String interactions and integrability

Romuald A. Janik
Jagiellonian University
Kraków

Z. Bajnok, RJ 1501.04533
Z. Bajnok, RJ 1512.01471

Outline

Introduction and motivation

String Field Theory vertex
The conventional approach for noninteracting worldsheet theory What will change for an interacting worldsheet theory?

Interlude: Form factors in an integrable quantum field theory

Functional equations for the string vertex

What happens in $A d S_{5} \times S^{5}$?
The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient
Conclusions \& outlook

Focus on $\mathcal{N}=4$ Super-Yang-Mills theory - a 4D gauge theory which is a conformal theory...

Key questions:

- Find the spectrum of conformal weights \equiv eigenvalues of the dilatation operator \equiv (anomalous) dimensions of operators

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \triangle}}
$$

The dimensions are complicated functions of the coupling:

$$
\Delta=\underbrace{\Delta_{0}(\lambda)}_{\text {planar }}+\underbrace{\frac{1}{N_{C}^{2}} \Delta_{1}(\lambda)+\ldots}_{\text {nonplanar }} \quad \text { where } \lambda \equiv g^{2}{ }^{2} M N_{C}
$$

- Find the OPE coefficients $C_{i j k}$ defined through
- Once Δ_{i} and $C_{i j k}$ are known, all higher point correlation functions are, in principle, determined explicitly.

Focus on $\mathcal{N}=4$ Super-Yang-Mills theory - a 4D gauge theory which is a conformal theory...

Key questions:

- Find the spectrum of conformal weights \equiv eigenvalues of the dilatation operator \equiv (anomalous) dimensions of operators

The dimensions are complicated functions of the coupling:

- Find the OPE coefficients $C_{i j k}$ defined through
$\left\langle O_{i}\left(x_{1}\right) O_{j}\left(x_{2}\right) O_{k}\left(x_{3}\right)\right\rangle=$
- Once Δ_{i} and $C_{i j k}$ are known, all higher point correlation functions are, in principle, determined explicitly.

Focus on $\mathcal{N}=4$ Super-Yang-Mills theory - a 4D gauge theory which is a conformal theory...

Key questions:

```
- Find the spectrum of conformal weights
\(\equiv\) eigenvalues of the dilatation operator
\(\equiv\) (anomalous) dimensions of operators
```


The dimensions are complicated functions of the coupling:

- Find the OPE coefficients $C_{i j k}$ defined through
$\left\langle O_{i}\left(x_{1}\right) O_{j}\left(x_{2}\right) O_{k}\left(x_{3}\right)\right\rangle=$
- Once Δ_{i} and $C_{i j k}$ are known, all higher point correlation functions are, in principle, determined explicitly.

Focus on $\mathcal{N}=4$ Super-Yang-Mills theory - a 4D gauge theory which is a conformal theory...

Key questions:

- Find the spectrum of conformal weights

三 eigenvalues of the dilatation operator
 \equiv (anomalous) dimensions of operators

The dimensions are complicated functions of the coupling:

- Find the OPE coefficients $C_{i j k}$ defined through
- Once Δ_{i} and $C_{i j k}$ are known, all higher point correlation functions are, in principle, determined explicitly.

Focus on $\mathcal{N}=4$ Super-Yang-Mills theory - a 4D gauge theory which is a conformal theory...

Key questions:

- Find the spectrum of conformal weights \equiv eigenvalues of the dilatation operator \equiv (anomalous) dimensions of operators

The dimensions are complicated functions of the coupling:

- Find the OPE coefficients $C_{i j k}$ defined through
- Once Δ_{i} and $C_{i j k}$ are known, all higher point correlation functions are, in principle, determined explicitly.

Focus on $\mathcal{N}=4$ Super-Yang-Mills theory - a 4D gauge theory which is a conformal theory...

Key questions:

- Find the spectrum of conformal weights
\equiv eigenvalues of the dilatation operator
\equiv (anomalous) dimensions of operators

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \Delta}}
$$

The dimensions are complicated functions of the coupling:

- Find the OPE coefficients $C_{i j k}$ defined through
- Once Δ_{i} and $C_{i j k}$ are known, all higher point correlation functions are, in principle, determined explicitly.

Focus on $\mathcal{N}=4$ Super-Yang-Mills theory - a 4D gauge theory which is a conformal theory...

Key questions:

- Find the spectrum of conformal weights
\equiv eigenvalues of the dilatation operator
\equiv (anomalous) dimensions of operators

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \Delta}}
$$

The dimensions are complicated functions of the coupling:

$$
\Delta=\underbrace{\Delta_{0}(\lambda)}_{\text {planar }}+\underbrace{\frac{1}{N_{c}^{2}} \Delta_{1}(\lambda)+\ldots}_{\text {nonplanar }} \quad \text { where } \lambda \equiv g_{Y M}^{2} N_{c}
$$

- Find the OPE coefficients $C_{i j k}$ defined through
- Once Δ_{i} and $C_{i j k}$ are known, all higher point correlation functions are, in principle, determined explicitly.

Focus on $\mathcal{N}=4$ Super-Yang-Mills theory - a 4D gauge theory which is a conformal theory...

Key questions:

- Find the spectrum of conformal weights
\equiv eigenvalues of the dilatation operator
\equiv (anomalous) dimensions of operators

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \Delta}}
$$

The dimensions are complicated functions of the coupling:

$$
\Delta=\underbrace{\Delta_{0}(\lambda)}_{\text {planar }}+\underbrace{\frac{1}{N_{c}^{2}} \Delta_{1}(\lambda)+\ldots}_{\text {nonplanar }} \quad \text { where } \lambda \equiv g_{Y M}^{2} N_{c}
$$

- Find the OPE coefficients $C_{i j k}$ defined through

$$
\left\langle O_{i}\left(x_{1}\right) O_{j}\left(x_{2}\right) O_{k}\left(x_{3}\right)\right\rangle=\frac{C_{i j k}}{\left|x_{1}-x_{2}\right|^{\Delta_{i}+\Delta_{j}-\Delta_{k}}\left|x_{1}-x_{3}\right|^{\Delta_{i}+\Delta_{k}-\Delta_{j}}\left|x_{2}-x_{3}\right|^{\Delta_{j}+\Delta_{k}-\Delta_{i}}}
$$

Focus on $\mathcal{N}=4$ Super-Yang-Mills theory - a 4D gauge theory which is a conformal theory...

Key questions:

- Find the spectrum of conformal weights
\equiv eigenvalues of the dilatation operator
\equiv (anomalous) dimensions of operators

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \Delta}}
$$

The dimensions are complicated functions of the coupling:

$$
\Delta=\underbrace{\Delta_{0}(\lambda)}_{\text {planar }}+\underbrace{\frac{1}{N_{c}^{2}} \Delta_{1}(\lambda)+\ldots}_{\text {nonplanar }} \quad \text { where } \lambda \equiv g_{Y M}^{2} N_{c}
$$

- Find the OPE coefficients $C_{i j k}$ defined through
$\left\langle O_{i}\left(x_{1}\right) O_{j}\left(x_{2}\right) O_{k}\left(x_{3}\right)\right\rangle=\frac{C_{i j k}}{\left|x_{1}-x_{2}\right|^{\Delta_{i}+\Delta_{j}-\Delta_{k}}\left|x_{1}-x_{3}\right|^{\Delta_{i}+\Delta_{k}-\Delta_{j}}\left|x_{2}-x_{3}\right|^{\Delta_{j}+\Delta_{k}-\Delta_{i}}}$
- Once Δ_{i} and $C_{i j k}$ are known, all higher point correlation functions are, in principle, determined explicitly.

The AdS/CFT correspondence

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

The AdS/CFT dictionary

Operators in $\mathcal{N}=4 \mathrm{SYM} \quad \longleftrightarrow \quad$ (quantized) string states in $A d S_{5} \times S^{5}$

Single trace operators
 \qquad
 single string states

Multitrace operators \qquad multistring states
Large N_{c} limit
suffices to consider single string states
Operator dimension
\longleftrightarrow
Energy of a string state in $\mathrm{AdS}_{5} \times S^{5}$
Nonplanar corrections
string interactions

The AdS/CFT correspondence

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

The AdS/CFT dictionary

Operators in $\mathcal{N}=4$ SYM
Single trace operatorsMultitrace operatorsLarge N_{c} limitOperator dimensionNonplanar corrections

(quantized) string states in $A d S_{5} \times S^{5}$

The AdS/CFT correspondence

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

The AdS/CFT dictionary

$$
\text { Operators in } \mathcal{N}=4 \mathrm{SYM} \quad \longleftrightarrow \quad \text { (quantized) string states in } A d S_{5} \times S^{5}
$$

Single trace operators
$\longleftrightarrow \quad$ single string states
Multitrace operators
$\longleftrightarrow \quad$ multistring states
Large N_{c} limit
$\longleftrightarrow \quad$ suffices to consider single string states
Operator dimension
$\longleftrightarrow \quad$ Energy of a string state in $A d S_{5} \times S^{5}$
\sim string interactions
\sim string interactions

Back to the main questions again...

1. Anomalous dimensions in the planar limit:
\equiv energy levels of a single string in $A d S_{5} \times S^{5}$
\equiv energy levels of a specific 2D QFT on a cylinder
2. Nonplanar corrections to the dilatation operator or OPE coefficients:
\equiv string interactions
\equiv the specific 2D QFT on a string 'pants' topology:

This is the string field theory vertex \leftarrow focus of this talk

Back to the main questions again...

1. Anomalous dimensions in the planar limit:
```
\equiv energy levels of a single string in AdS 5 }\times\mp@subsup{S}{}{5
\equiv energy levels of a specific 2D QFT on a cylinder
```

2. Nonplanar corrections to the dilatation operator or OPE coefficients:
\equiv string interactions
\equiv the specific 2D QFT on a string 'pants' topology:

This is the string field theory vertex \leftarrow focus of this talk

Back to the main questions again...

1. Anomalous dimensions in the planar limit:
\equiv energy levels of a single string in $A d S_{5} \times S^{5}$
\equiv energy levels of a specific 2D QFT on a cylinder
2. Nonplanar corrections to the dilatation operator or OPE coefficients:
\equiv string interactions
\equiv the specific 2D QFT on a string 'pants' topology:

This is the string field theory vertex \leftarrow focus of this talk

Back to the main questions again...

1. Anomalous dimensions in the planar limit:
\equiv energy levels of a single string in $A d S_{5} \times S^{5}$
\equiv energy levels of a specific 2D QFT on a cylinder

2. Nonplanar corrections to the dilatation operator or OPE coefficients:
\equiv string interactions
三 the specific 2D QFT on a string 'pants' topology:

This is the string field theory vertex \leftarrow focus of this talk

Back to the main questions again...

1. Anomalous dimensions in the planar limit:
\equiv energy levels of a single string in $A d S_{5} \times S^{5}$
\equiv energy levels of a specific 2D QFT on a cylinder

2. Nonplanar corrections to the dilatation operator or OPE coefficients:
\equiv string interactions
\equiv the specific 2D QFT on a string 'pants' topology:

This is the string field theory vertex \leftarrow focus of this talk

Back to the main questions again...

1. Anomalous dimensions in the planar limit:
\equiv energy levels of a single string in $A d S_{5} \times S^{5}$
\equiv energy levels of a specific 2D QFT on a cylinder

2. Nonplanar corrections to the dilatation operator or OPE coefficients:
\equiv string interactions
\equiv the specific 2D QFT on a string 'pants' topology:

This is the string field theory vertex \leftarrow focus of this talk

Back to the main questions again...

1. Anomalous dimensions in the planar limit:
\equiv energy levels of a single string in $A d S_{5} \times S^{5}$
\equiv energy levels of a specific 2D QFT on a cylinder

2. Nonplanar corrections to the dilatation operator or OPE coefficients:
\equiv string interactions
\equiv the specific 2D QFT on a string 'pants' topology:

This is the string field theory vertex \leftarrow focus of this talk

Back to the main questions again...

1. Anomalous dimensions in the planar limit:
\equiv energy levels of a single string in $A d S_{5} \times S^{5}$
\equiv energy levels of a specific 2D QFT on a cylinder

2. Nonplanar corrections to the dilatation operator or OPE coefficients:
\equiv string interactions
\equiv the specific 2D QFT on a string 'pants' topology:

This is the string field theory vertex \leftarrow focus of this talk

What is known?

- We have a very good understanding of the spectrum of a string on $A d S_{5} \times S^{5}$
$>$ This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
- massless free bosons and fermions in the case of flat spacetime
- massive free bosons and fermions in the case of pp-wave background geometry

What is known?

- We have a very good understanding of the spectrum of a string on $A d S_{5} \times S^{5}$
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
- massless free bosons and fermions in the case of flat spacetime
- massive free bosons and fermions in the case of pp-wave background geometry

What is known?

- We have a very good understanding of the spectrum of a string on $A d S_{5} \times S^{5}$
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for
a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
- massless free bosons and fermions in the case of flat spacetime
- massive free bosons and fermions in the case of pp-wave background geometry

What is known?

- We have a very good understanding of the spectrum of a string on $A d S_{5} \times S^{5}$
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
- massless free bosons and fermions in the case of flat spacetime
- massive free bosons and fermions in the case of pp-wave background geometry

What is known?

- We have a very good understanding of the spectrum of a string on $A d S_{5} \times S^{5}$
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
Previously we knew how to proceed only
for a free worldsheet theory
\quad massless free bosons and fermions in
the case of flat spacetime
\quad massive free bosons and fermions in
\quad the case of pp-wave background
geometry

What is known?

- We have a very good understanding of the spectrum of a string on $A d S_{5} \times S^{5}$
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
* massless free bosons and fermions in the case of flat spacetime
- massive free bosons and fernions in the case of pp-wave background
 geometry

What is known?

- We have a very good understanding of the spectrum of a string on $A d S_{5} \times S^{5}$
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
- massless free bosons and fermions in the case of flat spacetime
- massive free bosons and fermions in the case of pp-wave background
 geometry

What is known?

- We have a very good understanding of the spectrum of a string on $A d S_{5} \times S^{5}$
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
- massless free bosons and fermions in the case of flat spacetime
- massive free bosons and fermions in the case of pp-wave background
 geometry

What is known?

- We have a very good understanding of the spectrum of a string on $A d S_{5} \times S^{5}$
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
- massless free bosons and fermions in the case of flat spacetime
- massive free bosons and fermions in the case of pp-wave background
 geometry

Standard approach to the light cone String Field Theory vertex...

Light-cone String Field Theory Vertex

String Field Theory vertex describes the splitting/joining of 3 strings Comments:

1. In light cone gauge, the lengths of the strings are directly
proportional to some conserved charges of the theory
2. They always have to add up by charge conservation

$$
\boldsymbol{L}_{3}=\boldsymbol{L}_{1}+\boldsymbol{L}_{2}
$$

3. In typical applications to $A d S_{5} \times S^{5} / \mathrm{pp}$-wave, the lengths are directly the R-charges w.r.t. $U(1) \subset S O(6)$

$$
J_{3}=J_{1}+J_{2}
$$

(these are not spin-chain lengths!)

Light-cone String Field Theory Vertex

String Field Theory vertex describes the splitting/joining of 3 strings
Comments:

1. In light cone gauge, the lengths of the strings are directly
proportional to some conserved charges of the theory
2. They always have to add up by charge conservation

$$
L_{3}=L_{1}+L_{2}
$$

3. In typical applications to $A d S_{5} \times S^{5} / \mathrm{pp}$-wave, the lengths are directly the R-charges w.r.t. $U(1) \subset S O(6)$

(these are not spin-chain lengths!)

Light-cone String Field Theory Vertex

String Field Theory vertex describes the splitting/joining of 3 strings
Comments:

1. In light cone gauge, the lengths of the strings are directly
proportional to some conserved charges of the theory
2. They always have to add up by charge conservation

$$
L_{3}=L_{1}+L_{2}
$$

3. In typical applications to $A d S_{5} \times S^{5} / \mathrm{pp}$-wave, the lengths are directly the R-charges w.r.t. $U(1) \subset S O(6)$

(these are not spin-chain lengths!)

Light-cone String Field Theory Vertex

String Field Theory vertex describes the splitting/joining of 3 strings

Comments:

1. In light cone gauge, the lengths of the strings are directly proportional to some conserved charges of the theory
2. In typical applications to $A d S_{5} \times S^{5} / \mathrm{pp}$-wave, the lengths are directly the R-charges w.r.t. $U(1) \subset S O(6)$

Light-cone String Field Theory Vertex

String Field Theory vertex describes the splitting/joining of 3 strings

Comments:

1. In light cone gauge, the lengths of the strings are directly proportional to some conserved charges of the theory
2. They always have to add up by charge conservation

$$
L_{3}=L_{1}+L_{2}
$$

3. In typical applications to $A d S_{5} \times S^{5} / p p$-wave, the lengths are directly the R-charges w.r.t. $U(1) \subset S O(6)$

Light-cone String Field Theory Vertex

String Field Theory vertex describes the splitting/joining of 3 strings

Comments:

1. In light cone gauge, the lengths of the strings are directly proportional to some conserved charges of the theory
2. They always have to add up by charge conservation

$$
L_{3}=L_{1}+L_{2}
$$

3. In typical applications to $A d S_{5} \times S^{5} / \mathrm{pp}$-wave, the lengths are directly the R-charges w.r.t. $U(1) \subset S O(6)$

$$
J_{3}=J_{1}+J_{2}
$$

(these are not spin-chain lengths!)

Light-cone String Field Theory Vertex - the pp-wave

- pp-wave SFT vertex \equiv free massive boson ϕ (or fermion) on this geometry
- Express the scalar field in terms of separate creation and anihilation operators $a_{k}^{+(r)}$ and $a_{k}^{(r)}$ in each string $r=1,2,3$
- and the relevant modes are $\cos \frac{2 \pi k}{L_{r}}$ and $\sin \frac{2 \pi k}{L_{r}}$
$>$ impose continuity conditions for ϕ and $\Pi \equiv \partial_{t} \phi$
looks like an inherently finite-volume computation.
- solution is surprisingly complicated...

Light-cone String Field Theory Vertex - the pp-wave

- pp-wave SFT vertex \equiv free massive boson ϕ (or fermion) on this geometry
- Express the scalar field in terms of separate creation and anihilation operators $a_{k}^{-(r)}$ and $a_{k}^{(r)}$ in each string $r=1,2,3$
- and the relevant modes are $\cos \frac{2 \pi k}{L_{r}}$ and $\sin \frac{2 \pi k}{L_{r}}$
- impose continuity conditions for ϕ and $\Pi \equiv \partial_{+} \phi$
- solution is surprisingly complicated..

Light-cone String Field Theory Vertex - the pp-wave

- pp-wave SFT vertex \equiv free massive boson ϕ (or fermion) on this geometry
- Express the scalar field in terms of separate creation and anihilation operators $a_{k}^{+(r)}$ and $a_{k}^{(r)}$ in each string $r=1,2,3$
- and the relevant modes are $\cos \frac{2 \pi k}{I}$ and $\sin \frac{2 \pi k}{I}$
- impose continuity conditions for ϕ and $\Pi \equiv \partial_{t} \phi$
looks like an inherently finite-volume computation.
- solution is surprisingly complicated.

Light-cone String Field Theory Vertex - the pp-wave

- pp-wave SFT vertex \equiv free massive boson ϕ (or fermion) on this geometry
- Express the scalar field in terms of separate creation and anihilation operators $a_{k}^{+(r)}$ and $a_{k}^{(r)}$ in each string $r=1,2,3$
- and the relevant modes are $\cos \frac{2 \pi k}{L_{r}}$ and $\sin \frac{2 \pi k}{L_{r}}$
- continuity conditions for ϕ and $\Pi \equiv \partial_{t} \phi$
looks like an inherently finite-volume computation..
- solution is surprisingly complicated..

Light-cone String Field Theory Vertex - the pp-wave

- pp-wave SFT vertex \equiv free massive boson ϕ (or fermion) on this geometry
- Express the scalar field in terms of separate creation and anihilation operators $a_{k}^{+(r)}$ and $a_{k}^{(r)}$ in each string $r=1,2,3$
- and the relevant modes are $\cos \frac{2 \pi k}{L_{r}}$ and $\sin \frac{2 \pi k}{L_{r}}$
- impose continuity conditions for ϕ and $\Pi \equiv \partial_{t} \phi$
looks like an inherently finite-volume computation.
$>$ solution is surprisingly complicated.

Light-cone String Field Theory Vertex - the pp-wave

- pp-wave SFT vertex \equiv free massive boson ϕ (or fermion) on this geometry
- Express the scalar field in terms of separate creation and anihilation operators $a_{k}^{+(r)}$ and $a_{k}^{(r)}$ in each string $r=1,2,3$
- and the relevant modes are $\cos \frac{2 \pi k}{L_{r}}$ and $\sin \frac{2 \pi k}{L_{r}}$
- impose continuity conditions for ϕ and $\Pi \equiv \partial_{t} \phi$
- solution is surprisingly complicated..

Light-cone String Field Theory Vertex - the pp-wave

- pp-wave SFT vertex \equiv free massive boson ϕ (or fermion) on this geometry
- Express the scalar field in terms of separate creation and anihilation operators $a_{k}^{+(r)}$ and $a_{k}^{(r)}$ in each string $r=1,2,3$
- and the relevant modes are $\cos \frac{2 \pi k}{L_{r}}$ and $\sin \frac{2 \pi k}{L_{r}}$
- impose continuity conditions for ϕ and $\Pi \equiv \partial_{t} \phi$
looks like an inherently finite-volume computation...
- solution is surprisingly complicated...

Light-cone String Field Theory Vertex - the pp-wave

- pp-wave SFT vertex \equiv free massive boson ϕ (or fermion) on this geometry
- Express the scalar field in terms of separate creation and anihilation operators $a_{k}^{+(r)}$ and $a_{k}^{(r)}$ in each string $r=1,2,3$
- and the relevant modes are $\cos \frac{2 \pi k}{L_{r}}$ and $\sin \frac{2 \pi k}{L_{r}}$
- impose continuity conditions for ϕ and $\Pi \equiv \partial_{t} \phi$
looks like an inherently finite-volume computation...
- solution is surprisingly complicated...

Light-cone String Field Theory Vertex - the pp-wave

- Continuity conditions yield linear relations between creation and annihilation operators of the three strings:
- Implement these relations as operator equations acting on a state $|V\rangle \in \mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3}$ - the SFT vertex
- The state has the form

Light-cone String Field Theory Vertex - the pp-wave

- Continuity conditions yield linear relations between creation and annihilation operators of the three strings:

$$
\sum_{r=1}^{3} \frac{X_{n m}^{r}}{\sqrt{\omega_{m}^{r}}}\left(a_{m}^{+(r)}-a_{m}^{(r)}\right)=0 \quad \sum_{r=1}^{3} s_{r} X_{n m}^{r} \sqrt{\omega_{m}^{r}}\left(a_{m}^{+(r)}+a_{m}^{(r)}\right)=0
$$

- Implement these relations as operator equations acting on a state $|V\rangle \in \mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3}$ - the SFT vertex
- The state has the form

Light-cone String Field Theory Vertex - the pp-wave

- Continuity conditions yield linear relations between creation and annihilation operators of the three strings:

$$
\sum_{r=1}^{3} \frac{X_{n m}^{r}}{\sqrt{\omega_{m}^{r}}}\left(a_{m}^{+(r)}-a_{m}^{(r)}\right)|V\rangle=0 \quad \sum_{r=1}^{3} s_{r} X_{n m}^{r} \sqrt{\omega_{m}^{r}}\left(a_{m}^{+(r)}+a_{m}^{(r)}\right)|V\rangle=0
$$

- Implement these relations as operator equations acting on a state $|V\rangle \in \mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3}$ - the SFT vertex
- The state has the form

Light-cone String Field Theory Vertex - the pp-wave

- Continuity conditions yield linear relations between creation and annihilation operators of the three strings:

$$
\sum_{r=1}^{3} \frac{X_{n m}^{r}}{\sqrt{\omega_{m}^{r}}}\left(a_{m}^{+(r)}-a_{m}^{(r)}\right)|V\rangle=0 \quad \sum_{r=1}^{3} s_{r} X_{n m}^{r} \sqrt{\omega_{m}^{r}}\left(a_{m}^{+(r)}+a_{m}^{(r)}\right)|V\rangle=0
$$

- Implement these relations as operator equations acting on a state $|V\rangle \in \mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3}$ - the SFT vertex
- The state has the form

$$
|V\rangle=(\text { Prefactor }) \cdot \exp \left\{\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m} N_{n m}^{r s} a_{n}^{+(r)} a_{m}^{+(s)}\right\}|0\rangle
$$

Light-cone String Field Theory Vertex - the pp-wave

$$
|V\rangle=(\text { Prefactor }) \cdot \exp \left\{\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m} N_{n m}^{r s} a_{n}^{+(r)} a_{m}^{+(s)}\right\}|0\rangle
$$

- The Neumann coefficient $N_{n m}^{r s}$ has the interpretation of a SFT amplitude/matrix element involving only 2 particles
- Obtaining the Neumann matrices is surprisingly nontrivial as it involves inverting an infinite-dimensional matrix
- Exact expressions involve novel special functions $\Gamma_{\mu}(z)$

Light-cone String Field Theory Vertex - the pp-wave

$$
|V\rangle=(\text { Prefactor }) \cdot \exp \left\{\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m} N_{n m}^{r s} a_{n}^{+(r)} a_{m}^{+(s)}\right\}|0\rangle
$$

- The Neumann coefficient $N_{n m}^{r s}$ has the interpretation of a SFT amplitude/matrix element involving only 2 particles
- Obtaining the Neumann matrices is surprisingly nontrivial as it involves inverting an infinite-dimensional matrix
- Exact expressions involve novel special functions $\Gamma_{\mu}(z)$

Light-cone String Field Theory Vertex - the pp-wave

$$
|V\rangle=(\text { Prefactor }) \cdot \exp \left\{\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m} N_{n m}^{r s} a_{n}^{+(r)} a_{m}^{+(s)}\right\}|0\rangle
$$

- The Neumann coefficient $N_{n m}^{r s}$ has the interpretation of a SFT amplitude/matrix element involving only 2 particles
- Obtaining the Neumann matrices is surprisingly nontrivial as it involves inverting an infinite-dimensional matrix

He, Schwarz, Spradlin, Volovich
\rightarrow Lucietti, Schafer-Nameki, Sinha

- Exact expressions involve novel special functions $\Gamma_{\mu}(z)$

Light-cone String Field Theory Vertex - the pp-wave

$$
|V\rangle=(\text { Prefactor }) \cdot \exp \left\{\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m} N_{n m}^{r s} a_{n}^{+(r)} a_{m}^{+(s)}\right\}|0\rangle
$$

- The Neumann coefficient $N_{n m}^{r s}$ has the interpretation of a SFT amplitude/matrix element involving only 2 particles
- Obtaining the Neumann matrices is surprisingly nontrivial as it involves inverting an infinite-dimensional matrix

He, Schwarz, Spradlin, Volovich \rightarrow Lucietti, Schafer-Nameki, Sinha

- Exact expressions involve novel special functions $\Gamma_{\mu}(z)$

Lucietti, Schafer-Nameki, Sinha

Light-cone String Field Theory Vertex - the pp-wave

$$
|V\rangle=(\text { Prefactor }) \cdot \exp \left\{\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m} N_{n m}^{r s} a_{n}^{+(r)} a_{m}^{+(s)}\right\}|0\rangle
$$

- The Neumann coefficient $N_{n m}^{r s}$ has the interpretation of a SFT amplitude/matrix element involving only 2 particles
- Obtaining the Neumann matrices is surprisingly nontrivial as it involves inverting an infinite-dimensional matrix

He, Schwarz, Spradlin, Volovich \rightarrow Lucietti, Schafer-Nameki, Sinha

- Exact expressions involve novel special functions $\Gamma_{\mu}(z)$

Lucietti, Schafer-Nameki, Sinha

$$
\Gamma_{\mu}(z)=\frac{e^{-\gamma \sqrt{z^{2}+\mu^{2}}}}{z} \cdot \prod_{n=1}^{\infty} \frac{n}{\sqrt{n^{2}+\mu^{2}}+\sqrt{z^{2}+\mu^{2}}} e^{\frac{\sqrt{z^{2}+\mu^{2}}}{n}}
$$

Light-cone String Field Theory Vertex - the pp-wave

$$
|V\rangle=(\text { Prefactor }) \cdot \exp \left\{\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m} N_{n m}^{r s} a_{n}^{+(r)} a_{m}^{+(s)}\right\}|0\rangle
$$

- Once the Neumann coefficients are fixed, it remains to fix the (Prefactor), which was a (quadratic) polynommial in creation and anihilation operators
- This is done by imposing target space supersymmetry algebra

Light-cone String Field Theory Vertex - the pp-wave

$$
|V\rangle=(\text { Prefactor }) \cdot \exp \left\{\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m} N_{n m}^{r s} a_{n}^{+(r)} a_{m}^{+(s)}\right\}|0\rangle
$$

- Once the Neumann coefficients are fixed, it remains to fix the (Prefactor), which was a (quadratic) polynommial in creation and anihilation operators
- This is done by imposing target space supersymmetry algebra

Light-cone String Field Theory Vertex - the pp-wave

$$
|V\rangle=(\text { Prefactor }) \cdot \exp \left\{\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m} N_{n m}^{r s} a_{n}^{+(r)} a_{m}^{+(s)}\right\}|0\rangle
$$

- Once the Neumann coefficients are fixed, it remains to fix the (Prefactor), which was a (quadratic) polynommial in creation and anihilation operators
- This is done by imposing target space supersymmetry algebra

Light-cone String Field Theory Vertex - the pp-wave

$$
|V\rangle=(\text { Prefactor }) \cdot \exp \left\{\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m} N_{n m}^{r s} a_{n}^{+(r)} a_{m}^{+(s)}\right\}|0\rangle
$$

- Once the Neumann coefficients are fixed, it remains to fix the (Prefactor), which was a (quadratic) polynommial in creation and anihilation operators
- This is done by imposing target space supersymmetry algebra very long story in the pp-wave case...

Our goal: Concentrate on defining (and constructing) the string field theory vertex for a generic integrable worldsheet theory

What will change?

- We no longer have any mode expansions at our disposal...
- Even if we had, inverting the infinite dimensional matrices would be hopeless...
- It is extremely difficult to work directly in finite volume - even the single string spectrum is given only implicitly in terms of Bethe Ansatz equations...
- We do not expect the exponential structure to hold...

$$
|V\rangle=(\text { Prefactor }) \cdot \exp \left\{\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m} N_{n m}^{r s} a_{n}^{+(r)} a_{m}^{+(s)}\right\}|0\rangle
$$

- We expect to obtain separate but possibly related amplitudes for various numbers of external particles

$$
\mathbf{N}_{L_{3} \mid L_{2} ; L_{1}}^{3 \mid 2 ; 1}\left(p_{1}, \ldots, p_{n} \mid p_{1}^{\prime}, \ldots, p_{m}^{\prime} ; p_{1}^{\prime \prime}, \ldots, p_{l}^{\prime \prime}\right)
$$

- In particular no separation between the (Prefactor) and the Neumann coefficient part...
- We will still refer to an amplitude with only two particles as Neumann coefficient... e.g. $N_{n m}^{33}=\mathbf{N}_{L_{3} \mid L_{2} ; L_{1}}^{3 \mid 2 ; 1}\left(p_{n}, p_{m} \mid \varnothing ; \varnothing\right)$

What will change?

- We no longer have any mode expansions at our disposal...
- Even if we had, inverting the infinite dimensional matrices would be hopeless..
- It is extremely difficult to work directly in finite volume - even the single string spectrum is given only implicitly in terms of Bethe Ansatz equations..
- We do not expect the exponential structure to hold.

- We expect to obtain separate but possibly related amplitudes for various numbers of external particles

- In particular no separation between the (Prefactor) and the Neumann coefficient part...
- We will still refer to an amplitude with only two particles as Neumann coefficient... e.g. $N_{n m}^{33}=\mathbf{N}_{L_{3} \mid L_{2} ; L_{1}}^{32 ; 1}\left(p_{n}, p_{m} \mid \varnothing ; \varnothing\right)$

What will change?

- We no longer have any mode expansions at our disposal...
- Even if we had, inverting the infinite dimensional matrices would be hopeless...
- It is extremely difficult to work directly in finite volume - even the single string spectrum is given only implicitly in terms of Bethe Ansatz equations..
- We do not expect the exponential structure to hold

- We expect to obtain separate but possibly related amplitudes for various numbers of external particles

- In particular no separation between the (Prefactor) and the Neumann coefficient part...
- We will still refer to an amplitude with only two particles as Neumann coefficient.

What will change?

- We no longer have any mode expansions at our disposal...
- Even if we had, inverting the infinite dimensional matrices would be hopeless...
- It is extremely difficult to work directly in finite volume \qquad
single string spectrum is given only implicitly in terms of Bethe
Ansatz equations.
- We do not expect the exponential structure to hold.

- We expect to obtain separate but possibly related amplitudes for various numbers of external particles
- In particular no separation between the (Prefactor) and the Neumann coefficient part...
- We will still refer to an amplitude with only two particles as Neumann coefficient.

What will change?

- We no longer have any mode expansions at our disposal...
- Even if we had, inverting the infinite dimensional matrices would be hopeless...
- It is extremely difficult to work directly in finite volume - even the single string spectrum is given only implicitly in terms of Bethe Ansatz equations...
- We do not expect the exponential structure to hold.

- We expect to obtain separate but possibly related amplitudes for various numbers of external particles
- In particular no separation between the (Prefactor) and the Neumann coefficient part...
- We will still refer to an amplitude with only two particles as Neumann coefficient.

What will change?

- We no longer have any mode expansions at our disposal...
- Even if we had, inverting the infinite dimensional matrices would be hopeless...
- It is extremely difficult to work directly in finite volume - even the single string spectrum is given only implicitly in terms of Bethe Ansatz equations...
- We do not expect the exponential structure to hold...

$$
|V\rangle=(\text { Prefactor }) \cdot \exp \left\{\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m} N_{n m}^{r s} a_{n}^{+(r)} a_{m}^{+(s)}\right\}|0\rangle
$$

- We expect to obtain separate but possibly related amplitudes for various numbers of external particles
- In particular no separation between the (Prefactor) and the Neumann coefficient part...
- We will still refer to an amplitude with only two particles as Neumann coefficient.

What will change?

- We no longer have any mode expansions at our disposal...
- Even if we had, inverting the infinite dimensional matrices would be hopeless...
- It is extremely difficult to work directly in finite volume - even the single string spectrum is given only implicitly in terms of Bethe Ansatz equations...
- We do not expect the exponential structure to hold...

$$
|V\rangle=(\text { Prefactor }) \cdot \exp \left\{\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m} N_{n m}^{r s} a_{n}^{+(r)} a_{m}^{+(s)}\right\}|0\rangle
$$

- We expect to obtain separate but possibly related amplitudes for various numbers of external particles

$$
\mathbf{N}_{L_{3} \mid L_{2} ; L_{1}}^{3 \mid 2 ; 1}\left(p_{1}, \ldots, p_{n} \mid p_{1}^{\prime}, \ldots, p_{m}^{\prime} ; p_{1}^{\prime \prime}, \ldots, p_{l}^{\prime \prime}\right)
$$

\rightarrow In particular no separation between the

- We will still refer to an amplitude with only two particles as Neumann coefficient.

What will change?

- We no longer have any mode expansions at our disposal...
- Even if we had, inverting the infinite dimensional matrices would be hopeless...
- It is extremely difficult to work directly in finite volume - even the single string spectrum is given only implicitly in terms of Bethe Ansatz equations...
- We do not expect the exponential structure to hold...

$$
|V\rangle=(\text { Prefactor }) \cdot \exp \left\{\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m} N_{n m}^{r s} a_{n}^{+(r)} a_{m}^{+(s)}\right\}|0\rangle
$$

- We expect to obtain separate but possibly related amplitudes for various numbers of external particles

$$
\mathbf{N}_{L_{3} \mid L_{2} ; L_{1}}^{3 \mid 2 ; 1}\left(p_{1}, \ldots, p_{n} \mid p_{1}^{\prime}, \ldots, p_{m}^{\prime} ; p_{1}^{\prime \prime}, \ldots, p_{l}^{\prime \prime}\right)
$$

- In particular no separation between the (Prefactor) and the Neumann coefficient part...
- We will still refer to an amplitude with only two particles as Neumann coefficient.

What will change?

- We no longer have any mode expansions at our disposal...
- Even if we had, inverting the infinite dimensional matrices would be hopeless...
- It is extremely difficult to work directly in finite volume - even the single string spectrum is given only implicitly in terms of Bethe Ansatz equations...
- We do not expect the exponential structure to hold...

$$
|V\rangle=(\text { Prefactor }) \cdot \exp \left\{\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m} N_{n m}^{r s} a_{n}^{+(r)} a_{m}^{+(s)}\right\}|0\rangle
$$

- We expect to obtain separate but possibly related amplitudes for various numbers of external particles

$$
\mathbf{N}_{L_{3} \mid L_{2} ; L_{1}}^{32 ; 1}\left(p_{1}, \ldots, p_{n} \mid p_{1}^{\prime}, \ldots, p_{m}^{\prime} ; p_{1}^{\prime \prime}, \ldots, p_{l}^{\prime \prime}\right)
$$

- In particular no separation between the (Prefactor) and the Neumann coefficient part...
- We will still refer to an amplitude with only two particles as Neumann coefficient...

What will change?

- We no longer have any mode expansions at our disposal...
- Even if we had, inverting the infinite dimensional matrices would be hopeless...
- It is extremely difficult to work directly in finite volume - even the single string spectrum is given only implicitly in terms of Bethe Ansatz equations...
- We do not expect the exponential structure to hold...

$$
|V\rangle=(\text { Prefactor }) \cdot \exp \left\{\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m} N_{n m}^{r s} a_{n}^{+(r)} a_{m}^{+(s)}\right\}|0\rangle
$$

- We expect to obtain separate but possibly related amplitudes for various numbers of external particles

$$
\mathbf{N}_{L_{3} \mid L_{2} ; L_{1}}^{3 \mid 2 ; 1}\left(p_{1}, \ldots, p_{n} \mid p_{1}^{\prime}, \ldots, p_{m}^{\prime} ; p_{1}^{\prime \prime}, \ldots, p_{l}^{\prime \prime}\right)
$$

- In particular no separation between the (Prefactor) and the Neumann coefficient part...
- We will still refer to an amplitude with only two particles as Neumann coefficient... e.g. $N_{n m}^{33}=\mathbf{N}_{L_{3} \mid L_{2} ; L_{1}}^{3 \mid 2 ; 1}\left(p_{n}, p_{m} \mid \varnothing ; \varnothing\right)$

Interlude: Form factors in an integrable quantum field theory

Form factors

- Form factors are expectation values of a local operator sandwiched between specific multiparticle in and out states
- Form factors in infinite volume (on an infinite plane) satisfy a concrete set of functional equations

$$
\begin{aligned}
& f\left(\theta_{1}, \theta_{2}\right)=S\left(\theta_{1}, \theta_{2}\right) f\left(\theta_{2}, \theta_{1}\right) \\
& f\left(\theta_{1}, \theta_{2}\right)=f\left(\theta_{2}, \theta_{1}-2 \pi i\right) \\
& -i \operatorname{res}_{\theta^{\prime}=\theta} f_{n+2}\left(\theta^{\prime}, \theta+i \pi, \theta_{1}, \ldots, \theta_{n}\right)=\left(1-\prod S\left(\theta, \theta_{i}\right)\right) f_{n}\left(\theta_{1}, \ldots, \theta_{n}\right)
\end{aligned}
$$

- Solutions explicitly known for numerous relativistic integrable QFT's

Form factors

- Form factors are expectation values of a local operator sandwiched between specific multiparticle in and out states
- Form factors in infinite volume (on an infinite plane) satisfy a concrete set of functional equations
\square
$f\left(\theta_{1}, \theta_{2}\right)=f\left(\theta_{2}, \theta_{1}-2 \pi i\right)$

- Solutions explicitly known for numerous relativistic integrable QFT's

Form factors

- Form factors are expectation values of a local operator sandwiched between specific multiparticle in and out states

$$
\text { out }\left\langle\theta_{1}^{\prime}, \ldots, \theta_{m}^{\prime}\right| \mathcal{O}(0)\left|\theta_{1}, \ldots, \theta_{k}\right\rangle_{\text {in }}
$$

- Form factors in infinite volume (on an infinite plane) satisfy a concrete set of functional equations

- Solutions explicitly known for numerous relativistic integrable QFT's

Form factors

- Form factors are expectation values of a local operator sandwiched between specific multiparticle in and out states

$$
\text { out }\langle\varnothing| \mathcal{O}(0)\left|\theta_{1}, \ldots, \theta_{n}\right\rangle_{\text {in }} \equiv f\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

- Form factors in infinite volume (on an infinite plane) satisfy a concrete set of functional equations

- Solutions explicitly known for numerous relativistic integrable QFT's

Form factors

- Form factors are expectation values of a local operator sandwiched between specific multiparticle in and out states

$$
{ }_{\text {out }}\langle\varnothing| \mathcal{O}(0)\left|\theta_{1}, \ldots, \theta_{n}\right\rangle_{\text {in }} \equiv f\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

- Form factors in infinite volume (on an infinite plane) satisfy a concrete set of functional equations
$f\left(\theta_{1}, \theta_{2}\right)=S\left(\theta_{1}, \theta_{2}\right) f\left(\theta_{2}, \theta_{1}\right)$
$f\left(\theta_{1}, \theta_{2}\right)=f\left(\theta_{2}, \theta_{1}-2 \pi i\right)$
$-i \operatorname{res}_{\theta^{\prime}=\theta} f_{n+2}\left(\theta^{\prime}, \theta+i \pi, \theta_{1}, \ldots, \theta_{n}\right)=\left(1-\prod S\left(\theta, \theta_{i}\right)\right) f_{n}\left(\theta_{1}, \ldots, \theta_{n}\right)$
- Solutions explicitly known for numerous relativistic integrable QFT's

Form factors

- Form factors are expectation values of a local operator sandwiched between specific multiparticle in and out states

$$
{ }_{\text {out }}\langle\varnothing| \mathcal{O}(0)\left|\theta_{1}, \ldots, \theta_{n}\right\rangle_{\text {in }} \equiv f\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

- Form factors in infinite volume (on an infinite plane) satisfy a concrete set of functional equations

$$
\begin{aligned}
& f\left(\theta_{1}, \theta_{2}\right)=S\left(\theta_{1}, \theta_{2}\right) f\left(\theta_{2}, \theta_{1}\right) \\
& f\left(\theta_{1}, \theta_{2}\right)=f\left(\theta_{2}, \theta_{1}-2 \pi i\right) \\
& -i \operatorname{res}_{\theta^{\prime}=\theta} f_{n+2}\left(\theta^{\prime}, \theta+i \pi, \theta_{1}, \ldots, \theta_{n}\right)=\left(1-\prod S\left(\theta, \theta_{i}\right)\right) f_{n}\left(\theta_{1}, \ldots, \theta_{n}\right)
\end{aligned}
$$

Form factors

- Form factors are expectation values of a local operator sandwiched between specific multiparticle in and out states

$$
{ }_{\text {out }}\langle\varnothing| \mathcal{O}(0)\left|\theta_{1}, \ldots, \theta_{n}\right\rangle_{\text {in }} \equiv f\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

- Form factors in infinite volume (on an infinite plane) satisfy a concrete set of functional equations

$$
\begin{aligned}
& f\left(\theta_{1}, \theta_{2}\right)=S\left(\theta_{1}, \theta_{2}\right) f\left(\theta_{2}, \theta_{1}\right) \\
& f\left(\theta_{1}, \theta_{2}\right)=f\left(\theta_{2}, \theta_{1}-2 \pi i\right) \\
& -i \operatorname{res}_{\theta^{\prime}=\theta} f_{n+2}\left(\theta^{\prime}, \theta+i \pi, \theta_{1}, \ldots, \theta_{n}\right)=\left(1-\prod S\left(\theta, \theta_{i}\right)\right) f_{n}\left(\theta_{1}, \ldots, \theta_{n}\right)
\end{aligned}
$$

- Solutions explicitly known for numerous relativistic integrable QFT's

Form factors

Comments:

- In order to formulate the axioms it was crucial to be in infinite volume \longrightarrow analyticity and cossing
- The form factor axioms do not depend at all on the specific local operator inserted...
- They have numerous solutions - for each local operator in the theory...

Finite volume \equiv form factors on a cylinder
> Up to wrapping corrections ($\sim e^{-m I}$), very simple way to pass to finite volume (cylinder of circumference L): Pozsgay, Takacs

$$
\langle\varnothing| \mathcal{O}(0)\left|\theta_{1}, \theta_{2}\right\rangle_{L}=\frac{1}{\sqrt{\rho_{2} \cdot S\left(\theta_{1}, \theta_{2}\right)}} \cdot f\left(\theta_{1}, \theta_{2}\right)
$$

where θ_{1}, θ_{2} satisfy Bethe ansatz quantization and ρ_{2} is essentially the Gaudin norm

Form factors

Comments:

- In order to formulate the axioms it was crucial to be in infinite volume
- The form factor axioms do not depend at all on the specific local operator inserted...
- They have numerous solutions - for each local operator in the theory...

Finite volume \equiv form factors on a cylinder

- Up to wrapping corrections ($\sim \mathrm{c}^{-m L}$), very simple way to pass to finite volume (cylinder of circumference L): Pozsgay, Takacs

$$
\langle\varnothing| \mathcal{O}(0)\left|\theta_{1}, \theta_{2}\right\rangle_{L}=\frac{1}{\sqrt{\rho_{2} \cdot S\left(\theta_{1}, \theta_{2}\right)}} \cdot f\left(\theta_{1}, \theta_{2}\right)
$$

where θ_{1}, θ_{2} satisfy Bethe ansatz quantization and ρ_{2} is essentially the Gaudin norm

Form factors

Comments:

- In order to formulate the axioms it was crucial to be in infinite volume \longrightarrow analyticity and cossing
- The form factor axioms do not depend at all on the specific local operator inserted...
- They have numerous solutions - for each local operator in the theory...

Finite volume \equiv form factors on a cylinder

- Up to wrapping corrections ($\sim \mathrm{e}^{-m L}$), very simple way to pass to finite volume (cylinder of circumference L): Pozsgay, Takacs

$$
\langle\varnothing| \mathcal{O}(0)\left|\theta_{1}, \theta_{2}\right\rangle_{L}=\frac{1}{\sqrt{\rho_{2} \cdot S\left(\theta_{1}, \theta_{2}\right)}} \cdot f\left(\theta_{1}, \theta_{2}\right)
$$

where θ_{1}, θ_{2} satisfy Bethe ansatz quantization and ρ_{2} is essentially the Gaudin norm

Form factors

Comments:

- In order to formulate the axioms it was crucial to be in infinite volume \longrightarrow analyticity and cossing
- The form factor axioms do not depend at all on the specific local operator inserted...

- They have numerous solutions - for each local operator in the theory...

Finite volume \equiv form factors on a cylinder

- Up to wrapping corrections ($\sim e^{-m!}$), very simple way to pass to finite volume (cylinder of circumference L):

where θ_{1}, θ_{2} satisfy Bethe ansatz quantization and ρ_{2} is essentially the Gaudin norm

Form factors

Comments:

- In order to formulate the axioms it was crucial to be in infinite volume \longrightarrow analyticity and cossing
- The form factor axioms do not depend at all on the specific local operator inserted...
- They have numerous solutions - for each local operator in the theory...

Finite volume \equiv form factors on a cylinder

- Up to wrapping corrections ($\sim e^{-m L}$), very simple way to pass to finite volume (cylinder of circumference L)

where θ_{1}, θ_{2} satisfy Bethe ansatz quantization and ρ_{2} is essentially the Gaudin norm

Form factors

Comments:

- In order to formulate the axioms it was crucial to be in infinite volume \longrightarrow analyticity and cossing
- The form factor axioms do not depend at all on the specific local operator inserted...
- They have numerous solutions - for each local operator in the theory...

Finite volume \equiv form factors on a cylinder

where θ_{1}, θ_{2} satisfy Bethe ansatz quantization and ρ_{2} is essentially the Gaudin norm

Form factors

Comments:

- In order to formulate the axioms it was crucial to be in infinite volume \longrightarrow analyticity and cossing
- The form factor axioms do not depend at all on the specific local operator inserted...
- They have numerous solutions - for each local operator in the theory...

Finite volume \equiv form factors on a cylinder

- Up to wrapping corrections ($\sim e^{-m L}$), very simple way to pass to finite volume (cylinder of circumference L):

Pozsgay, Takacs
where θ_{1}, θ_{2} satisfy Bethe ansatz quantization and ρ_{2} is essentially the Gaudin norm

Form factors

Comments:

- In order to formulate the axioms it was crucial to be in infinite volume \longrightarrow analyticity and cossing
- The form factor axioms do not depend at all on the specific local operator inserted...
- They have numerous solutions - for each local operator in the theory...

Finite volume \equiv form factors on a cylinder

- Up to wrapping corrections ($\sim e^{-m L}$), very simple way to pass to finite volume (cylinder of circumference L):

Pozsgay, Takacs

$$
\langle\varnothing| \mathcal{O}(0)\left|\theta_{1}, \theta_{2}\right\rangle_{L}=\frac{1}{\sqrt{\rho_{2} \cdot S\left(\theta_{1}, \theta_{2}\right)}} \cdot f\left(\theta_{1}, \theta_{2}\right)
$$

where θ_{1}, θ_{2} satisfy Bethe ansatz quantization and ρ_{2} is essentially the Gaudin norm

Guiding principle:

1. We need an infinite volume formulation in order to have analyticity/crossing and other functional equations
2. Expect simple passage to finite volume neglecting wrapping $\left(\sim e^{-m L}\right) \ldots$

Questions:

1. How does this relate to the pp-wave SFT which seemed inherently tied to finite volume??
2. How did wrapping effects manifest themselves in the pp-wave case?

Guiding principle:

1. We need an infinite volume formulation in order to have analyticity/crossing and other functional equations
2. Expect simple passage to finite volume neglecting wrapping $\left(\sim e^{-m L}\right) \ldots$

Questions:

1. How does this relate to the pp-wave SFT which seemed inherently tied to finite volume??
2. How did wrapping effects manifest themselves in the pp-wave case?

Guiding principle:

1. We need an infinite volume formulation in order to have analyticity/crossing and other functional equations
2. Expect simple passage to finite volume neglecting wrapping ($\left.\sim e^{-m L}\right) \ldots$

Questions:

1. How does this relate to the pp-wave SFT which seemed inherently tied to finite volume??
2. How did wrapping effects manifest themselves in the pp-wave case?

Guiding principle:

1. We need an infinite volume formulation in order to have analyticity/crossing and other functional equations
2. Expect simple passage to finite volume neglecting wrapping ($\left.\sim e^{-m L}\right) \ldots$

Questions:

1. How does this relate to the pp-wave SFT which seemed inherently tied to finite volume??
2. How did wrapping effects manifest themselves in the pp-wave case?

Guiding principle:

1. We need an infinite volume formulation in order to have analyticity/crossing and other functional equations
2. Expect simple passage to finite volume neglecting wrapping $\left(\sim e^{-m L}\right) \ldots$

Questions:

1. How does this relate to the pp-wave SFT which seemed inherently tied to finite volume??
2. How did wrapping effects manifest themselves in the pp-wave case?

Guiding principle:

1. We need an infinite volume formulation in order to have analyticity/crossing and other functional equations
2. Expect simple passage to finite volume neglecting wrapping $\left(\sim e^{-m L}\right) \ldots$

Questions:

1. How does this relate to the pp-wave SFT which seemed inherently tied to finite volume??
2. How did wrapping effects manifest themselves in the pp-wave case?

pp-wave String Field Theory vertex revisited

- In the pp-wave times, people used simplified expressions for $N_{n m}^{r s}$ neglecting exponential $e^{-\mu \alpha_{r}}$ terms
(these are exactly wrapping terms $e^{\left.-M L_{r}!!\right)}$
- Going to an exponential basis (BMN basis) one got in this limit
$N_{m n}^{r s}=\left[\frac{\sqrt{\left(\omega_{m}^{r}+\mu \alpha_{r}\right)\left(\omega_{n}^{s}+\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}-\frac{\sqrt{\left(\omega_{m}^{r}-\mu \alpha_{r}\right)\left(\omega_{n}^{s}-\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}\right] \cdot($ simple $)$
- Instead of integer mode numbers use rapidities...

$$
N^{33}\left(\theta_{1}, \theta_{2}\right)=\frac{-1}{\cosh \frac{\theta_{1}-\theta_{2}}{2}} \cdot \sin \frac{p_{1} L_{1}}{2} \sin \frac{p_{2} L_{1}}{2}
$$

- The integer mode numbers (characteristic of finite volume) are completely inessential - they only obscure a simple underlying structure
- Pole at $\theta_{1}=\theta_{2}+i \pi$ (position of kinematical singularity as for form factors!) \longrightarrow there should be some underlying axioms...
- Still some surprising features - the $\sin \frac{p_{k} L_{1}}{2}$ factors

pp-wave String Field Theory vertex revisited

- In the pp-wave times, people used simplified expressions for $N_{n m}^{r s}$ neglecting exponential $e^{-\mu \alpha_{r}}$ terms $\alpha_{r}=L_{r} / L_{3}$
(these are exactly wrapping terms
- Going to an exponential basis (BMN basis) one got in this limit
$N_{m n}^{r_{s}}=\left[\frac{\sqrt{\left(\omega_{m}^{r}+\mu \alpha_{r}\right)\left(\omega_{n}^{s}+\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}\right.$

- Instead of integer mode numbers use rapidities...

- The integer mode numbers (characteristic of finite volume) are completely inessential - they only obscure a simple underlying structure
- Pole at $\theta_{1}=\theta_{2}+i \pi$ (position of kinematical singularity as for form factors!) \longrightarrow there should be some underlying axioms...
- Still some surprising features - the $\sin \frac{p_{k} L_{1}}{2}$ factors

pp-wave String Field Theory vertex revisited

- In the pp-wave times, people used simplified expressions for $N_{n m}^{r s}$ neglecting exponential $e^{-\mu \alpha_{r}}$ terms
(these are exactly wrapping terms $e^{\left.-M L_{r}!!\right)}$
- Going to an exponential basis (BMN basis) one got in this limit $N_{m n}^{r s}=\left[\frac{\sqrt{\left(\omega_{m}^{r}+\mu \alpha_{r}\right)\left(\omega_{n}^{s}+\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}-\frac{\sqrt{\left(\omega_{m}^{r}-\mu \alpha_{r}\right)\left(\omega_{n}^{s}-\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}\right]$
- Instead of integer mode numbers use rapidities...

- The integer mode numbers (characteristic of finite volume) are completely inessential - they only obscure a simple underlying structure
- Pole at $\theta_{1}=\theta_{2}+i \pi$ (position of kinematical singularity as for form factors!) \longrightarrow there should be some underlying axioms...
- Still some surprising features - the $\sin \frac{p_{k} L_{1}}{2}$ factors

pp-wave String Field Theory vertex revisited

- In the pp-wave times, people used simplified expressions for $N_{n m}^{r s}$ neglecting exponential $e^{-\mu \alpha_{r}}$ terms $\alpha_{r}=L_{r} / L_{3}$
(these are exactly wrapping terms $e^{\left.-M L_{r}!!\right)}$
- Going to an exponential basis (BMN basis) one got in this limit
$N_{m n}^{r s}=\left[\frac{\sqrt{\left(\omega_{m}^{r}+\mu \alpha_{r}\right)\left(\omega_{n}^{s}+\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}-\frac{\sqrt{\left(\omega_{m}^{r}-\mu \alpha_{r}\right)\left(\omega_{n}^{s}-\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}\right] \cdot($ simple $)$
- Instead of integer mode numbers use rapidities...
- The integer mode numbers (characteristic of finite volume) are completely inessential - they only obscure a simple underlying structure
- Pole at $\theta_{1}=\theta_{2}+i \pi$ (position of kinematical singularity as for form factors!) \longrightarrow there should be some underlying axioms...
- Still some surprising features - the $\sin \frac{p_{k} L_{1}}{2}$ factors

pp-wave String Field Theory vertex revisited

- In the pp-wave times, people used simplified expressions for $N_{n m}^{r s}$ neglecting exponential $e^{-\mu \alpha_{r}}$ terms
(these are exactly wrapping terms $e^{\left.-M L_{r}!!\right)}$
- Going to an exponential basis (BMN basis) one got in this limit

$$
N_{m n}^{r s}=\left[\frac{\sqrt{\left(\omega_{m}^{r}+\mu \alpha_{r}\right)\left(\omega_{n}^{s}+\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}-\frac{\sqrt{\left(\omega_{m}^{r}-\mu \alpha_{r}\right)\left(\omega_{n}^{s}-\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}\right] \cdot(\text { simple })
$$

- Instead of integer mode numbers use rapidities...
- The integer mode numbers (characteristic of finite volume) are completely inessential - they only obscure a simple underlying structure
- Pole at $\theta_{1}=\theta_{2}+i \pi$ (position of kinematical singularity as for form factors!) \longrightarrow there should be some underlying axioms...
- Still some surprising features - the $\sin \frac{p_{k} L_{1}}{2}$ factors

pp-wave String Field Theory vertex revisited

- In the pp-wave times, people used simplified expressions for $N_{n m}^{r s}$ neglecting exponential $e^{-\mu \alpha_{r}}$ terms
(these are exactly wrapping terms $e^{\left.-M L_{r}!!\right)}$
- Going to an exponential basis (BMN basis) one got in this limit

$$
N_{m n}^{r s}=\left[\frac{\sqrt{\left(\omega_{m}^{r}+\mu \alpha_{r}\right)\left(\omega_{n}^{s}+\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}-\frac{\sqrt{\left(\omega_{m}^{r}-\mu \alpha_{r}\right)\left(\omega_{n}^{s}-\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}\right] \cdot(\text { simple })
$$

- Instead of integer mode numbers use rapidities...

$$
N^{33}\left(\theta_{1}, \theta_{2}\right)=\frac{-1}{\cosh \frac{\theta_{1}-\theta_{2}}{2}} \cdot \sin \frac{p_{1} L_{1}}{2} \sin \frac{p_{2} L_{1}}{2}
$$

- The integer mode numbers (characteristic of finite volume) are completely inessential - they only obscure a simple underlying structure
- Pole at $\theta_{1}=\theta_{2}+i \pi$ (position of kinematical singularity as for form factors!) \longrightarrow there should be some underlying axioms..
- Still some surprising features - the $\sin \frac{p_{k} L_{1}}{2}$ factors

pp-wave String Field Theory vertex revisited

- In the pp-wave times, people used simplified expressions for $N_{n m}^{r s}$ neglecting exponential $e^{-\mu \alpha_{r}}$ terms
(these are exactly wrapping terms $e^{\left.-M L_{r}!!\right)}$
- Going to an exponential basis (BMN basis) one got in this limit

$$
N_{m n}^{r s}=\left[\frac{\sqrt{\left(\omega_{m}^{r}+\mu \alpha_{r}\right)\left(\omega_{n}^{s}+\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}-\frac{\sqrt{\left(\omega_{m}^{r}-\mu \alpha_{r}\right)\left(\omega_{n}^{s}-\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}\right] \cdot(\text { simple })
$$

- Instead of integer mode numbers use rapidities...

$$
N^{33}\left(\theta_{1}, \theta_{2}\right)=\frac{-1}{\cosh \frac{\theta_{1}-\theta_{2}}{2}} \cdot \sin \frac{p_{1} L_{1}}{2} \sin \frac{p_{2} L_{1}}{2}
$$

- The integer mode numbers (characteristic of finite volume) are completely inessential - they only obscure a simple underlying structure
- Pole at $\theta_{1}=\theta_{2}+i \pi$ (position of kinematical singularity as for form
- Still some surprising features - the $\sin \frac{p_{k} L_{1}}{2}$ factors

pp-wave String Field Theory vertex revisited

- In the pp-wave times, people used simplified expressions for $N_{n m}^{r s}$ neglecting exponential $e^{-\mu \alpha_{r}}$ terms
(these are exactly wrapping terms $e^{\left.-M L_{r}!!\right)}$
- Going to an exponential basis (BMN basis) one got in this limit

$$
N_{m n}^{r s}=\left[\frac{\sqrt{\left(\omega_{m}^{r}+\mu \alpha_{r}\right)\left(\omega_{n}^{s}+\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}-\frac{\sqrt{\left(\omega_{m}^{r}-\mu \alpha_{r}\right)\left(\omega_{n}^{s}-\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}\right] \cdot(\text { simple })
$$

- Instead of integer mode numbers use rapidities...

$$
N^{33}\left(\theta_{1}, \theta_{2}\right)=\frac{-1}{\cosh \frac{\theta_{1}-\theta_{2}}{2}} \cdot \sin \frac{p_{1} L_{1}}{2} \sin \frac{p_{2} L_{1}}{2}
$$

- The integer mode numbers (characteristic of finite volume) are completely inessential - they only obscure a simple underlying structure
- Pole at $\theta_{1}=\theta_{2}+i \pi$ (position of kinematical singularity as for form factors!)
- Still some surprising features - the $\sin \frac{p_{k} L 1}{2}$ factors

pp-wave String Field Theory vertex revisited

- In the pp-wave times, people used simplified expressions for $N_{n m}^{r s}$ neglecting exponential $e^{-\mu \alpha_{r}}$ terms
(these are exactly wrapping terms $e^{\left.-M L_{r}!!\right)}$
- Going to an exponential basis (BMN basis) one got in this limit

$$
N_{m n}^{r s}=\left[\frac{\sqrt{\left(\omega_{m}^{r}+\mu \alpha_{r}\right)\left(\omega_{n}^{s}+\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}-\frac{\sqrt{\left(\omega_{m}^{r}-\mu \alpha_{r}\right)\left(\omega_{n}^{s}-\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}\right] \cdot(\text { simple })
$$

- Instead of integer mode numbers use rapidities...

$$
N^{33}\left(\theta_{1}, \theta_{2}\right)=\frac{-1}{\cosh \frac{\theta_{1}-\theta_{2}}{2}} \cdot \sin \frac{p_{1} L_{1}}{2} \sin \frac{p_{2} L_{1}}{2}
$$

- The integer mode numbers (characteristic of finite volume) are completely inessential - they only obscure a simple underlying structure
- Pole at $\theta_{1}=\theta_{2}+i \pi$ (position of kinematical singularity as for form factors!) \longrightarrow there should be some underlying axioms...

pp-wave String Field Theory vertex revisited

- In the pp-wave times, people used simplified expressions for $N_{n m}^{r s}$ neglecting exponential $e^{-\mu \alpha_{r}}$ terms
(these are exactly wrapping terms $e^{\left.-M L_{r}!!\right)}$
- Going to an exponential basis (BMN basis) one got in this limit

$$
N_{m n}^{r s}=\left[\frac{\sqrt{\left(\omega_{m}^{r}+\mu \alpha_{r}\right)\left(\omega_{n}^{s}+\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}-\frac{\sqrt{\left(\omega_{m}^{r}-\mu \alpha_{r}\right)\left(\omega_{n}^{s}-\mu \alpha_{s}\right)}}{\omega_{m}^{r}+\omega_{n}^{s}}\right] \cdot(\text { simple })
$$

- Instead of integer mode numbers use rapidities...

$$
N^{33}\left(\theta_{1}, \theta_{2}\right)=\frac{-1}{\cosh \frac{\theta_{1}-\theta_{2}}{2}} \cdot \sin \frac{p_{1} L_{1}}{2} \sin \frac{p_{2} L_{1}}{2}
$$

- The integer mode numbers (characteristic of finite volume) are completely inessential - they only obscure a simple underlying structure
- Pole at $\theta_{1}=\theta_{2}+i \pi$ (position of kinematical singularity as for form factors!) \longrightarrow there should be some underlying axioms...
- Still some surprising features - the $\sin \frac{p_{k} L_{1}}{2}$ factors

Proceed to the generic string vertex...

The decompactified string vertex

- String \#1 still remains of finite size (denoted by L) — which can be arbitrary - large or even very small
- The emission of string \#1 can be understood as an insertion of some macroscopic (not completely local) operator...
- Looks like some kind of generalized form factor with ingoing particles in string \#3 and outgoing ones in string \#2

> Key new feature: string \#1
> 'eats up volume' \longrightarrow the
> "operator" should have a $e^{-l p L}$
> branch cut defect...

Ready to formulate functional
equations...

The decompactified string vertex

- String \#1 still remains of finite size (denoted by L) — which can be arbitrary - large or even very small
- The emission of string \#1 can be understood as an insertion of some macroscopic (not completely local) operator...
- Looks like some kind of generalized form factor with ingoing particles in string \#3 and outgoing ones in string \#2

> Key new feature: string \#1 'eats up volume' \longrightarrow the "operator" should have a $e^{-p L}$ branch cut defect...

The decompactified string vertex

- String \#1 still remains of finite size (denoted by L) — which can be arbitrary - large or even very small
- The emission of string \#1 can be understood as an insertion of some macroscopic (not completely local) operator...
- Looks like some kind of generalized form factor with ingoing particles in string \#3 and outgoing ones in string \#2

> Key new feature: string \#1
> 'eats up volume' \longrightarrow the
> "operator" should have a $e^{-i p L}$
> branch cut defect...

Ready to formulate functional
equations...

The decompactified string vertex

- String \#1 still remains of finite size (denoted by L) — which can be arbitrary - large or even very small
- The emission of string \#1 can be understood as an insertion of some macroscopic (not completely local) operator...
- Looks like some kind of generalized form factor with ingoing particles in string \#3 and outgoing ones in string \#2

> Key new feature: string \#1
> 'eats up volume' \longrightarrow the
> "operator" should have a $e^{-i p L}$
> branch cut defect...

Ready to formulate functional
equations...

The decompactified string vertex

- String \#1 still remains of finite size (denoted by L) - which can be arbitrary - large or even very small

Key new feature: string \#1
'eats up volume' \longrightarrow the "operator" should have a $e^{-i p L}$ branch cut defect...

The decompactified string vertex

- String \#1 still remains of finite size (denoted by L) - which can be arbitrary - large or even very small
- The emission of string \#1 can be understood as an insertion of some macroscopic (not completely local) operator...
> Looks like some kind of generalized form factor with ingoing particles in string \#3 and outgoing ones in string \#2

The decompactified string vertex

- String \#1 still remains of finite size (denoted by L) - which can be arbitrary - large or even very small
- The emission of string \#1 can be understood as an insertion of some macroscopic (not completely local) operator...
- Looks like some kind of generalized form factor with ingoing particles in string \#3 and outgoing ones in string \#2

The decompactified string vertex

- String \#1 still remains of finite size (denoted by L) - which can be arbitrary - large or even very small
- The emission of string \#1 can be understood as an insertion of some macroscopic (not completely local) operator...
- Looks like some kind of generalized form factor with ingoing particles in string \#3 and outgoing ones in string \#2

The decompactified string vertex

- String \#1 still remains of finite size (denoted by L) - which can be arbitrary - large or even very small
- The emission of string \#1 can be understood as an insertion of some macroscopic (not completely local) operator...
- Looks like some kind of generalized form factor with ingoing particles in string \#3 and outgoing ones in string \#2

Key new feature: string \#1 'eats up volume'

The decompactified string vertex

- String \#1 still remains of finite size (denoted by L) - which can be arbitrary - large or even very small
- The emission of string \#1 can be understood as an insertion of some macroscopic (not completely local) operator...
- Looks like some kind of generalized form factor with ingoing particles in string \#3 and outgoing ones in string \#2

(3)

Key new feature: string \#1 'eats up volume' \longrightarrow the "operator" should have a $e^{-i p L}$ branch cut defect...

The decompactified string vertex

- String \#1 still remains of finite size (denoted by L) - which can be arbitrary - large or even very small
- The emission of string \#1 can be understood as an insertion of some macroscopic (not completely local) operator...
- Looks like some kind of generalized form factor with ingoing particles in string \#3 and outgoing ones in string \#2

(3)

Key new feature: string \#1 'eats up volume' \longrightarrow the "operator" should have a $e^{-i p L}$ branch cut defect...

Ready to formulate functional equations...

The decompactified string vertex

- String \#1 still remains of finite size (denoted by L) - which can be arbitrary - large or even very small
- The emission of string \#1 can be understood as an insertion of some macroscopic (not completely local) operator...
- Looks like some kind of generalized form factor with ingoing particles in string \#3 and outgoing ones in string \#2

(3)

Key new feature: string \#1 'eats up volume' \longrightarrow the "operator" should have a $e^{-i p L}$ branch cut defect...

Ready to formulate functional equations...

The decompactified string vertex Functional equations for the (decompactified) string vertex
written here for two incoming particles and, for the moment, free theory

- The exact pp-wave solution, involving the $\Gamma_{\mu}(\theta)$ special function solves these equations and can be reconstructed from them!

- This includes all exponential wrapping corrections $e^{-\mu \alpha_{1}}=e^{-M L}$ for the \#1 string
> Straightforward generalization of the axioms to an interacting integrable QFT
- Analyticity conditions deduced from analyzing the known pp-wave solution...

The decompactified string vertex Functional equations for the (decompactified) string vertex
written here for two incoming particles and, for the moment, free theory

$$
\begin{aligned}
N^{33}\left(\theta_{1}, \theta_{2}\right) & =N^{33}\left(\theta_{2}, \theta_{1}\right) \\
N^{33}\left(\theta_{1}, \theta_{2}\right) & =e^{-i p_{1} L} N^{33}\left(\theta_{2}, \theta_{1}-2 \pi i\right) \\
\underset{-i \operatorname{res} N^{\prime}=\theta}{N^{33}(\theta+i \pi, \theta)} & =\left(1-e^{i p L}\right) F_{0}
\end{aligned}
$$

- The exact pp-wave solution, involving the $\Gamma_{\mu}(\theta)$ special function solves these equations and can be reconstructed from them!

- This includes all exponential wrapping corrections $e^{-\mu \alpha_{1}}=e^{-M L}$ for the \#1 string
- Straightforward generalization of the axioms to an interacting integrable QFT
- Analyticity conditions deduced from analyzing the known pp-wave solution..

The decompactified string vertex Functional equations for the (decompactified) string vertex
written here for two incoming particles and, for the moment, free theory

$$
\begin{aligned}
N^{33}\left(\theta_{1}, \theta_{2}\right) & =N^{33}\left(\theta_{2}, \theta_{1}\right) \\
N^{33}\left(\theta_{1}, \theta_{2}\right) & =e^{-i p_{1} L} N^{33}\left(\theta_{2}, \theta_{1}-2 \pi i\right) \\
-\underset{\theta^{\prime}=\theta}{\operatorname{res}} N^{33}(\theta+i \pi, \theta) & =\left(1-e^{i p L}\right) F_{0}
\end{aligned}
$$

- The exact pp-wave solution, involving the $\Gamma_{\mu}(\theta)$ special function solves these equations and can be reconstructed from them!
- This includes all exponential wrapping corrections $e^{-\mu \alpha_{1}}=e^{-M L}$ for the \#1 string
- Straightforward generalization of the axioms to an interacting integrable QFT
- Analyticity conditions deduced from analyzing the known pp-wave solution.

The decompactified string vertex Functional equations for the (decompactified) string vertex
written here for two incoming particles and, for the moment, free theory

$$
\begin{aligned}
N^{33}\left(\theta_{1}, \theta_{2}\right) & =N^{33}\left(\theta_{2}, \theta_{1}\right) \\
N^{33}\left(\theta_{1}, \theta_{2}\right) & =e^{-i p_{1} L} N^{33}\left(\theta_{2}, \theta_{1}-2 \pi i\right) \\
\underset{-i \operatorname{res} N^{\prime}=\theta}{ } N^{33}(\theta+i \pi, \theta) & =\left(1-e^{i p L}\right) F_{0}
\end{aligned}
$$

- The exact pp-wave solution, involving the $\Gamma_{\mu}(\theta)$ special function solves these equations and can be reconstructed from them!

$$
n(\theta) n(\theta+i \pi)=-\frac{1}{2 \pi^{2}} M L \sinh \theta \sin \frac{p(\theta) L}{2}
$$

- This includes all exponential wrapping corrections $e^{-\mu \alpha_{1}}=$
for the \#1 string
- Straightforward generalization of the axioms to an interacting
integrable QFT
- Analyticity conditions deduced from analyzing the known pp-wave solution.

The decompactified string vertex Functional equations for the (decompactified) string vertex
written here for two incoming particles and, for the moment, free theory

$$
\begin{aligned}
N^{33}\left(\theta_{1}, \theta_{2}\right) & =N^{33}\left(\theta_{2}, \theta_{1}\right) \\
N^{33}\left(\theta_{1}, \theta_{2}\right) & =e^{-i p_{1} L} N^{33}\left(\theta_{2}, \theta_{1}-2 \pi i\right) \\
-i \underset{\theta^{\prime}=\theta}{\operatorname{res}^{\prime}} N^{33}(\theta+i \pi, \theta) & =\left(1-e^{i p L}\right) F_{0}
\end{aligned}
$$

- The exact pp-wave solution, involving the $\Gamma_{\mu}(\theta)$ special function solves these equations and can be reconstructed from them!

$$
n(\theta) n(\theta+i \pi)=-\frac{1}{2 \pi^{2}} M L \sinh \theta \sin \frac{p(\theta) L}{2}
$$

- This includes all exponential wrapping corrections $e^{-\mu \alpha_{1}}=e^{-M L}$ for the \#1 string
- Straightforward generalization of the axioms to an interacting integrable QFT
- Analyticity conditions deduced from analyzing the known pp-wave solution.

The decompactified string vertex Functional equations for the (decompactified) string vertex
written here for two incoming particles and interacting worldsheet theory

$$
\begin{aligned}
N^{33}\left(\theta_{1}, \theta_{2}\right) & =N^{33}\left(\theta_{2}, \theta_{1}\right) \cdot \mathbf{S}\left(\theta_{1}, \theta_{2}\right) \\
N^{33}\left(\theta_{1}, \theta_{2}\right) & =e^{-i p_{1} L} N^{33}\left(\theta_{2}, \theta_{1}-2 \pi i\right) \\
-i \operatorname{res}_{\theta^{\prime}=\theta} N^{33}(\theta+i \pi, \theta) & =\left(1-e^{i p L}\right) F_{0}
\end{aligned}
$$

- The exact pp-wave solution, involving the $\Gamma_{\mu}(\theta)$ special function solves these equations and can be reconstructed from them!

$$
n(\theta) n(\theta+i \pi)=-\frac{1}{2 \pi^{2}} M L \sinh \theta \sin \frac{p(\theta) L}{2}
$$

- This includes all exponential wrapping corrections $e^{-\mu \alpha_{1}}=e^{-M L}$ for the \#1 string
- Straightforward generalization of the axioms to an interacting integrable QFT
- Analyticity conditions deduced from analyzing the known pp-wave solution.

The decompactified string vertex Functional equations for the (decompactified) string vertex
written here for two incoming particles and interacting worldsheet theory

$$
\begin{aligned}
N^{33}\left(\theta_{1}, \theta_{2}\right) & =N^{33}\left(\theta_{2}, \theta_{1}\right) \cdot \mathbf{S}\left(\theta_{1}, \theta_{2}\right) \\
N^{33}\left(\theta_{1}, \theta_{2}\right) & =e^{-i p_{1} L} N^{33}\left(\theta_{2}, \theta_{1}-2 \pi i\right) \\
-i \underset{\theta^{\prime}=\theta}{ } N^{33}(\theta+i \pi, \theta) & =\left(1-e^{i p L}\right) F_{0}
\end{aligned}
$$

- The exact pp-wave solution, involving the $\Gamma_{\mu}(\theta)$ special function solves these equations and can be reconstructed from them!

$$
n(\theta) n(\theta+i \pi)=-\frac{1}{2 \pi^{2}} M L \sinh \theta \sin \frac{p(\theta) L}{2}
$$

- This includes all exponential wrapping corrections $e^{-\mu \alpha_{1}}=e^{-M L}$ for the \#1 string
- Straightforward generalization of the axioms to an interacting integrable QFT
- Analyticity conditions deduced from analyzing the known pp-wave solution...

What happens in $A d S_{5} \times S^{5}$?

Novel kinematics

- Complex rapidities z are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only $e^{i p}$ is a well defined elliptic function
- The phase factors $e^{i p \mathrm{~L}}$ make sense directly only for integer L which is nice from the point of view of $\mathcal{N}=4$ SYM...

Complicated dynamics

- The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

We would like to separate the two problems...

What happens in $A d S_{5} \times S^{5}$?
Novel kinematics

- Complex rapidities z are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only $e^{i p}$ is a well defined elliptic function
- The phase factors $e^{i p L}$ make sense directly only for integer L which is nice from the point of view of $\mathcal{N}=4 \mathrm{SYM}$.

Complicated dynamics

- The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

We would like to separate the two problems...

What happens in $A d S_{5} \times S^{5}$?

Novel kinematics

- Complex rapidities z are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only $e^{i p}$ is a well defined elliptic function
- The phase factors $e^{i p L}$ make sense directly only for integer L which is nice from the point of view of $\mathcal{N}=4$ SYM.

Complicated dynamics

- The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

What happens in $A d S_{5} \times S^{5}$?

Novel kinematics

- Complex rapidities z are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only $e^{i p}$ is a well defined elliptic function
- The phase factors $e^{i p \mathrm{~L}}$ make sense directly only for integer \mathbf{L} which is nice from the point of view of $\mathcal{N}=4$ SYM.

Complicated dynamics

- The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

What happens in $A d S_{5} \times S^{5}$?

Novel kinematics

- Complex rapidities z are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only $e^{i p}$ is a well defined elliptic function
- The phase factors $e^{i p L}$ make sense directly only for integer L which is nice from the point of view of $\mathcal{N}=4$ SYM.

Complicated dynamics

- The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

We would like to separate the two problems...

What happens in $A d S_{5} \times S^{5}$?

Novel kinematics

- Complex rapidities z are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only $e^{i p}$ is a well defined elliptic function
- The phase factors $e^{i p \mathrm{~L}}$ make sense directly only for integer L which is nice from the point of view of $\mathcal{N}=4$ SYM...

Complicated dynamics

- The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

We would like to separate the two problems...

What happens in $\operatorname{AdS}_{5} \times S^{5}$?

Novel kinematics

- Complex rapidities z are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only $e^{i p}$ is a well defined elliptic function
- The phase factors $e^{i p \mathrm{~L}}$ make sense directly only for integer L which is nice from the point of view of $\mathcal{N}=4$ SYM...

Complicated dynamics

- The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

We would like to separate the two problems...

What happens in $\operatorname{AdS}_{5} \times S^{5}$?

Novel kinematics

- Complex rapidities z are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only $e^{i p}$ is a well defined elliptic function
- The phase factors $e^{i p \mathrm{~L}}$ make sense directly only for integer L which is nice from the point of view of $\mathcal{N}=4$ SYM...

Complicated dynamics

- The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

We would like to separate the two problems...

What happens in $\operatorname{AdS}_{5} \times S^{5}$?

Novel kinematics

- Complex rapidities z are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only $e^{i p}$ is a well defined elliptic function
- The phase factors $e^{i p \mathrm{~L}}$ make sense directly only for integer L which is nice from the point of view of $\mathcal{N}=4$ SYM...

Complicated dynamics

- The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

We would like to separate the two problems...

What happens in $\operatorname{AdS}_{5} \times S^{5}$?

Novel kinematics

- Complex rapidities z are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only $e^{i p}$ is a well defined elliptic function
- The phase factors $e^{i p \mathrm{~L}}$ make sense directly only for integer L which is nice from the point of view of $\mathcal{N}=4$ SYM...

Complicated dynamics

- The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

We would like to separate the two problems...

What happens in $\operatorname{AdS}_{5} \times S^{5}$?

Novel kinematics

- Complex rapidities z are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only $e^{i p}$ is a well defined elliptic function
- The phase factors $e^{i p \mathrm{~L}}$ make sense directly only for integer L which is nice from the point of view of $\mathcal{N}=4$ SYM...

Complicated dynamics

- The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

We would like to separate the two problems...

The $A d S_{5} \times S^{5}$ Neumann coefficient

- Consider an amplitude with only two particles in the ingoing string \#3 and vacuum on the two outgoing strings..
- The equations satisfied by $\mathrm{N}_{1}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}}$ are

$$
\begin{aligned}
\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}} & =S_{i_{1} i_{2}}^{k l}\left(z_{1}, z_{2}\right) \mathbf{N}_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right)_{l, k} \\
\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}} & =e^{-i p\left(z_{1}\right) \mathrm{L}} \mathbf{N}_{\mathrm{L}}^{33}\left(z_{2}, z_{1}-\tau\right)_{i_{2}, i_{1}} \\
\operatorname{res}_{z^{\prime}=z} \mathbf{N}_{\mathrm{L}}^{33}\left(z^{\prime}+\tau / 2, z\right)_{\bar{i}, i} & =\left(1-e^{i p(z) \mathrm{L}}\right)
\end{aligned}
$$

- Suppose that we know a solution of 2-particle form factor equations in $\operatorname{AdS} \mathbb{F}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}}$ s.t.

$$
\mathbf{F}(z+\tau / 2, z)_{i_{1}, i_{2}}=\delta_{\bar{i}_{1}, i_{2}}
$$

- Then we can solve the SFT vertex equations by

$$
\mathbf{N}_{L}^{33}\left(z_{1}, z_{2}\right)_{i_{1} i_{2}}=\boldsymbol{F}^{\prime}\left(z_{1}, z_{2}\right) i_{1}, i_{2} \cdot N_{L}^{33}\left(z_{1}, z_{2}\right)
$$

- We call $N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right)$ the kinematical $A d S_{5} \times S^{5}$ Neumann coefficient...

The $A d S_{5} \times S^{5}$ Neumann coefficient

- Consider an amplitude with only two particles in the ingoing string \#3 and vacuum on the two outgoing strings...
- The equations satisfied by $\mathrm{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}}$ are

- Suppose that we know a solution of 2-particle form factor equations in $\operatorname{AdS} \mathbb{F}\left(z_{1}, z_{2}\right)_{i_{1}}$ in s.t.

$$
\mathbf{F}(z+\tau / 2, z)_{i_{1}, i_{2}}=\delta_{\bar{i}_{1}, i_{i_{2}}}
$$

- Then we can solve the SFT vertex equations by

$$
N^{33}\left(z_{1}, z_{2}\right)_{1,2}=\mathbf{F}\left(z_{1}, z_{2}\right) \quad N_{1} \cdot N^{33}\left(z_{1}, z_{2}\right)
$$

- We call $N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right)$ the kinematical $A d S_{5} \times S^{5}$ Neumann coefficient...

The $A d S_{5} \times S^{5}$ Neumann coefficient

- Consider an amplitude with only two particles in the ingoing string \#3 and vacuum on the two outgoing strings...
- The equations satisfied by $\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}}$ are

- Suppose that we know a solution of 2-particle form factor equations in $\operatorname{AdS} \boldsymbol{F}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}}$ s.t.

$$
\mathbf{F}(z+\tau / 2, z)_{i_{1}, i_{2}}=\delta_{\bar{r}_{1}, i_{2}}
$$

- Then we can solve the SFT vertex equations by

$$
\left.N^{33}\left(z_{1}, z_{2}\right)\right)_{1 i 2}=\mathbf{F}^{\left(z_{1}, z_{2}\right)} \quad \mathbf{N}_{1}^{33}\left(z_{1}, z_{2}\right)
$$

- We call $N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right)$ the kinematical $A d S_{5} \times S^{5}$ Neumann coefficient...

The $A d S_{5} \times S^{5}$ Neumann coefficient

- Consider an amplitude with only two particles in the ingoing string \#3 and vacuum on the two outgoing strings...
- The equations satisfied by $\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}}$ are

$$
\begin{aligned}
\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}} & =S_{i_{i_{1}}\left(z_{1}, z_{2}\right) \mathbf{N}_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right)_{l, k}}^{\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}}}
\end{aligned}=e^{-i p\left(z_{1}\right) \mathrm{L}} \mathbf{N}_{\mathrm{L}}^{33}\left(z_{2}, z_{1}-\tau\right)_{i_{2}, i_{1}} .
$$

- Suppose that we know a solution of 2-particle form factor equations in $\operatorname{AdS} \boldsymbol{F}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}}$ s.t.
- Then we can solve the SFT vertex equations by

The $A d S_{5} \times S^{5}$ Neumann coefficient

- Consider an amplitude with only two particles in the ingoing string \#3 and vacuum on the two outgoing strings...
- The equations satisfied by $\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}}$ are

$$
\begin{aligned}
\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}} & =S_{i_{1 i 2}}^{k \prime}\left(z_{1}, z_{2}\right) \mathbf{N}_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right)_{l, k} \\
\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}} & =e^{-i p\left(z_{1}\right) \mathrm{L}} \mathbf{N}_{\mathrm{L}}^{33}\left(z_{2}, z_{1}-\tau\right)_{i_{2}, i_{1}} \\
\operatorname{res}_{z^{\prime}=z} \mathbf{N}_{\mathrm{L}}^{33}\left(z^{\prime}+\tau / 2, z\right)_{\bar{i}, i} & =\left(1-e^{i p(z) \mathrm{L}}\right)
\end{aligned}
$$

- Suppose that we know a solution of 2-particle form factor equations in $\operatorname{AdS} \mathbf{F}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}}$ s.t.

$$
\mathbf{F}(z+\tau / 2, z)_{i_{1}, i_{2}}=\delta_{\bar{i}_{1}, i_{2}}
$$

- Then we can solve the SFT vertex equations by

The $A d S_{5} \times S^{5}$ Neumann coefficient

- Consider an amplitude with only two particles in the ingoing string \#3 and vacuum on the two outgoing strings...
- The equations satisfied by $\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}}$ are

$$
\begin{aligned}
\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}} & =S_{i_{1 i_{1}}}^{k!}\left(z_{1}, z_{2}\right) \mathbf{N}_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right)_{l, k} \\
\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}} & =e^{-i p\left(z_{1}\right) \mathrm{L}} \mathbf{N}_{\mathrm{L}}^{33}\left(z_{2}, z_{1}-\tau\right)_{i_{2}, i_{1}} \\
\operatorname{res}_{z^{\prime}=z} \mathbf{N}_{\mathrm{L}}^{33}\left(z^{\prime}+\tau / 2, z\right)_{\bar{i}, i} & =\left(1-e^{i p(z) \mathrm{L}}\right)
\end{aligned}
$$

- Suppose that we know a solution of 2-particle form factor equations in $\operatorname{AdS} \mathbf{F}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}}$ s.t.

$$
\mathbf{F}(z+\tau / 2, z)_{i_{1}, i_{2}}=\delta_{\bar{i}_{1}, i_{2}}
$$

- Then we can solve the SFT vertex equations by

$$
\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1} i_{2}}=\mathbf{F}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}} \cdot \mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)
$$

- We call $N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right)$ the kinematical $A d S_{5} \times S^{5}$ Neumann coefficient...

The $A d S_{5} \times S^{5}$ Neumann coefficient

- Consider an amplitude with only two particles in the ingoing string \#3 and vacuum on the two outgoing strings...
- The equations satisfied by $\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}}$ are

$$
\begin{aligned}
\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}} & =S_{i_{1,2}}^{k!}\left(z_{1}, z_{2}\right) \mathbf{N}_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right)_{l, k} \\
\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}} & =e^{-i p\left(z_{1}\right) \mathrm{L}} \mathbf{N}_{\mathrm{L}}^{33}\left(z_{2}, z_{1}-\tau\right)_{i_{2}, i_{1}} \\
\operatorname{res}_{z^{\prime}=z} \mathbf{N}_{\mathrm{L}}^{33}\left(z^{\prime}+\tau / 2, z\right)_{\bar{i}, i} & =\left(1-e^{i p(z) \mathrm{L}}\right)
\end{aligned}
$$

- Suppose that we know a solution of 2-particle form factor equations in $\operatorname{AdS} \mathbf{F}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}}$ s.t.

$$
\mathbf{F}(z+\tau / 2, z)_{i_{1}, i_{2}}=\delta_{\bar{i}_{1}, i_{2}}
$$

- Then we can solve the SFT vertex equations by

$$
\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1} i_{2}}=\mathbf{F}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}} \cdot \mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)
$$

- We call $N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right)$ the kinematical $\operatorname{AdS} S_{5} \times S^{5}$ Neumann coefficient...

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

$$
\mathbf{N}_{\mathbf{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1} i_{2}}=\mathbf{F}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}} \cdot N_{\mathbf{L}}^{33}\left(z_{2}, z_{1}\right)
$$

- It satisfies a set of scalar equations:

$$
\begin{aligned}
N_{L}^{33}\left(z_{1}, z_{2}\right) & =N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right) \\
N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right) & =e^{-i p\left(z_{1}\right) L} N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}-\tau\right) \\
\operatorname{res}_{z^{\prime}=z} N_{\mathrm{L}}^{33}\left(z^{\prime}+\tau / 2, z\right) & =\left(1-e^{i p(z) L}\right)
\end{aligned}
$$

- $N_{\mathbf{L}}^{33}\left(z_{2}, z_{1}\right)$ incorporates all \mathbf{L} dependence (all wrapping corrections w.r.t. string $\# 1$) at any coupling
- Conversely, if we have any solution of the SFT axioms, then the ratio

$$
\frac{\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1} i_{2}}}{N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)}
$$

is a solution of ordinary L-independent form factor axioms

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

$$
\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1} i_{2}}=\mathbf{F}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}} \cdot N_{\mathbf{L}}^{33}\left(z_{2}, z_{1}\right)
$$

- It satisfies a set of scalar equations:

$$
\begin{aligned}
N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right) & =N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right) \\
N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right) & =e^{-i p\left(z_{1}\right) \mathrm{L}} N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}-\tau\right) \\
\operatorname{res}_{z^{\prime}=z} N_{\mathrm{L}}^{33}\left(z^{\prime}+\tau / 2, z\right) & =\left(1-e^{i p(z) \mathrm{L}}\right)
\end{aligned}
$$

- $N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right)$ incorporates all L dependence (all wrapping corrections w.r.t. string \#1) at any coupling
- Conversely, if we have any solution of the SFT axioms, then the ratio

$$
\frac{\mathrm{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i i_{2}}}{N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)}
$$

is a solution of ordinary L-independent form factor axioms

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

$$
\mathbf{N}_{\mathbf{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1} i_{2}}=\mathbf{F}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}} \cdot N_{\mathbf{L}}^{33}\left(z_{2}, z_{1}\right)
$$

- It satisfies a set of scalar equations:

$$
\begin{aligned}
N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right) & =N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right) \\
N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right) & =e^{-i p\left(z_{1}\right) \mathrm{L}} N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}-\tau\right) \\
\operatorname{res}_{z^{\prime}=z} N_{\mathrm{L}}^{33}\left(z^{\prime}+\tau / 2, z\right) & =\left(1-e^{i p(z) \mathrm{L}}\right)
\end{aligned}
$$

- $N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right)$ incorporates all \mathbf{L} dependence (all wrapping corrections w.r.t. string \#1) at any coupling
- Conversely, if we have any solution of the SFT axioms, then the ratio

is a solution of ordinary L-independent form factor axioms

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

$$
\mathbf{N}_{\mathbf{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1} i_{2}}=\mathbf{F}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}} \cdot N_{\mathbf{L}}^{33}\left(z_{2}, z_{1}\right)
$$

- It satisfies a set of scalar equations:

$$
\begin{aligned}
N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right) & =N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right) \\
N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right) & =e^{-i p\left(z_{1}\right) \mathrm{L}} N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}-\tau\right) \\
\operatorname{res}_{z^{\prime}=z} N_{\mathrm{L}}^{33}\left(z^{\prime}+\tau / 2, z\right) & =\left(1-e^{i p(z) \mathrm{L}}\right)
\end{aligned}
$$

- $N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right)$ incorporates all \mathbf{L} dependence (all wrapping corrections w.r.t. string \#1) at any coupling
- Conversely, if we have any solution of the SFT axioms, then the ratio

is a solution of ordinary L-independent form factor axioms

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

$$
\mathbf{N}_{\mathbf{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1} i_{2}}=\mathbf{F}\left(z_{1}, z_{2}\right)_{i_{1}, i_{2}} \cdot N_{\mathbf{L}}^{33}\left(z_{2}, z_{1}\right)
$$

- It satisfies a set of scalar equations:

$$
\begin{aligned}
N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right) & =N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right) \\
N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right) & =e^{-i p\left(z_{1}\right) \mathrm{L}} N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}-\tau\right) \\
\operatorname{res}_{z^{\prime}=z} N_{\mathrm{L}}^{33}\left(z^{\prime}+\tau / 2, z\right) & =\left(1-e^{i p(z) \mathrm{L}}\right)
\end{aligned}
$$

- $N_{\mathrm{L}}^{33}\left(z_{2}, z_{1}\right)$ incorporates all \mathbf{L} dependence (all wrapping corrections w.r.t. string \#1) at any coupling
- Conversely, if we have any solution of the SFT axioms, then the ratio

$$
\frac{\mathbf{N}_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)_{i_{1} i_{2}}}{N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)}
$$

is a solution of ordinary L-independent form factor axioms

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

- We will solve the equations following the general structure of the pp-wave answer:

$$
N^{33}\left(\theta_{1}, \theta_{2}\right)=\frac{2 \pi^{2}}{L} \cdot \underbrace{\frac{1+\tanh \frac{\theta_{1}}{2} \tanh \frac{\theta_{2}}{2}}{M \cosh \theta_{1}+M \cosh \theta_{2}}}_{P\left(\theta_{1}, \theta_{2}\right)} n\left(\theta_{1}\right) n\left(\theta_{2}\right)
$$

- The denominator generalizes directly to the AdS case - however it in addition to the kinematical singularity pole at $\theta_{1}=\theta_{2}+i \pi$, it has another pole at $\theta_{1}=-\theta_{2}+i \pi$
- The $\tanh \frac{\theta_{i}}{2}$ factors in the numerator exactly cancel the unwanted pole
- Use the following ansatz in the general $A d S_{5} \times S^{5}$ case...

$$
N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)=\frac{2 \pi^{2}}{L} \cdot \underbrace{\frac{1+f\left(z_{1}\right) f\left(z_{2}\right)}{E\left(z_{1}\right)+E\left(z_{2}\right)}}_{P\left(z_{1}, z_{2}\right)} n\left(z_{1}\right) n\left(z_{2}\right)
$$

- Pick $f(z)$ to cancel the unwanted pole at $z_{1}=-z_{2}+\tau / 2$

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

- We will solve the equations following the general structure of the pp-wave answer:

$$
N^{33}\left(\theta_{1}, \theta_{2}\right)=\frac{2 \pi^{2}}{L} \cdot \underbrace{\frac{1+\tanh \frac{\theta_{1}}{2} \tanh \frac{\theta_{2}}{2}}{M \cosh \theta_{1}+M \cosh \theta_{2}}}_{P\left(\theta_{1}, \theta_{2}\right)} n\left(\theta_{1}\right) n\left(\theta_{2}\right)
$$

- The denominator generalizes directly to the AdS case - however it in addition to the kinematical singularity pole at $\theta_{1}=\theta_{2}+i \pi$, it has another pole at $\theta_{1}=-\theta_{2}+i \pi$
- The $\tanh \frac{\theta_{i}}{2}$ factors in the numerator exactly cancel the unwanted pole
- Use the following ansatz in the general $A d S_{5} \times S^{5}$ case...

- Pick $f(z)$ to cancel the unwanted pole at $z_{1}=-z_{2}+\tau / 2$

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

- We will solve the equations following the general structure of the pp-wave answer:

$$
N^{33}\left(\theta_{1}, \theta_{2}\right)=\frac{2 \pi^{2}}{L} \cdot \underbrace{\frac{1+\tanh \frac{\theta_{1}}{2} \tanh \frac{\theta_{2}}{2}}{M \cosh \theta_{1}+M \cosh \theta_{2}}}_{P\left(\theta_{1}, \theta_{2}\right)} n\left(\theta_{1}\right) n\left(\theta_{2}\right)
$$

- The denominator generalizes directly to the AdS case - however it in addition to the kinematical singularity pole at $\theta_{1}=\theta_{2}+i \pi$, it has another pole at $\theta_{1}=-\theta_{2}+i \pi$
- The $\tanh \frac{\theta_{i}}{2}$ factors in the numerator exactly cancel the unwanted
pole
- Use the following ansatz in the general $A d S_{5} \times S^{5}$ case...

- Pick $f(z)$ to cancel the unwanted pole at $z_{1}=-z_{2}+\tau / 2$

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

- We will solve the equations following the general structure of the pp-wave answer:

$$
N^{33}\left(\theta_{1}, \theta_{2}\right)=\frac{2 \pi^{2}}{L} \cdot \underbrace{\frac{1+\tanh \frac{\theta_{1}}{2} \tanh \frac{\theta_{2}}{2}}{M \cosh \theta_{1}+M \cosh \theta_{2}}}_{P\left(\theta_{1}, \theta_{2}\right)} n\left(\theta_{1}\right) n\left(\theta_{2}\right)
$$

- The denominator generalizes directly to the AdS case - however it in addition to the kinematical singularity pole at $\theta_{1}=\theta_{2}+i \pi$, it has another pole at $\theta_{1}=-\theta_{2}+i \pi$
- The $\tanh \frac{\theta_{i}}{2}$ factors in the numerator exactly cancel the unwanted pole
- Use the following ansatz in the general $A d S_{5} \times S^{5}$ case..

- Pick $f(z)$ to cancel the unwanted pole at $z_{1}=-z_{2}+\tau / 2$

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

- We will solve the equations following the general structure of the pp-wave answer:

$$
N^{33}\left(\theta_{1}, \theta_{2}\right)=\frac{2 \pi^{2}}{L} \cdot \underbrace{\frac{1+\tanh \frac{\theta_{1}}{2} \tanh \frac{\theta_{2}}{2}}{M \cosh \theta_{1}+M \cosh \theta_{2}}}_{P\left(\theta_{1}, \theta_{2}\right)} n\left(\theta_{1}\right) n\left(\theta_{2}\right)
$$

- The denominator generalizes directly to the AdS case - however it in addition to the kinematical singularity pole at $\theta_{1}=\theta_{2}+i \pi$, it has another pole at $\theta_{1}=-\theta_{2}+i \pi$
- The $\tanh \frac{\theta_{i}}{2}$ factors in the numerator exactly cancel the unwanted pole
- Use the following ansatz in the general $A d S_{5} \times S^{5}$ case...

$$
N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)=\frac{2 \pi^{2}}{L} \cdot \underbrace{\frac{1+f\left(z_{1}\right) f\left(z_{2}\right)}{E\left(z_{1}\right)+E\left(z_{2}\right)}}_{P\left(z_{1}, z_{2}\right)} n\left(z_{1}\right) n\left(z_{2}\right)
$$

- Pick $f(z)$ to cancel the unwanted pole at $z_{1}=-z_{2}+\tau / 2$

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

- We will solve the equations following the general structure of the pp-wave answer:

$$
N^{33}\left(\theta_{1}, \theta_{2}\right)=\frac{2 \pi^{2}}{L} \cdot \underbrace{\frac{1+\tanh \frac{\theta_{1}}{2} \tanh \frac{\theta_{2}}{2}}{M \cosh \theta_{1}+M \cosh \theta_{2}}}_{P\left(\theta_{1}, \theta_{2}\right)} n\left(\theta_{1}\right) n\left(\theta_{2}\right)
$$

- The denominator generalizes directly to the AdS case - however it in addition to the kinematical singularity pole at $\theta_{1}=\theta_{2}+i \pi$, it has another pole at $\theta_{1}=-\theta_{2}+i \pi$
- The $\tanh \frac{\theta_{i}}{2}$ factors in the numerator exactly cancel the unwanted pole
- Use the following ansatz in the general $A d S_{5} \times S^{5}$ case...

$$
N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)=\frac{2 \pi^{2}}{L} \cdot \underbrace{\frac{1+f\left(z_{1}\right) f\left(z_{2}\right)}{E\left(z_{1}\right)+E\left(z_{2}\right)}}_{P\left(z_{1}, z_{2}\right)} n\left(z_{1}\right) n\left(z_{2}\right)
$$

- Pick $f(z)$ to cancel the unwanted pole at $z_{1}=-z_{2}+\tau / 2$

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

$$
N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)=\frac{2 \pi^{2}}{L} \cdot \underbrace{\frac{1+f\left(z_{1}\right) f\left(z_{2}\right)}{E\left(z_{1}\right)+E\left(z_{2}\right)}}_{P\left(z_{1}, z_{2}\right)} n\left(z_{1}\right) n\left(z_{2}\right)
$$

- $f(z)$ should satisfy

- Such a $f(z)$ can be constructed using q-theta functions $\theta_{0}(z)$:

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

$$
N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)=\frac{2 \pi^{2}}{L} \cdot \underbrace{\frac{1+f\left(z_{1}\right) f\left(z_{2}\right)}{E\left(z_{1}\right)+E\left(z_{2}\right)}}_{P\left(z_{1}, z_{2}\right)} n\left(z_{1}\right) n\left(z_{2}\right)
$$

- $f(z)$ should satisfy

$$
f(-z)=-f(z) \quad f(z+\tau / 2)=\frac{1}{f(z)}
$$

- Such a $f(z)$ can be constructed using q-theta functions $\theta_{0}(z)$:

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

$$
N_{\mathrm{L}}^{33}\left(z_{1}, z_{2}\right)=\frac{2 \pi^{2}}{L} \cdot \underbrace{\frac{1+f\left(z_{1}\right) f\left(z_{2}\right)}{E\left(z_{1}\right)+E\left(z_{2}\right)}}_{P\left(z_{1}, z_{2}\right)} n\left(z_{1}\right) n\left(z_{2}\right)
$$

- $f(z)$ should satisfy

$$
f(-z)=-f(z) \quad f(z+\tau / 2)=\frac{1}{f(z)}
$$

- Such a $f(z)$ can be constructed using q-theta functions $\theta_{0}(z)$:

$$
f(z)=C \frac{\theta_{0}(z) \theta_{0}\left(z-\frac{1}{2}\right)}{\theta_{0}\left(z-\frac{\tau}{2}\right) \theta_{0}\left(z-\frac{1}{2}+\frac{\tau}{2}\right)}
$$

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient - the $n(z)$ part
> $n(z)$ satisfies in particular

$$
n(z) n(z+\tau / 2) \propto \sin \frac{p L}{2}
$$

- This already implies a set of zeroes - we should distribute them on the real line we consider $L=2 n$

$$
n(z) \propto \sqrt{\frac{L}{2}} \prod_{k=1}^{n-1} \frac{\sqrt{1+16 g^{2} \sin ^{2} \frac{\pi k}{L}}-E(z)}{4 g \sin \frac{\pi k}{L}}
$$

- $n(z)$ also satisfies a monodromy property

$$
n(z+\tau)=c^{-i p(z) L} n(z)
$$

- This can be satisfied by a ratio of elliptic Gamma functions...

$$
\Gamma_{e l l}(z+\tau)=\theta_{0}(z) \Gamma_{e l l}(z)
$$

- The complete $n(z)$ for even L is a essentially a product of these two pieces

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient - the $n(z)$ part

- $n(z)$ satisfies in particular

$$
n(z) n(z+\tau / 2) \propto \sin \frac{p L}{2}
$$

- This already implies a set of zeroes - we should distribute them on the real line we consider $L=2 n$

- $n(z)$ also satisfies a monodromy property

$$
n(z+\tau)=c^{-i p(z) L} n(z)
$$

- This can be satisfied by a ratio of elliptic Gamma functions...

$$
\Gamma_{e l l}(z+\tau)=\theta_{0}(z) \Gamma_{e l l}(z)
$$

- The complete $n(z)$ for even L is a essentially a product of these two pieces

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient - the $n(z)$ part

- $n(z)$ satisfies in particular

$$
n(z) n(z+\tau / 2) \propto \sin \frac{p L}{2}
$$

- This already implies a set of zeroes - we should distribute them on the real line we consider $L=2 n$

$$
n(z) \propto \sqrt{\frac{L}{2}} \prod_{k=1}^{n-1} \frac{\sqrt{1+16 g^{2} \sin ^{2} \frac{\pi k}{L}}-E(z)}{4 g \sin \frac{\pi k}{L}}
$$

$\Rightarrow n(z)$ also satisfies a monodromy property

- This can be satisfied by a ratio of elliptic Gamma functions..

$$
\Gamma_{e l l}(z+\tau)=\theta_{0}(z) \Gamma_{e \| l}(z)
$$

- The complete $n(z)$ for even L is a essentially a product of these two pieces

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient - the $n(z)$ part

- $n(z)$ satisfies in particular

$$
n(z) n(z+\tau / 2) \propto \sin \frac{p L}{2}
$$

- This already implies a set of zeroes - we should distribute them on the real line

$$
n(z) \propto \sqrt{\frac{L}{2}} \prod_{k=1}^{n-1} \frac{\sqrt{1+16 g^{2} \sin ^{2} \frac{\pi k}{L}}-E(z)}{4 g \sin \frac{\pi k}{L}}
$$

- $n(z)$ also satisfies a monodromy property

$$
n(z+\tau)=e^{-i p(z) L} n(z)
$$

- This can be satisfied by a ratio of elliptic Gamma functions.

$$
\Gamma_{\text {ell }}(z+\tau)=\theta_{0}(z) \Gamma_{\text {ell }}(z)
$$

- The complete $n(z)$ for even L is a essentially a product of these two pieces

The kinematical $\operatorname{AdS} S_{5} \times S^{5}$ Neumann coefficient - the $n(z)$ part

- $n(z)$ satisfies in particular

$$
n(z) n(z+\tau / 2) \propto \sin \frac{p L}{2}
$$

- This already implies a set of zeroes - we should distribute them on the real line
we consider $L=2 n$

$$
n(z) \propto \sqrt{\frac{L}{2}} \prod_{k=1}^{n-1} \frac{\sqrt{1+16 g^{2} \sin ^{2} \frac{\pi k}{L}}-E(z)}{4 g \sin \frac{\pi k}{L}}
$$

- $n(z)$ also satisfies a monodromy property

$$
n(z+\tau)=e^{-i p(z) L} n(z)
$$

- This can be satisfied by a ratio of elliptic Gamma functions...

$$
\Gamma_{e l l}(z+\tau)=\theta_{0}(z) \Gamma_{e l l}(z)
$$

The kinematical $\operatorname{AdS} S_{5} \times S^{5}$ Neumann coefficient - the $n(z)$ part

- $n(z)$ satisfies in particular

$$
n(z) n(z+\tau / 2) \propto \sin \frac{p L}{2}
$$

- This already implies a set of zeroes - we should distribute them on the real line
we consider $L=2 n$

$$
n(z) \propto \sqrt{\frac{L}{2}} \prod_{k=1}^{n-1} \frac{\sqrt{1+16 g^{2} \sin ^{2} \frac{\pi k}{L}}-E(z)}{4 g \sin \frac{\pi k}{L}}
$$

- $n(z)$ also satisfies a monodromy property

$$
n(z+\tau)=e^{-i p(z) L} n(z)
$$

- This can be satisfied by a ratio of elliptic Gamma functions...

$$
\Gamma_{e l l}(z+\tau)=\theta_{0}(z) \Gamma_{e l l}(z)
$$

- The complete $n(z)$ for even L is a essentially a product of these two pieces

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

We performed a number of checks:

1. We verified that our formula has the correct pp-wave limit
2. The L dependence in the weak coupling limit agrees with spin chain calculations
3. We observe 'vanishing of monodromy' in the asymptotic large L limit i.e. for any L we have

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{n(z+\tau-i \varepsilon)}{n(z+i \varepsilon)}=e^{-i p(z) L}
$$

but

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \lim _{L \rightarrow \infty} \frac{n(z+\tau-i \varepsilon)}{n(z+i \varepsilon)}=-1 \tag{1}
\end{equation*}
$$

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

We performed a number of checks:

1. We verified that our formula has the correct pp-wave limit
2. The L dependence in the weak coupling limit agrees with spin chain calculations
3. We observe 'vanishing of monodromy' in the asymptotic large L limit i.e. for any L we have

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{n(z+\tau-i \varepsilon)}{n(z+i \varepsilon)}=e^{-i p(z) L}
$$

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \lim _{L \rightarrow \infty} \frac{n(z+\tau-i \varepsilon)}{n(z+i \varepsilon)}=-1 \tag{1}
\end{equation*}
$$

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

We performed a number of checks:

1. We verified that our formula has the correct pp-wave limit
2. The L dependence in the weak coupling limit agrees with spin chain calculations
3. We observe 'vanishing of monodromy' in the asymptotic large L limit i.e. for any L we have

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{n(z+\tau-i \varepsilon)}{n(z+i \varepsilon)}=e^{-i p(z) L}
$$

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \lim _{L \rightarrow \infty} \frac{n(z+\tau-i \varepsilon)}{n(z+i \varepsilon)}=-1 \tag{1}
\end{equation*}
$$

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

We performed a number of checks:

1. We verified that our formula has the correct pp-wave limit
2. The L dependence in the weak coupling limit agrees with spin chain calculations
3. We observe 'vanishing of monodromy' in the asymptotic large L limit i.e. for any L we have

but

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

We performed a number of checks:

1. We verified that our formula has the correct pp-wave limit
2. The L dependence in the weak coupling limit agrees with spin chain calculations
3. We observe 'vanishing of monodromy' in the asymptotic large L limit i.e. for any L we have

but

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

We performed a number of checks:

1. We verified that our formula has the correct pp -wave limit
2. The L dependence in the weak coupling limit agrees with spin chain calculations
3. We observe 'vanishing of monodromy' in the asymptotic large L limit i.e. for any L we have

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{n(z+\tau-i \varepsilon)}{n(z+i \varepsilon)}=e^{-i p(z) L}
$$

but

The kinematical $A d S_{5} \times S^{5}$ Neumann coefficient

We performed a number of checks:

1. We verified that our formula has the correct pp-wave limit
2. The L dependence in the weak coupling limit agrees with spin chain calculations
3. We observe 'vanishing of monodromy' in the asymptotic large L limit i.e. for any L we have

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{n(z+\tau-i \varepsilon)}{n(z+i \varepsilon)}=e^{-i p(z) L}
$$

but

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \lim _{L \rightarrow \infty} \frac{n(z+\tau-i \varepsilon)}{n(z+i \varepsilon)}=-1 \tag{1}
\end{equation*}
$$

Conclusions \& outlook

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- This approach should work in particular for strings in the full $A d S_{5} \times S^{5}$ geometry
- A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced np-wave string field theory formulas for the Neumann coefficients
- We solved for the 'kinematical' part of the $\operatorname{AdS}_{5} \times S^{5}$ Neumann coefficient describing exact volume dependence (for even L) at any coupling - may describe all order wrapping w.r.t. one string
- Solve the form factor equations - to obtain the matrix part...
- Understand links with the subsequent 'hexagon' approach of Basso, Komatsu, Vieira

Conclusions \& outlook

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- This approach should work in particular for strings in the full $A d S_{5} \times S^{5}$ geometry
- A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- We solved for the 'kinematical' part of the $A d S_{5} \times S^{5}$ Neumann coefficient describing exact volume dependence (for even L) at any coupling - may describe all order wrapping w.r.t. one string
- Solve the form factor equations - to obtain the matrix part..
- Inderstand links with the subsequent 'hevagon' approach of Basso Komatsu, Vieira

Conclusions \& outlook

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- This approach should work in particular for strings in the full $A d S_{5} \times S^{5}$ geometry
- A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- We solved for the 'kinematical' part of the $A d S_{5} \times S^{5}$ Neumann coefficient describing exact volume dependence (for even L) at any coupling - may describe all order wrapping w.r.t. one string
- Solve the form factor equations - to obtain the matrix part.
- Understand links with the subsequent 'hexagon' approach of Basso Komatsu, Vieira

Conclusions \& outlook

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- This approach should work in particular for strings in the full $A d S_{5} \times S^{5}$ geometry
- A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- We solved for the 'kinematical' part of the $A d S_{5} \times S^{5}$ Neumann coefficient describing exact volume dependence (for even L) at any coupling - may describe all order wrapping w.r.t. one string
- Solve the form factor equations - to obtain the matrix part.. - Understand links with the subsequent 'hexagon' approach of Basso, Komatsu, Vieira

Conclusions \& outlook

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- This approach should work in particular for strings in the full $A d S_{5} \times S^{5}$ geometry
- A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- We solved for the 'kinematical' part of the $A d S_{5} \times S^{5}$ Neumann coefficient describing exact volume dependence (for even L) at any coupling - may describe all order wrapping w.r.t. one string
- Solve the form factor equations - to obtain the matrix part.. - Understand links with the subsequent 'hexagon' approach of Basso Komatsu, Vieira

Conclusions \& outlook

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- This approach should work in particular for strings in the full $A d S_{5} \times S^{5}$ geometry
- A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- We solved for the 'kinematical' part of the $A d S_{5} \times S^{5}$ Neumann coefficient describing exact volume dependence (for even L) at any coupling - may describe all order wrapping w.r.t. one string
- Solve the form factor equations - to obtain the matrix part.. - Understand links with the subsequent 'hexagon' approach of Basso, Komatsu, Vieira

Conclusions \& outlook

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- This approach should work in particular for strings in the full $A d S_{5} \times S^{5}$ geometry
- A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- We solved for the 'kinematical' part of the $A d S_{5} \times S^{5}$ Neumann coefficient describing exact volume dependence (for even L) at any coupling - may describe all order wrapping w.r.t. one string
- Solve the form factor equations - to obtain the matrix part.. - Understand links with the subsequent 'hexagon' approach of Basso, Komatsu, Vieira

Conclusions \& outlook

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- This approach should work in particular for strings in the full $A d S_{5} \times S^{5}$ geometry
- A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- We solved for the 'kinematical' part of the $A d S_{5} \times S^{5}$ Neumann coefficient describing exact volume dependence (for even L) at any coupling - may describe all order wrapping w.r.t. one string
- Solve the form factor equations - to obtain the matrix part...

Conclusions \& outlook

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- This approach should work in particular for strings in the full $A d S_{5} \times S^{5}$ geometry
- A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- We solved for the 'kinematical' part of the $A d S_{5} \times S^{5}$ Neumann coefficient describing exact volume dependence (for even L) at any coupling - may describe all order wrapping w.r.t. one string
- Solve the form factor equations - to obtain the matrix part...
- Understand links with the subsequent 'hexagon' approach of Basso, Komatsu, Vieira

