, using ( 3.7)

and (3.10), we Þnd
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While one might imagine that the Þrst term is subleading it might be interesting to consider

as a response of the leading value to a misalignment of the segment with respect to the circle

identiÞcation. Notice it is extensive on the size of the cylinder and not periodic. As we derive this

same answer using twist Þeld correlation functions and holographically, the interpretation of these

contributions will become more clear.
3In other words, we assume that there is a state invariant under the global SL(2, R) ! U(1) isometries of the

system.
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minimization problem:

öP!
0 : min { Re(z) öP0 +

öP2
0

k
} ! öP!

0 = "
k
2

Re(z) = "
k
2

Re(ø! ) . (3.14)

It is important to make clear that we are assuming the spectrum is dense enough that there exists

a state with a charge in the neighborhood of this value. Still , if the spectrum is discrete we should

stress that no di! erential operator involving z acts non trivially on öP!
0 . We can therefore adapt

our old formulae to this case. In particular, the expectation values of the charges are now

#P0$=
"
!

k
2

i Im(ø! ) , (3.15)

and

#L 0$= "
"

! 2

!
k
4

(Im(ø! ))2 +
c

24

"
. (3.16)

We see they are independent of the real part of ø! . As such, the expression for the entropy in this

limit is necessarily changed to

Sø! |! = 4#i
öP!

0 #öP0$
k

+ 2#

#
c
6

!
#L 0$ "

#P0$2

k

"
, (3.17)

where #öP0$ is the expectation value of the charge in the preferred circle and related to the general

result by

#P0$=
kø"
2

+ #öP0$ . (3.18)

This result yields an interesting consequence. Di! erent limits in the canonical entropy yield

di! erent results for the same expectations values of the charges! This casts doubts on the interpre-

tation of the Þrst term as a microcanonical result. While this might seem obvious given that the

contribution is imaginary, in cases of interest in holography this contribution might be real [?] and

we might wonder whether it can be interpreted as microcanonical counting. In any case, for the

case of interest in this work, the Warped Weyl Fermion, we see that charges are quantized in units

of
$

k
2 . Therefore the naive microcanonical density of states is

$naive % eS = e
2"

!
c
6

"
"L 0#$ ! P0 " 2

k

#

e2" in = e
2"

!
c
6

"
"L 0#$ ! P0 " 2

k

#

, (3.19)

where n = 2
öP #

0 " öP0#
k & Z. Hence, there seems to be no ambiguity in this case.
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These terms are generic in 
holographic duals to WCFTs.  

And imaginary! 

Are the holographic duals intrinsically not unitary?  
Is it a bug or a feature?  



OPEN HOLOGRAPHIC QUESTIONS 
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tation of the Þrst term as a microcanonical result. While this might seem obvious given that the

contribution is imaginary, in cases of interest in holography this contribution might be real [?] and

we might wonder whether it can be interpreted as microcanonical counting. In any case, for the
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of
$

k
2 . Therefore the naive microcanonical density of states is

$naive % eS = e
2"

!
c
6

"
"L 0#$ ! P0 " 2

k

#

e2" in = e
2"

!
c
6

"
"L 0#$ ! P0 " 2

k

#

, (3.19)

where n = 2
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k & Z. Hence, there seems to be no ambiguity in this case.
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ENTROPY: all the terms in  

are need to reproduce the Wald entropy of a black hole.  
Is the imaginary piece counting states?  



OPEN HOLOGRAPHIC QUESTIONS 

Entanglement: Lower spin gravity reproduces correctly  

But in metric formulation of WAdS 3 this remains unknown.  
What are the modifications of R-T and L-M when the spacetime  is not 
asymptotically AdS? 
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where Q is a real vacuum charge.
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While one might imagine that the Þrst term is subleading it might be interesting to consider

as a response of the leading value to a misalignment of the segment with respect to the circle

identiÞcation. Notice it is extensive on the size of the cylinder and not periodic. As we derive this

same answer using twist Þeld correlation functions and holographically, the interpretation of these

contributions will become more clear.
3In other words, we assume that there is a state invariant under the global SL(2, R) ! U(1) isometries of the

system.
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