WARPED
 CONFORMAL THEORIES

ALEJANDRA CASTRO

UNIVERSITY OF AMSTERDAM

DEFINITION

At the level of infinitesimal transformations, a WCFT is defined as a classical field theory invariant under

$$
\begin{aligned}
& x^{+} \rightarrow x^{+}+g\left(x^{-}\right) \\
& x^{-} \rightarrow f\left(x^{-}\right)
\end{aligned}
$$

Global symmetries

$$
S L(2, \mathbb{R}) \times U(1)
$$

This is not a CFT_{2}, where instead we have

$$
\begin{aligned}
& x^{+} \rightarrow g\left(x^{+}\right) \\
& x^{-} \rightarrow f\left(x^{-}\right)
\end{aligned}
$$

Global symmetries
$S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$

DEFINITION

At the level of infinitesimal transformations, a WCFT is defined as a classical field theory invariant under

$$
\begin{aligned}
& x^{+} \rightarrow x^{+}+g\left(x^{-}\right) \stackrel{\text { shift/translation }}{\leftarrow} x^{\substack{\text { scaling } \\
\text { direction }}} \leqslant S(2, \mathbb{R}) \times U(1)
\end{aligned}
$$

MOTIVATION

CFT are the building blocks of relativistic QFTs.

What are the building blocks of non-relativistic QFTs?

- Very few examples.
- Exotic fixed points are easy to miss.

Can one build an interesting example of a WCFT?
YES

Massive Weyl Fermion:

1. Spectrum
2. Modular invariance
[AC, D. Hofman, G. Sarosi, arxiv:1508.06302]
[AC, D. Hofman, N. Iqbal, arxiv:1511.00707]

A NON TRIVIAL EXAMPLE

MASSIVE WEYL FERMION

1. SPECTRUM

ACTION

To start: a single complex anti-commuting field [Hofman \& Rollier 2014]

$$
I=\int d x^{+} d x^{-}\left(i \bar{\Psi} \partial_{+} \Psi+m \bar{\Psi} \Psi\right)
$$

ACTION

To start: a single complex anti-commuting field [Hofman \& Rollier 2014]

$$
I=\int d x^{+} d x^{-}\left(i \bar{\Psi} \partial_{+} \Psi+m \bar{\Psi} \Psi\right)
$$

Global symmetries
 $S L(2, \mathbb{R}) \times U(1)$

Under scaling $x^{-} \rightarrow \lambda x^{-}$fermion has weight $1 / 2$.

ACTION

To start: a single complex anti-commuting field [Hofman \& Rollier 2014]

$$
I=\int d x^{+} d x^{-}\left(i \bar{\Psi} \partial_{+} \Psi+m \bar{\Psi} \Psi\right)
$$

$$
\begin{aligned}
& \text { Global symmetries } \\
& S L(2, \mathbb{R}) \times U(1)
\end{aligned}
$$

My favorite things about this example:

- Explicit
- Not a CFT
- Novel structure
- Unitary WCFT

CYLINDER TO PLANE

$$
\begin{gathered}
x^{-}+x^{+}=2 t \\
x^{+}-x^{-}=2 \varphi \\
\varphi \sim \varphi+2 \pi
\end{gathered}
$$

SYMMETRIES

Solutions to equations of motion

$$
\Psi=e^{i m w} \eta(z) \quad \bar{\Psi}=e^{-i m w} \bar{\eta}(z)
$$

Noether currents

$$
\begin{array}{ll}
z \rightarrow f(z): & T(z)=-\frac{1}{2}\left(\bar{\eta} \partial_{z} \eta+\eta \partial_{z} \bar{\eta}\right) \\
w \rightarrow w+g(z): & P(z)=m \bar{\eta} \eta
\end{array}
$$

ALGEBRA

$$
\begin{gathered}
L_{n}=-\frac{i}{2 \pi} \int d z \zeta_{n}(z) T(z) \quad P_{n}=-\frac{1}{2 \pi} \int d z \chi_{n}(z) P(z) \\
{\left[L_{n}, L_{n^{\prime}}\right]=\left(n-n^{\prime}\right) L_{n+n^{\prime}}+\frac{c}{12} n\left(n^{2}-1\right) \delta_{n,-n^{\prime}}} \\
{\left[L_{n}, P_{n^{\prime}}\right]=-n^{\prime} P_{n^{\prime}+n}} \\
{\left[P_{n}, P_{n^{\prime}}\right]=} \\
k \frac{n}{2} \delta_{n,-n^{\prime}} \\
\\
c=1 \quad k=2 m^{2}
\end{gathered}
$$

ALGEBRA

$$
\begin{aligned}
{\left[L_{n}, L_{n^{\prime}}\right] } & =\left(n-n^{\prime}\right) L_{n+n^{\prime}}+\frac{c}{12} n\left(n^{2}-1\right) \delta_{n,-n^{\prime}} \\
{\left[L_{n}, P_{n^{\prime}}\right] } & =-n^{\prime} P_{n^{\prime}+n} \\
{\left[P_{n}, P_{n^{\prime}}\right] } & =k \frac{n}{2} \delta_{n,-n^{\prime}}
\end{aligned}
$$

Under a tilt of the axis

$$
\begin{aligned}
& z=z^{\prime} \quad w=w^{\prime}+2 \gamma z^{\prime} \\
& L_{n} \rightarrow L_{n}^{(\gamma)}=L_{n}+2 \gamma P_{n}+\gamma^{2} k \delta_{n, 0} \\
& P_{n} \rightarrow P_{n}^{(\gamma)}=P_{n}+\gamma k \delta_{n, 0}
\end{aligned}
$$

SPECTRUM

$$
\begin{array}{r}
H=-i \partial_{t}=-i\left(\partial_{+}+\partial_{-}\right) \\
J=-i \partial_{\varphi}=-i\left(\partial_{+}-\partial_{-}\right)
\end{array}
$$

$$
\begin{aligned}
H & =L_{0}-\frac{c}{24}-\frac{k}{4} \\
J & =2 P_{0}-L_{0}+\frac{c}{24}-\frac{3}{4} k
\end{aligned}
$$

SPECTRUM

CONSTRAINTS

Quantization of Angular Momentum J:

$$
6 k+c=12 p \quad p \in \mathbb{Z}
$$

Restrictions on central charge.

Exploit spectral flow: $\quad z=z^{\prime} \quad w=w^{\prime}+2 \gamma z^{\prime}$

$$
\begin{aligned}
H & =L_{0}^{(\gamma)}+2 \gamma P_{0}^{(\gamma)}-\frac{c}{24}-\frac{k}{4}\left(1-4 \gamma^{2}\right) \\
J & =2(1-\gamma) P_{0}^{(\gamma)}-L_{0}^{(\gamma)}+\frac{c}{24}-\frac{3}{4} k+k \gamma(2-\gamma)
\end{aligned}
$$

$$
J \leq J_{\max } \equiv \frac{c}{24}+\frac{k}{4}
$$

2. MODULAR INVARIANCE

ON THE TORUS

$$
\begin{gathered}
\left(x^{-}, x^{+}\right) \sim(\overbrace{x^{-}-2 \pi, x^{+}+2 \pi}^{\text {Spatial cycle }}) \sim\left(x_{x^{-}-2 \pi \tau}^{\text {Thermal cycle }} x^{+}+2 \pi \bar{\tau}\right) \\
x^{+}=t+\varphi \quad x^{-}=t-\varphi \\
2 \pi \tau=\mu-i \beta \quad 2 \pi \bar{\tau}=\mu+i \beta
\end{gathered}
$$

ON THE TORUS

$$
\begin{gathered}
(u, v) \sim(u-2 \pi \ell, v+2 \pi \bar{\ell}) \sim(u-2 \pi \tau, v+2 \pi \bar{\tau}) \\
Z_{\bar{\ell} \mid \ell}(\bar{\tau} \mid \tau)=\operatorname{Tr}_{\bar{\ell}, \ell}\left(e^{2 \pi i \bar{\tau} P_{0}^{\mathrm{cyy}}} e^{-2 \pi i \tau L_{0}^{\mathrm{cyl}}}\right)
\end{gathered}
$$

Is all this notation needed?
Tampering with periodicities introduces anomalies. For example,

$$
\begin{gathered}
\hat{u}=\frac{u}{\ell} \quad \hat{v}=v+\frac{\bar{\ell}}{\ell} u \\
Z_{\bar{\ell} \mid \ell}(\bar{\tau} \mid \tau)=e^{\pi i k \bar{\ell}\left(\bar{\tau}-\frac{\tau \overline{\bar{l}}}{2 \ell}\right)} Z_{0 \mid 1}\left(\left.\bar{\tau}-\frac{\bar{\ell} \tau}{\ell} \right\rvert\, \frac{\tau}{\ell}\right) \equiv e^{\pi i k \bar{\ell}\left(\bar{\tau}-\frac{\tau \overline{\bar{l}}}{\ell}\right)} \hat{Z}\left(\left.\bar{\tau}-\frac{\bar{\ell} \tau}{\ell} \right\rvert\, \frac{\tau}{\ell}\right)
\end{gathered}
$$

MODULAR INVARIANCE

Invariance under S: exchange of thermal and spatial cycle.

$$
Z_{0 \mid 1}(\bar{\tau} \mid \tau)=Z_{\bar{\tau} \mid \tau}(0 \mid-1)
$$

Invariance under T: add the spatial cycle to the thermal.

$$
Z_{1 \mid 1}(\bar{\tau}+1 \mid \tau+1)=Z_{1 \mid 1}(\bar{\tau} \mid \tau)
$$

MODULAR INVARIANCE

Invariance under S: exchange of thermal and spatial cycle.

$$
\hat{Z}(z \mid \tau)=e^{\pi i k \frac{z^{2}}{2 \tau}} \hat{Z}\left(\frac{z}{\tau} \left\lvert\,-\frac{1}{\tau}\right.\right)
$$

Invariance under T: add the spatial cycle to the thermal.

$$
\hat{Z}(z \mid \tau)=e^{\pi i \frac{k}{2}} \hat{Z}(z \mid \tau+1)
$$

IMPLEMENTATION

Can we build a modular invariant partition function for the fermion? Start by building the characters for each sector

$$
\begin{aligned}
& \hat{Z}_{\mathrm{RR}}=q^{-\frac{1}{24}} \operatorname{Tr}_{\mathrm{R}}\left((-1)^{F} y^{\frac{\hat{P}_{0}}{m}} q^{\hat{L}_{0}}\right) \quad \hat{Z}_{\mathrm{RNS}}=q^{-\frac{1}{24}} \operatorname{Tr}_{\mathrm{R}}\left(y^{\frac{\hat{P}_{0}}{m}} q^{\hat{L}_{0}}\right) \\
& \hat{Z}_{\mathrm{NSNS}}=q^{-\frac{1}{24}} \operatorname{Tr}_{\mathrm{NS}}\left(y^{y^{\hat{P}_{0}}}{ }^{\hat{L}_{0}}\right) \quad \hat{Z}_{\mathrm{NSR}}=q^{-\frac{1}{24}} \operatorname{Tr}_{\mathrm{NS}}\left((-1)^{F} y^{\frac{\hat{P}_{0}}{m}} q^{\hat{L}_{0}}\right)
\end{aligned}
$$

Each character involves a specific theta function; for example

$$
\hat{Z}_{\mathrm{NSR}}(z \mid \tau)=q^{-\frac{1}{24}} \prod_{n \geq 0}\left(1-q^{n+\frac{1}{2}} y\right)\left(1-q^{n+\frac{1}{2}} y^{-1}\right)=\frac{\theta_{4}(m z \mid-\tau)}{\eta(-\tau)}
$$

INVARIANT COMBINATIONS

Impose three conditions:

- Invariance under S
- Invariance under T
- Positive integer coefficients

INVARIANT COMBINATIONS

$$
Z_{0}=\left(\hat{Z}_{\mathrm{NSNS}}\left(\left.\frac{z}{\sqrt{8 n}} \right\rvert\, \tau\right)\right)^{8 n}+\left(\hat{Z}_{\mathrm{RNS}}\left(\left.\frac{z}{\sqrt{8 n}} \right\rvert\, \tau\right)\right)^{8 n}+\left(\hat{Z}_{\mathrm{NSR}}\left(\left.\frac{z}{\sqrt{8 n}} \right\rvert\, \tau\right)\right)^{8 n}
$$

No surprises: very similar to $8 n$ chiral fermions.

INVARIANT COMBINATIONS

$Z_{0}=\left(\hat{Z}_{\text {NSNS }}\left(\left.\frac{z}{\sqrt{8 n}} \right\rvert\, \tau\right)\right)^{8 n}+\left(\hat{Z}_{\text {RNS }}\left(\left.\frac{z}{\sqrt{8 n}} \right\rvert\, \tau\right)\right)^{8 n}+\left(\hat{Z}_{\text {NSR }}\left(\left.\frac{z}{\sqrt{8 n}} \right\rvert\, \tau\right)\right)^{8 n}$
$Z_{+}=Z_{0}+\left(\hat{Z}_{\mathrm{RR}}\left(\left.\frac{z}{\sqrt{8 n}} \right\rvert\, \tau\right)\right)^{8 n}$
$Z_{-}=Z_{0}-\left(\hat{Z}_{\text {RR }}\left(\left.\frac{z}{\sqrt{8 n}} \right\rvert\, \tau\right)\right)^{8 n}$

No CFT counterpart!

And each of these cases can be casted in terms of Vir-KM primaries

$$
\hat{Z}(z \mid \tau)=q^{-c / 24} \sum_{p} e^{2 \pi i z p} \frac{q^{\frac{p^{2}}{k}}}{\phi(q)} \sum_{\hat{h}} \chi_{\hat{h}}(q) q^{\hat{h}}
$$

CONSTRAINTS

$\mathrm{S}^{2}: \quad \hat{Z}(z \mid \tau)=\hat{Z}(-z \mid \tau) \longrightarrow \mathrm{P}_{0}$ has a reflection symmetry.
$\mathrm{T}: \quad \begin{aligned} & Z_{\bar{\ell} \mid \ell}(\bar{\tau}+\bar{\ell} \mid \tau+\ell)=Z_{\bar{\ell} \mid \ell}(\bar{\tau} \mid \tau) \\ & \\ & \hat{Z}(z \mid \tau)=e^{\pi i k \frac{\bar{k}^{2}}{2}} \hat{Z}(z \mid \tau+1)\end{aligned} \longrightarrow 6 \bar{\ell}^{2} k+c=24 p$
(ST) $)^{3:} \quad \hat{Z}(z \mid \tau)=e^{i \pi \frac{3 k}{2}} \hat{Z}(-z \mid \tau) \longrightarrow \quad k=\frac{4}{3} n$

$$
c=8 n
$$

NEW UNIVERSAL CONTRIBUTION

GEOMETRIC

STRUCTURE

ENTROPY

$$
S_{\bar{\ell} \mid \ell}(\bar{\tau} \mid \tau) \equiv\left(1-\bar{\tau} \partial_{\bar{\tau}}-\tau \partial_{\tau}\right) \log Z_{\overline{\bar{\ell}} \mid \ell}(\bar{\tau} \mid \tau)
$$

High temperature regime $\quad \tau \rightarrow-i 0$
[Hartman,Hofman \& Detournay, 2012]

$$
S_{\bar{\ell} \mid \ell}=4 \pi i \frac{\hat{P}_{0}^{*}\left\langle\hat{P}_{0}\right\rangle}{k}+2 \pi \sqrt{\frac{c}{6}\left(\left\langle L_{0}\right\rangle-\frac{\left\langle P_{0}\right\rangle^{2}}{k}\right)}
$$

Is this piece counting states?
No contribution for the Weyl Fermion

ENTANGLEMENT ENTROPY

$$
S_{\mathrm{EE}}=i P_{0}^{\mathrm{vac}} \ell\left(\frac{\bar{L}}{L}-\frac{\bar{\ell}}{\ell}\right)-4 L_{0}^{\mathrm{vac}} \log \left(\frac{L}{\pi \epsilon} \sin \frac{\pi \ell}{L}\right)
$$

SUMMARY

- We found interesting constraints:

1. Bound from above of angular momentum.
2. Quantization of central charge and U(1) level.

- Implementation of modular invariance:

Preferred frame to quantize.

- New nontrivial fermionic sector:

1. New modular invariant combinations.
2. What is bosonization in WCFTs?

WHAT I HAVE NOT TOLD YOU

SECRET

AGENDA

HOLOGRAPHY

EXTREMAL (ZERO TEMPERATURE) BLACK HOLES

> Global symmetries $$
S L(2, \mathbb{R}) \times U(1)
$$

More concretely, WCFTs appear in holography

- Warped AdS_{3} : Topological massive gravity [Compere \& Detournay, 2008]
- Warped AdS_{3} : Massive vector fields
[Guica et al, ...]
- AdS_{3} Gravity: Mixed boundary conditions
[Troessaert, 2012; Compere, Strominger \& Song, 2012]
- Lower spin gravity: Newton-Cartan formulation
[Hofman \& Rollier, 2014]

CURIOSITIES

$$
S_{\bar{\ell} \mid \ell}=4 \pi \dot{\hat{P}_{0}^{*}\left\langle\hat{P}_{0}\right\rangle} k+2 \pi \sqrt{\frac{c}{6}\left(\left\langle L_{0}\right\rangle-\frac{\left\langle P_{0}\right\rangle^{2}}{k}\right)}
$$

These terms are generic in holographic duals to WCFTs. And imaginary!
$S_{\mathrm{EE}}=i \overbrace{0}^{\mathrm{vac}} \ell\left(\frac{\bar{L}}{L}-\frac{\bar{\ell}}{\ell}\right)-4 L_{0}^{\mathrm{vac}} \log \left(\frac{L}{\pi \epsilon} \sin \frac{\pi \ell}{L}\right)$

Are the holographic duals intrinsically not unitary? Is it a bug or a feature?

OPEN HOLOGRAPHIC QUESTIONS

ENTROPY: all the terms in

$$
S_{\bar{\ell} \mid \ell}=4 \pi i \frac{\hat{P}_{0}^{*}\left\langle\hat{P}_{0}\right\rangle}{k}+2 \pi \sqrt{\frac{c}{6}\left(\left\langle L_{0}\right\rangle-\frac{\left\langle P_{0}\right\rangle^{2}}{k}\right)}
$$

are need to reproduce the Wald entropy of a black hole. Is the imaginary piece counting states?

OPEN HOLOGRAPHIC QUESTIONS

Entanglement: Lower spin gravity reproduces correctly

$$
S_{\mathrm{EE}}=i P_{0}^{\mathrm{vac}} \ell\left(\frac{\bar{L}}{L}-\frac{\bar{\ell}}{\ell}\right)-4 L_{0}^{\mathrm{vac}} \log \left(\frac{L}{\pi \epsilon} \sin \frac{\pi \ell}{L}\right)
$$

But in metric formulation of WAdS_{3} this remains unknown. What are the modifications of $R-T$ and $L-M$ when the spacetime is not asymptotically AdS?

THANK YOU

