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Focus on A/ = 4 Super-Yang-Mills theory — a 4D gauge theory which is
a conformal theory...

Key questions:

» Find the spectrum of conformal weights
= eigenvalues of the dilatation operator
= (anomalous) dimensions of operators

(0(0)0(x)) = ﬁ

The dimensions are complicated functions of the coupling:

1
A= Do(N)+ 501N + ... where \ = g2, N,
N—— Nc
planar ——
nonplanar
> Find the OPE coefficients Cjj defined through

Gj
(0i(x1) 0j(x2) Ok(x3)) = Ix1 — 0| A B xy — x| ATBB[x, — x| BB

» Once A; and Cjj are known, all higher point correlation functions
are, in principle, determined explicitly.
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The AdS/CFT correspondence

’N = 4 Super Yang-Mills theory‘ = ’Superstrings on AdSs x S°
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The AdS/CFT correspondence

‘./\/ = 4 Super Yang-Mills theory ‘

The AdS/CFT dictionary

Operators in N/ = 4 SYM
Single trace operators
Multitrace operators
Large N, limit

Operator dimension
Nonplanar corrections

OPE coefficients

11111

= ‘Superstrings on AdSs x S°

(quantized) string states in AdSs x S°
single string states

multistring states

suffices to consider single string states
Energy of a string state in AdSs x S°
string interactions

string interactions
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1. Anomalous dimensions in the planar limit:

= energy levels of a single string in AdSs x S°
= energy levels of a specific 2D QFT on a cylinder

2. Nonplanar corrections to the dilatation operator or OPE
coefficients:

= string interactions
= the specific 2D QFT on a string ‘pants’ topology:

C_ O
o |o

€}

This is the string field theory vertex <— focus of this talk
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Standard approach to the light cone String Field Theory vertex...
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C O
® |®
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Light-cone String Field Theory Vertex

C O
® |®

6

String Field Theory vertex describes the splitting/joining of 3 strings

Comments:
1. In light cone gauge, the lengths of the strings are directly
proportional to some conserved charges of the theory
2. They always have to add up by charge conservation

L3 =1L+ L
3. In typical applications to AdSs x S°/pp-wave, the lengths are
directly the R-charges w.r.t. u(1)cso(6)
SB=h+Lh

(these are not spin-chain lengths!)
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Light-cone String Field Theory Vertex — the pp-wave
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6]

> pp-wave SFT vertex = free massive boson ¢ (or fermion) on this
geometry
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Light-cone String Field Theory Vertex — the pp-wave

@ |0 @V@\)@

® >
IDENTIFY
> pp-wave SFT vertex = free massive boson ¢ (or fermion) on this
geometry
> Express the scalar field in terms of separate creation and anihilation

operators a, ") and a{"” in each string r = 1,2.3

» and the relevant modes are coszzr—k and sin 2?—!‘
» impose continuity conditions for ¢ and 1 = 0;¢
looks like an inherently finite-volume computation...

» solution is surprisingly complicated...
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Light-cone String Field Theory Vertex — the pp-wave
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Light-cone String Field Theory Vertex — the pp-wave

» Continuity conditions yield linear relations between creation and
annihilation operators of the three strings:

3 3
Xom (a5 — aip) +
(g, ") —a))) =0 S Xp /W (am(’) + aE,?) =0
2k 2
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» Continuity conditions yield linear relations between creation and
annihilation operators of the three strings:

» Implement these relations as operator equations acting on a state
V) € Hi ® Ha ® Hz — the SFT vertex

» The state has the form

|V) = (Prefactor) - exp{ Z Z N ot Hs)} |0)

r,s=1 nm
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Light-cone String Field Theory Vertex — the pp-wave

3
1
|V) = (Prefactor) - exp {2 Z Z N a,f(')aj,(s)} |0)

r,s=1 n,m

11/ 30



Light-cone String Field Theory Vertex — the pp-wave

|V') = (Prefactor) - exp{ Z Z NS a+ (D) gt(s) } |0)

r,s=1 n,m

» The Neumann coefficient N7 has the interpretation of a SFT
amplitude/matrix element involving only 2 particles

11 /30



Light-cone String Field Theory Vertex — the pp-wave

|V) = (Prefactor) - exp{ Z Z NS a+ (D) gt(s) } |0)

r,s=1 n,m

» The Neumann coefficient N7 has the interpretation of a SFT
amplitude/matrix element involving only 2 particles

» Obtaining the Neumann matrices is surprisingly nontrivial as it
involves inverting an infinite-dimensional matrix
He, Schwarz, Spradlin, Volovich
— Lucietti, Schafer-Nameki, Sinha

11/ 30



Light-cone String Field Theory Vertex — the pp-wave

|V') = (Prefactor) - exp{ Z Z NS a+ (D) gt(s) } |0)

r,s=1 n,m

» The Neumann coefficient N7 has the interpretation of a SFT
amplitude/matrix element involving only 2 particles
» Obtaining the Neumann matrices is surprisingly nontrivial as it
involves inverting an infinite-dimensional matrix
He, Schwarz, Spradlin, Volovich
— Lucietti, Schafer-Nameki, Sinha
> Exact expressions involve novel special functions I',(z)
Lucietti, Schafer-Nameki, Sinha

11/ 30



Light-cone String Field Theory Vertex — the pp-wave

|V') = (Prefactor) - exp{ Z Z NS a+ (D) gt(s) } |0)

r,s=1 n,m

» The Neumann coefficient N7 has the interpretation of a SFT
amplitude/matrix element involving only 2 particles
» Obtaining the Neumann matrices is surprisingly nontrivial as it
involves inverting an infinite-dimensional matrix
He, Schwarz, Spradlin, Volovich
— Lucietti, Schafer-Nameki, Sinha
> Exact expressions involve novel special functions I',(z)
Lucietti, Schafer-Nameki, Sinha

WA = ,
. e
A L e Ve

22442
n

Fu(z) =
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Light-cone String Field Theory Vertex — the pp-wave

r,s=1 n,m

|V) = (Prefactor) - exp{ Z ZN,’,fn atl) )} |0)

» Once the Neumann coefficients are fixed, it remains to fix the
(Prefactor), which was a (quadratic) polynommial in creation and
anihilation operators

» This is done by imposing target space supersymmetry algebra
very long story in the pp-wave case...
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Our goal: Concentrate on defining (and constructing) the string
field theory vertex for a generic integrable worldsheet theory
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What will change?

>
>

We no longer have any mode expansions at our disposal...

Even if we had, inverting the infinite dimensional matrices would be
hopeless...

It is extremely difficult to work directly in finite volume — even the
single string spectrum is given only implicitly in terms of Bethe
Ansatz equations...

We do not expect the exponential structure to hold...

3
1
V)= exp {2 > 2 N an‘“)am“)} 0

r,s=1 nm

We expect to obtain separate but possibly related amplitudes for
various numbers of external particles

3|2;1
NL3\L2;L1 <p1-, <y Pn

In particular no separation between the and the
Neumann coefficient part...
We will still refer to an amplitude with only two particles as

Neumann coefficient... N33 = Ni‘jéh (Pn,Pm | @5 9)
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Interlude: Form factors in an integrable quantum field theory
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Form factors

» Form factors are expectation values of a local operator sandwiched
between specific multiparticle in and out states px = msinh 0
0t (B0 (0) |01, ..., 0n); = F(01,...,0,)

» Form factors in infinite volume (on an infinite plane) satisfy a
concrete set of functional equations

£(01,0,) = S(01,6,) f(6,61)
f(91,92) == f(€2,91 - 27Ti)
—iresg—g for2(0/,0+ im, 01,...,00) = (1= [[ S(0.0)) (b1, ..., 6n)

i
» Solutions explicitly known for numerous relativistic integrable QFT's
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Comments:
» In order to formulate the axioms it was crucial to be in infinite
volume — analyticity and cossing
» The form factor axioms do not depend at all on the specific local
operator inserted...

» They have numerous solutions — for each local operator in the
theory...

Finite volume = form factors on a cylinder

» Up to wrapping corrections (~ e’mL), very simple way to pass to
finite volume (cylinder of circumference L): Pozsgay, Takacs

1

VP2 - S(61,602)

where 61, 6, satisfy Bethe ansatz quantization and p; is essentially
the Gaudin norm

(2]0(0) |61,02), = - f(01,062)
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analyticity/crossing and other functional equations

2. Expect simple passage to finite volume neglecting wrapping
(~e ™).

Questions:

1. How does this relate to the pp-wave SFT which seemed inherently
tied to finite volume??

2. How did wrapping effects manifest themselves in the pp-wave case?
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mn wh 4+ ws wh + w3 (simple)
> Instead of integer mode numbers use rapidities... pe=M sinh 0,
-1 . pily . poly
N33(64,60,) = . sin
(6, 62) cosh #1502 2 2

» The integer mode numbers (characteristic of finite volume) are
completely inessential — they only obscure a simple underlying
structure

> Pole at 6; = 0, + im (position of kinematical singularity as for form
factors!) — there should be some underlying axioms...

» Still some surprising features — the sin kaLl factors
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Proceed to the generic string vertex...
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The decompactified string vertex

Functional equations for the (decompactified) string vertex
written here for two incoming particles and interacting worldsheet theory

® )@ N (61,62)
N*(61,6,)
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—ires N3(0 + i, 0)
0'=6
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The decompactified string vertex

Functional equations for the (decompactified) string vertex
written here for two incoming particles and interacting worldsheet theory

® )@ N (61,62)
N33(6y,6,)

. 33 .
® ’0r/e:50N (0 + im, 0)

>

N*(0,01) - S(61,062)
e PIEN33(0y, 0, — 27i)
(1—ePHYF,

The exact pp-wave solution, involving the I, () special function
solves these equations and can be reconstructed from them!

p(0)L
2

n(@)n(6 + ir) = —2—711_2ML sinh fsin
This includes all exponential wrapping corrections e+ = ¢~ ML
for the #1 string
Straightforward generalization of the axioms to an interacting
integrable QFT
Analyticity conditions deduced from analyzing the known pp-wave
solution...
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What happens in AdSs x S°?
Novel kinematics

Complex rapidities z are defined on a covering of an elliptic curve

S
» The momentum p is not a well defined function
» Only e'P is a well defined elliptic function

>

The phase factors e’? make sense directly only for integer L
which is nice from the point of view of N’ =4 SYM...

Complicated dynamics

» The S-matrix does not depend on the difference of rapidities

» The S-matrix is nondiagonal which drastically complicates solving
form factor axioms (which are a special case of our SFT axioms)

We would like to separate the two problems...
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The AdSs x S® Neumann coefficient

» Consider an amplitude with only two particles in the ingoing string
#3 and vacuum on the two outgoing strings...

» The equations satisfied by N33(zy, z0);, ;, are
33 K 33
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33 —ip(z)L 33
N (21, 22)ir.n e PEINE (20,21 = 7).
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The AdSs x S® Neumann coefficient

>

Consider an amplitude with only two particles in the ingoing string
#3 and vacuum on the two outgoing strings...

The equations satisfied by N33(z;, z);, ;, are
33 K 33
N (z1, )i = S (21.22)N{ (22, 21) 1k
33 —ip(z1)L 33
N (21, 22)ir.n e PEINE (20,21 = 7).

res; —, NE?’(Z/ + T/Q’Z)l/ = (]_ _ eip(z)L)

Suppose that we know a solution of 2-particle form factor equations
in AdS F(z1, z),;, s.t.

F(Z + 7/27 Z)fl:fz =0

i
Then we can solve the SFT vertex equations by
N (21, 2)ii, = Fz1. 22)1,1, - NP (21, 22)

We call N33(z,z1) the kinematical AdSs x S5 Neumann
coefficient...

24 /30



The kinematical AdSs x S® Neumann coefficient
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The kinematical AdSs x S® Neumann coefficient
NP (z1, 2)ii, = F(z1, )1, - NP (22, 21)

> |t satisfies a set of scalar equations:

NP (z1, 22) NP (22, 21)
NE3(21, 22) = e_ip(zl)LNE?’(Zg, Z1 — T)

res,_, NB>(2/ +7/2,z) = (1 - efP(Z)L)

» N33(zp,z1) incorporates all L dependence (all wrapping corrections
w.r.t. string #1) at any coupling

» Conversely, if we have any solution of the SFT axioms, then the ratio

N3 (z1, 22)is,
NE3(Zla 22)

is a solution of ordinary L-independent form factor axioms
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The kinematical AdSs x S® Neumann coefficient

» We will solve the equations following the general structure of the
pp-wave answer:
272 1+ tanh % tanh &
= 22 n(61)n(02)
L Mcosh#; + M cosh 6,

P(01,02)

N33(0y,0,) =

» The denominator generalizes directly to the AdS case — however it
in addition to the kinematical singularity pole at 61 = 6, + i, it has
another pole at 6; = —0, + iw

» The tanh % factors in the numerator exactly cancel the unwanted
pole

> Use the following ansatz in the general AdSs x S° case...
277('2 1+ f(Zl)f(ZQ)
L E(Zl) + E(ZQ)
—_——

P(Z] ,22)

NE3(21,22) = n(Zl)n(Zg)

» Pick 7(z) to cancel the unwanted pole at z; = —z, + 7/2
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The kinematical AdSs x S® Neumann coefficient

2771'2 ) 1 + f(Zl)f(Z2)
L E(Zl) + E(ZQ)
—_—————

P(z1,22)

NP (z1,22) = n(z1)n(z)

» f(z) should satisfy

f(—z) = —f(2) f(z+7’/2):%

» Such a f(z) can be constructed using g-theta functions 6o(z):

90 (2)90 (Z* %)
bo(z=5)00(z=3+3)

f(z)=C
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> n(z) satisfies in particular

n(z)n(z 4+ 7/2) o sin %L

» This already implies a set of zeroes — we should distribute them on

the real line we consider L = 2n
\/*n 1 /1+16g2sin® 25 — £(z2)
4gsin T

> n(z) also satisfies a monodromy property
n(z+71)= e*"p(z)"n(z)
» This can be satisfied by a ratio of elliptic Gamma functions...

Cen(z+7) = 0o(2)Ten(2)

» The complete n(z) for even L is a essentially a product of these two
pieces
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We performed a number of checks:

1. We verified that our formula has the correct pp-wave limit

2. The L dependence in the weak coupling limit agrees with spin chain
calculations

3. We observe ‘vanishing of monodromy’ in the asymptotic large L limit
i.e. for any L we have
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Conclusions & outlook

» We propose a framework for formulating functional equations for
string interactions (light cone string field theory vertex) when the
worldsheet theory is integrable

» This approach should work in particular for strings in the full
AdSs x S5 geometry

> A key step is the existence of an infinite volume setup, which allows
for formulating functional equations incorporating e.g. crossing

» We reproduced pp-wave string field theory formulas for the
Neumann coefficients

» We solved for the ‘kinematical’ part of the AdSs x S® Neumann
coefficient describing exact volume dependence (for even L) at any
coupling — may describe all order wrapping w.r.t. one string

» Solve the form factor equations — to obtain the matrix part...

» Understand links with the subsequent ‘hexagon’ approach of Basso,
Komatsu, Vieira
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