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Motivation
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QCD phase diagram

Finite density region mostly outside present first principle methods
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Uncertainty in EoS
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What can we say about strongly coupled gauge theories at finite density?
(Like QCD inside neutron stars)
Two possibilities:

e Confined phase: nuclear matter (tough because of large N.)
Solitons in Sakai-Sugimoto

and D3/D7
@ Deconfined matter: well studied (for instance D3/D7

)
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Two more concrete questions:

@ Is there deconfined matter inside neutron stars?

o If we use AdS/CFT to describe it do we get sensible results?

C. Hoyos (Oviedo U.) Neutron stars Copenhagen 2016 5/18



Quark matter in neutron stars

C. Hoyos (Oviedo U.) Neutron stars Copenhagen 2016 5/18



Possible neutron star structures

traditional neutron star
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Possible neutron star structures
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TOV equation

o Self-gravitating spherically symmetric object in hydrostatic equilibrium
o Metric
dr?

1— 2M (r)

ds? = —e’Mdt? + + r2dQ?

@ Structure determined by Tolman-Oppenheimer-Volkoff equation

_1e(r)+P(r)

P'(r)= R0 (M(r) + 47rr3P(r))
and
"(r) = —72P,(T) "(r) = 4nroe(r
v (T) - E(T‘)—l—P(T‘)’ M( )_4 26( )

e Boundary condition on the surface P(r = R) =0
e Equation of State P(¢)
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Holographic model

o N =4 SU(N.) SYM plus Ny < N, fundamental hypers
o Dual: AdS5 x S° with Ny probe D7 branes

@ Pressure (y ~ 1.4):

N.N;

4 3 d
= —m)* +O(u,T,T7).
Ay (kg ) (g T, T7)

q

o EoS:

oP 2m? oP 1
€= Hag, _P:3P+\[27T VP ui=ao <3
q

C. Hoyos (Oviedo U.) Neutron stars Copenhagen 2016 8/18



Extrapolation to QCD

o N.=N;=3

o Stefan-Boltzman value as ji; — 00

NCNf 4
P~
1272 Ha
This fixes )
3
Ay = 2o = 10.74

© Plpg=m)=0=m~my/3

m ~ 308.55 MeV
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Comparison to nuclear matter models
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Comparison to nuclear matter models
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No stable star with pure quark matter at the core

C. Hoyos (Oviedo U.) Neutron stars Copenhagen 2016 11 /18



Compress the fluid = increase energy density

@ Pressure also increases = opposes compression

The larger % is, the less compressible is the fluid

@ The EoS is ‘stiffer’ or ‘softer’ for larger or smaller speed of sound
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Neutron stars EoS
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Speed limits in holographic models
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Holographic models (RG flows)

o First computed in N' =4 SYM
1

Vg =
V3

@ Masses for fermions (m¢) and scalars (mp) (N = 2%)
3 4
b= L _W(W>2_1<W>4
V3 3t T 1874 \ T

1): logarithmic running with scale A

e Klebanov-Strassler (N
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Holographic models (RG flows)

For a class of models:
relevant deformation (A < 4) of a CFT4 = minimally coupled scalar field

S =g [ o (R 5002 -V (0))

T 9x2

At high temperatures the speed of sound is below the conformal value

s

vl = % — C(A)LT)A ™ 4 -

Holds for several scalars

Conjecture: universal bound
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relevant deformation (A < 4) of a CFT4 = minimally coupled scalar field

S =g [ o (R 5002 -V (0))

T 2R2
At high temperatures the speed of sound is below the conformal value

V2 = % CC(AYITYA

s

Holds for several scalars
Conjecture: universal bound

Further evidence: D-brane intersections
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D-brane intersections

e D3/D7: flavor mass m, condensate ¢

1 AYMNf 1 80
2
o~ 2 ST 2l .
Vs T3 = ogme y, \metgmlgr | <0

e D3/D7 (flavors) at T'=0, u # 0
Massless and massive
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The bound in neutron stars

@ Neutron stars: largest mass depends on equation of state

@ Observations find up to ~ 2M¢

Needs stiff equation of state

@ Bound on the speed of sound strongly disfavored
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The bound in neutron stars

@ Neutron stars: largest mass depends on equation of state

@ Observations find up to ~ 2M¢

Needs stiff equation of state

@ Bound on the speed of sound strongly disfavored

Can the bound be violated in holographic models?

Yes, for non-relativistic models or not having a UV fixed point

Large densities?

Holographic nuclear matter?
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Quark matter at the core?

Mixed phases

@ Are there holographic models with stiffer EoS?

Nuclear matter

Large-N. makes baryonic matter difficult to study

@ New approach needed?
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Thank you!
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