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Focus on N = 4 Super-Yang-Mills theory — a 4D gauge theory which is
a conformal theory...

Key questions:

I Find the spectrum of conformal weights
≡ eigenvalues of the dilatation operator
≡ (anomalous) dimensions of operators

〈O(0)O(x)〉 =
1
|x |2∆

The dimensions are complicated functions of the coupling:

∆ = ∆0(λ)︸ ︷︷ ︸
planar

+
1

N2c
∆1(λ) + . . .︸ ︷︷ ︸
nonplanar

where λ ≡ g2YMNc

I Find the OPE coefficients Cijk defined through

〈Oi (x1)Oj(x2)Ok(x3)〉 =
Cijk

|x1 − x2|∆i+∆j−∆k |x1 − x3|∆i+∆k−∆j |x2 − x3|∆j+∆k−∆i

I Once ∆i and Cijk are known, all higher point correlation functions
are, in principle, determined explicitly.

3 / 30



Focus on N = 4 Super-Yang-Mills theory — a 4D gauge theory which is
a conformal theory...

Key questions:

I Find the spectrum of conformal weights
≡ eigenvalues of the dilatation operator
≡ (anomalous) dimensions of operators

〈O(0)O(x)〉 =
1
|x |2∆

The dimensions are complicated functions of the coupling:

∆ = ∆0(λ)︸ ︷︷ ︸
planar

+
1

N2c
∆1(λ) + . . .︸ ︷︷ ︸
nonplanar

where λ ≡ g2YMNc

I Find the OPE coefficients Cijk defined through

〈Oi (x1)Oj(x2)Ok(x3)〉 =
Cijk

|x1 − x2|∆i+∆j−∆k |x1 − x3|∆i+∆k−∆j |x2 − x3|∆j+∆k−∆i

I Once ∆i and Cijk are known, all higher point correlation functions
are, in principle, determined explicitly.

3 / 30



Focus on N = 4 Super-Yang-Mills theory — a 4D gauge theory which is
a conformal theory...

Key questions:

I Find the spectrum of conformal weights
≡ eigenvalues of the dilatation operator
≡ (anomalous) dimensions of operators

〈O(0)O(x)〉 =
1
|x |2∆

The dimensions are complicated functions of the coupling:

∆ = ∆0(λ)︸ ︷︷ ︸
planar

+
1

N2c
∆1(λ) + . . .︸ ︷︷ ︸
nonplanar

where λ ≡ g2YMNc

I Find the OPE coefficients Cijk defined through

〈Oi (x1)Oj(x2)Ok(x3)〉 =
Cijk

|x1 − x2|∆i+∆j−∆k |x1 − x3|∆i+∆k−∆j |x2 − x3|∆j+∆k−∆i

I Once ∆i and Cijk are known, all higher point correlation functions
are, in principle, determined explicitly.

3 / 30



Focus on N = 4 Super-Yang-Mills theory — a 4D gauge theory which is
a conformal theory...

Key questions:

I Find the spectrum of conformal weights
≡ eigenvalues of the dilatation operator
≡ (anomalous) dimensions of operators

〈O(0)O(x)〉 =
1
|x |2∆

The dimensions are complicated functions of the coupling:

∆ = ∆0(λ)︸ ︷︷ ︸
planar

+
1

N2c
∆1(λ) + . . .︸ ︷︷ ︸
nonplanar

where λ ≡ g2YMNc

I Find the OPE coefficients Cijk defined through

〈Oi (x1)Oj(x2)Ok(x3)〉 =
Cijk

|x1 − x2|∆i+∆j−∆k |x1 − x3|∆i+∆k−∆j |x2 − x3|∆j+∆k−∆i

I Once ∆i and Cijk are known, all higher point correlation functions
are, in principle, determined explicitly.

3 / 30



Focus on N = 4 Super-Yang-Mills theory — a 4D gauge theory which is
a conformal theory...

Key questions:

I Find the spectrum of conformal weights
≡ eigenvalues of the dilatation operator
≡ (anomalous) dimensions of operators

〈O(0)O(x)〉 =
1
|x |2∆

The dimensions are complicated functions of the coupling:

∆ = ∆0(λ)︸ ︷︷ ︸
planar

+
1

N2c
∆1(λ) + . . .︸ ︷︷ ︸
nonplanar

where λ ≡ g2YMNc

I Find the OPE coefficients Cijk defined through

〈Oi (x1)Oj(x2)Ok(x3)〉 =
Cijk

|x1 − x2|∆i+∆j−∆k |x1 − x3|∆i+∆k−∆j |x2 − x3|∆j+∆k−∆i

I Once ∆i and Cijk are known, all higher point correlation functions
are, in principle, determined explicitly.

3 / 30



Focus on N = 4 Super-Yang-Mills theory — a 4D gauge theory which is
a conformal theory...

Key questions:

I Find the spectrum of conformal weights
≡ eigenvalues of the dilatation operator
≡ (anomalous) dimensions of operators

〈O(0)O(x)〉 =
1
|x |2∆

The dimensions are complicated functions of the coupling:

∆ = ∆0(λ)︸ ︷︷ ︸
planar

+
1

N2c
∆1(λ) + . . .︸ ︷︷ ︸
nonplanar

where λ ≡ g2YMNc

I Find the OPE coefficients Cijk defined through

〈Oi (x1)Oj(x2)Ok(x3)〉 =
Cijk

|x1 − x2|∆i+∆j−∆k |x1 − x3|∆i+∆k−∆j |x2 − x3|∆j+∆k−∆i

I Once ∆i and Cijk are known, all higher point correlation functions
are, in principle, determined explicitly.

3 / 30



Focus on N = 4 Super-Yang-Mills theory — a 4D gauge theory which is
a conformal theory...

Key questions:

I Find the spectrum of conformal weights
≡ eigenvalues of the dilatation operator
≡ (anomalous) dimensions of operators

〈O(0)O(x)〉 =
1
|x |2∆

The dimensions are complicated functions of the coupling:

∆ = ∆0(λ)︸ ︷︷ ︸
planar

+
1

N2c
∆1(λ) + . . .︸ ︷︷ ︸
nonplanar

where λ ≡ g2YMNc

I Find the OPE coefficients Cijk defined through

〈Oi (x1)Oj(x2)Ok(x3)〉 =
Cijk

|x1 − x2|∆i+∆j−∆k |x1 − x3|∆i+∆k−∆j |x2 − x3|∆j+∆k−∆i

I Once ∆i and Cijk are known, all higher point correlation functions
are, in principle, determined explicitly.

3 / 30



Focus on N = 4 Super-Yang-Mills theory — a 4D gauge theory which is
a conformal theory...

Key questions:

I Find the spectrum of conformal weights
≡ eigenvalues of the dilatation operator
≡ (anomalous) dimensions of operators

〈O(0)O(x)〉 =
1
|x |2∆

The dimensions are complicated functions of the coupling:

∆ = ∆0(λ)︸ ︷︷ ︸
planar

+
1

N2c
∆1(λ) + . . .︸ ︷︷ ︸
nonplanar

where λ ≡ g2YMNc

I Find the OPE coefficients Cijk defined through

〈Oi (x1)Oj(x2)Ok(x3)〉 =
Cijk

|x1 − x2|∆i+∆j−∆k |x1 − x3|∆i+∆k−∆j |x2 − x3|∆j+∆k−∆i

I Once ∆i and Cijk are known, all higher point correlation functions
are, in principle, determined explicitly.

3 / 30



Focus on N = 4 Super-Yang-Mills theory — a 4D gauge theory which is
a conformal theory...

Key questions:

I Find the spectrum of conformal weights
≡ eigenvalues of the dilatation operator
≡ (anomalous) dimensions of operators

〈O(0)O(x)〉 =
1
|x |2∆

The dimensions are complicated functions of the coupling:

∆ = ∆0(λ)︸ ︷︷ ︸
planar

+
1

N2c
∆1(λ) + . . .︸ ︷︷ ︸
nonplanar

where λ ≡ g2YMNc

I Find the OPE coefficients Cijk defined through

〈Oi (x1)Oj(x2)Ok(x3)〉 =
Cijk

|x1 − x2|∆i+∆j−∆k |x1 − x3|∆i+∆k−∆j |x2 − x3|∆j+∆k−∆i

I Once ∆i and Cijk are known, all higher point correlation functions
are, in principle, determined explicitly.

3 / 30



The AdS/CFT correspondence

N = 4 Super Yang-Mills theory ≡ Superstrings on AdS5 × S5

The AdS/CFT dictionary

Operators in N = 4 SYM ←→ (quantized) string states in AdS5 × S5

Single trace operators ←→ single string states

Multitrace operators ←→ multistring states

Large Nc limit ←→ suffices to consider single string states

Operator dimension ←→ Energy of a string state in AdS5 × S5

Nonplanar corrections ∼ string interactions

OPE coefficients ∼ string interactions
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Back to the main questions again...

1. Anomalous dimensions in the planar limit:

≡ energy levels of a single string in AdS5 × S5

≡ energy levels of a specific 2D QFT on a cylinder

2. Nonplanar corrections to the dilatation operator or OPE
coefficients:

≡ string interactions
≡ the specific 2D QFT on a string ‘pants’ topology:

This is the string field theory vertex ← focus of this talk
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What is known?

I We have a very good understanding of
the spectrum of a string on AdS5 × S5

I This is due to the integrability of the
worldsheet theory

Key question:

I How to describe string interactions for
a generic integrable worldsheet theory

I Previously we knew how to proceed only
for a free worldsheet theory

I massless free bosons and fermions in
the case of flat spacetime

I massive free bosons and fermions in
the case of pp-wave background
geometry
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Standard approach to the light cone String Field Theory vertex...
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Light-cone String Field Theory Vertex

String Field Theory vertex describes the splitting/joining of 3 strings

Comments:
1. In light cone gauge, the lengths of the strings are directly

proportional to some conserved charges of the theory
2. They always have to add up by charge conservation

L3 = L1 + L2

3. In typical applications to AdS5 × S5/pp-wave, the lengths are
directly the R-charges w.r.t. U(1)⊂SO(6)

J3 = J1 + J2

(these are not spin-chain lengths!)
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Light-cone String Field Theory Vertex – the pp-wave

I pp-wave SFT vertex ≡ free massive boson φ (or fermion) on this
geometry

I Express the scalar field in terms of separate creation and anihilation
operators a+(r)

k and a(r)
k in each string r = 1, 2, 3

I and the relevant modes are cos 2πkLr and sin 2πkLr
I impose continuity conditions for φ and Π ≡ ∂tφ

looks like an inherently finite-volume computation...
I solution is surprisingly complicated...
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Light-cone String Field Theory Vertex – the pp-wave

I Continuity conditions yield linear relations between creation and
annihilation operators of the three strings:

I Implement these relations as operator equations acting on a state
|V 〉 ∈ H1 ⊗H2 ⊗H3 — the SFT vertex

I The state has the form

|V 〉 = (Prefactor) · exp

{
1
2

3∑
r ,s=1

∑
n,m

N rsnm a+(r)
n a+(s)

m

}
|0〉
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I Once the Neumann coefficients are fixed, it remains to fix the
(Prefactor), which was a (quadratic) polynommial in creation and
anihilation operators

I This is done by imposing target space supersymmetry algebra
very long story in the pp-wave case...
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Our goal: Concentrate on defining (and constructing) the string
field theory vertex for a generic integrable worldsheet theory

13 / 30



What will change?
I We no longer have any mode expansions at our disposal...
I Even if we had, inverting the infinite dimensional matrices would be

hopeless...
I It is extremely difficult to work directly in finite volume — even the

single string spectrum is given only implicitly in terms of Bethe
Ansatz equations...

I We do not expect the exponential structure to hold...

|V 〉 = (Prefactor) · exp

{
1
2

3∑
r ,s=1

∑
n,m

N rsnm a+(r)
n a+(s)

m

}
|0〉

I We expect to obtain separate but possibly related amplitudes for
various numbers of external particles

N3|2;1L3|L2;L1

(
p1, . . . , pn

∣∣∣∣ p′1, . . . , p
′
m ; p′′1 , . . . , p

′′
l

)
I In particular no separation between the (Prefactor) and the

Neumann coefficient part...
I We will still refer to an amplitude with only two particles as

Neumann coefficient... e.g. N33nm = N3|2;1L3|L2;L1

(
pn, pm

∣∣ ∅ ; ∅
)
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Interlude: Form factors in an integrable quantum field theory
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Form factors

I Form factors are expectation values of a local operator sandwiched
between specific multiparticle in and out states pk = m sinh θ

I Form factors in infinite volume (on an infinite plane) satisfy a
concrete set of functional equations

f (θ1, θ2) = S(θ1, θ2) f (θ2, θ1)

f (θ1, θ2) = f (θ2, θ1 − 2πi)

−i resθ′=θ fn+2(θ′, θ + iπ, θ1, . . . , θn) = (1−
∏
i

S(θ, θi )) fn(θ1, . . . , θn)

I Solutions explicitly known for numerous relativistic integrable QFT’s
16 / 30



Form factors

I Form factors are expectation values of a local operator sandwiched
between specific multiparticle in and out states pk = m sinh θ

I Form factors in infinite volume (on an infinite plane) satisfy a
concrete set of functional equations

f (θ1, θ2) = S(θ1, θ2) f (θ2, θ1)

f (θ1, θ2) = f (θ2, θ1 − 2πi)

−i resθ′=θ fn+2(θ′, θ + iπ, θ1, . . . , θn) = (1−
∏
i

S(θ, θi )) fn(θ1, . . . , θn)

I Solutions explicitly known for numerous relativistic integrable QFT’s
16 / 30



Form factors

I Form factors are expectation values of a local operator sandwiched
between specific multiparticle in and out states pk = m sinh θ

out〈θ′1, . . . , θ′m|O (0) |θ1, . . . , θk〉in
I Form factors in infinite volume (on an infinite plane) satisfy a

concrete set of functional equations

f (θ1, θ2) = S(θ1, θ2) f (θ2, θ1)

f (θ1, θ2) = f (θ2, θ1 − 2πi)

−i resθ′=θ fn+2(θ′, θ + iπ, θ1, . . . , θn) = (1−
∏
i

S(θ, θi )) fn(θ1, . . . , θn)

I Solutions explicitly known for numerous relativistic integrable QFT’s
16 / 30



Form factors

I Form factors are expectation values of a local operator sandwiched
between specific multiparticle in and out states pk = m sinh θ

out〈∅|O (0) |θ1, . . . , θn〉in ≡ f (θ1, . . . , θn)

I Form factors in infinite volume (on an infinite plane) satisfy a
concrete set of functional equations

f (θ1, θ2) = S(θ1, θ2) f (θ2, θ1)

f (θ1, θ2) = f (θ2, θ1 − 2πi)

−i resθ′=θ fn+2(θ′, θ + iπ, θ1, . . . , θn) = (1−
∏
i

S(θ, θi )) fn(θ1, . . . , θn)

I Solutions explicitly known for numerous relativistic integrable QFT’s
16 / 30



Form factors

I Form factors are expectation values of a local operator sandwiched
between specific multiparticle in and out states pk = m sinh θ

out〈∅|O (0) |θ1, . . . , θn〉in ≡ f (θ1, . . . , θn)

I Form factors in infinite volume (on an infinite plane) satisfy a
concrete set of functional equations

f (θ1, θ2) = S(θ1, θ2) f (θ2, θ1)

f (θ1, θ2) = f (θ2, θ1 − 2πi)

−i resθ′=θ fn+2(θ′, θ + iπ, θ1, . . . , θn) = (1−
∏
i

S(θ, θi )) fn(θ1, . . . , θn)

I Solutions explicitly known for numerous relativistic integrable QFT’s
16 / 30



Form factors

I Form factors are expectation values of a local operator sandwiched
between specific multiparticle in and out states pk = m sinh θ

out〈∅|O (0) |θ1, . . . , θn〉in ≡ f (θ1, . . . , θn)

I Form factors in infinite volume (on an infinite plane) satisfy a
concrete set of functional equations

f (θ1, θ2) = S(θ1, θ2) f (θ2, θ1)

f (θ1, θ2) = f (θ2, θ1 − 2πi)

−i resθ′=θ fn+2(θ′, θ + iπ, θ1, . . . , θn) = (1−
∏
i

S(θ, θi )) fn(θ1, . . . , θn)

I Solutions explicitly known for numerous relativistic integrable QFT’s
16 / 30



Form factors

I Form factors are expectation values of a local operator sandwiched
between specific multiparticle in and out states pk = m sinh θ

out〈∅|O (0) |θ1, . . . , θn〉in ≡ f (θ1, . . . , θn)

I Form factors in infinite volume (on an infinite plane) satisfy a
concrete set of functional equations

f (θ1, θ2) = S(θ1, θ2) f (θ2, θ1)

f (θ1, θ2) = f (θ2, θ1 − 2πi)

−i resθ′=θ fn+2(θ′, θ + iπ, θ1, . . . , θn) = (1−
∏
i

S(θ, θi )) fn(θ1, . . . , θn)

I Solutions explicitly known for numerous relativistic integrable QFT’s
16 / 30



Form factors

Comments:

I In order to formulate the axioms it was crucial to be in infinite
volume −→ analyticity and cossing

I The form factor axioms do not depend at all on the specific local
operator inserted...

I They have numerous solutions — for each local operator in the
theory...

Finite volume ≡ form factors on a cylinder

I Up to wrapping corrections (∼ e−mL), very simple way to pass to
finite volume (cylinder of circumference L): Pozsgay, Takacs

〈∅|O (0) |θ1, θ2〉L =
1√

ρ2 · S(θ1, θ2)
· f (θ1, θ2)

where θ1, θ2 satisfy Bethe ansatz quantization and ρ2 is essentially
the Gaudin norm
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Guiding principle:

1. We need an infinite volume formulation in order to have
analyticity/crossing and other functional equations

2. Expect simple passage to finite volume neglecting wrapping
(∼ e−mL)...

Questions:

1. How does this relate to the pp-wave SFT which seemed inherently
tied to finite volume??

2. How did wrapping effects manifest themselves in the pp-wave case?
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pp-wave String Field Theory vertex revisited

I In the pp-wave times, people used simplified expressions for N rsnm
neglecting exponential e−µαr terms αr = Lr/L3

(these are exactly wrapping terms e−MLr !!)
I Going to an exponential basis (BMN basis) one got in this limit

N rsmn =

[√
(ωrm + µαr )(ωsn + µαs)

ωrm + ωsn
−
√

(ωrm − µαr )(ωsn − µαs)
ωrm + ωsn

]
·(simple)

I Instead of integer mode numbers use rapidities... pk=M sinh θk

N33(θ1, θ2) =
−1

cosh θ1−θ2
2

· sin
p1L1

2
sin

p2L1
2

I The integer mode numbers (characteristic of finite volume) are
completely inessential – they only obscure a simple underlying
structure

I Pole at θ1 = θ2 + iπ (position of kinematical singularity as for form
factors!) −→ there should be some underlying axioms...

I Still some surprising features — the sin pkL12 factors
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Proceed to the generic string vertex...

20 / 30



The decompactified string vertex

I String #1 still remains of finite size (denoted by L) — which can be
arbitrary — large or even very small

I The emission of string #1 can be understood as an insertion of
some macroscopic (not completely local) operator...

I Looks like some kind of generalized form factor with ingoing
particles in string #3 and outgoing ones in string #2

Key new feature: string #1
‘eats up volume’ −→ the
“operator” should have a e−ipL

branch cut defect...

Ready to formulate functional
equations...
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The decompactified string vertex
Functional equations for the (decompactified) string vertex
written here for two incoming particles and, for the moment, free theory

I The exact pp-wave solution, involving the Γµ(θ) special function
solves these equations and can be reconstructed from them!

n(θ)n(θ + iπ) = − 1
2π2

ML sinh θ sin
p(θ)L

2

I This includes all exponential wrapping corrections e−µα1 = e−ML

for the #1 string
I Straightforward generalization of the axioms to an interacting

integrable QFT
I Analyticity conditions deduced from analyzing the known pp-wave

solution...
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What happens in AdS5 × S5?

Novel kinematics

I Complex rapidities z are defined on a covering of an elliptic curve
I The momentum p is not a well defined function
I Only e ip is a well defined elliptic function
I The phase factors e ip L make sense directly only for integer L

which is nice from the point of view of N = 4 SYM...

Complicated dynamics

I The S-matrix does not depend on the difference of rapidities
I The S-matrix is nondiagonal which drastically complicates solving

form factor axioms (which are a special case of our SFT axioms)

We would like to separate the two problems...
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The AdS5 × S5 Neumann coefficient

I Consider an amplitude with only two particles in the ingoing string
#3 and vacuum on the two outgoing strings...

I The equations satisfied by N33L (z1, z2)i1,i2 are

N33L (z1, z2)i1,i2 = Skli1i2(z1, z2)N33L (z2, z1)l,k

N33L (z1, z2)i1,i2 = e−ip(z1)LN33L (z2, z1 − τ)i2,i1

resz′=z N33L (z ′ + τ/2, z )̄i,i =
(

1− e ip(z)L
)

I Suppose that we know a solution of 2-particle form factor equations
in AdS F(z1, z2)i1,i2 s.t.

F(z + τ/2, z)i1,i2 = δī1,i2

I Then we can solve the SFT vertex equations by

N33L (z1, z2)i1i2 = F(z1, z2)i1,i2 · N33L (z1, z2)

I We call N33L (z2, z1) the kinematical AdS5 × S5 Neumann
coefficient...
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The kinematical AdS5 × S5 Neumann coefficient

N33L (z1, z2)i1i2 = F(z1, z2)i1,i2 · N33L (z2, z1)

I It satisfies a set of scalar equations:

N33L (z1, z2) = N33L (z2, z1)

N33L (z1, z2) = e−ip(z1)LN33L (z2, z1 − τ)

resz′=z N33L (z ′ + τ/2, z) =
(

1− e ip(z)L
)

I N33L (z2, z1) incorporates all L dependence (all wrapping corrections
w.r.t. string #1) at any coupling

I Conversely, if we have any solution of the SFT axioms, then the ratio

N33L (z1, z2)i1i2
N33L (z1, z2)

is a solution of ordinary L-independent form factor axioms
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The kinematical AdS5 × S5 Neumann coefficient

I We will solve the equations following the general structure of the
pp-wave answer:

N33(θ1, θ2) =
2π2

L
·

1 + tanh θ1
2 tanh θ2

2

M cosh θ1 + M cosh θ2︸ ︷︷ ︸
P(θ1,θ2)

n(θ1)n(θ2)

I The denominator generalizes directly to the AdS case – however it
in addition to the kinematical singularity pole at θ1 = θ2 + iπ, it has
another pole at θ1 = −θ2 + iπ

I The tanh θi
2 factors in the numerator exactly cancel the unwanted

pole
I Use the following ansatz in the general AdS5 × S5 case...

N33L (z1, z2) =
2π2

L
· 1 + f (z1)f (z2)

E (z1) + E (z2)︸ ︷︷ ︸
P(z1,z2)

n(z1)n(z2)

I Pick f (z) to cancel the unwanted pole at z1 = −z2 + τ/2

26 / 30



The kinematical AdS5 × S5 Neumann coefficient

I We will solve the equations following the general structure of the
pp-wave answer:

N33(θ1, θ2) =
2π2

L
·

1 + tanh θ1
2 tanh θ2

2

M cosh θ1 + M cosh θ2︸ ︷︷ ︸
P(θ1,θ2)

n(θ1)n(θ2)

I The denominator generalizes directly to the AdS case – however it
in addition to the kinematical singularity pole at θ1 = θ2 + iπ, it has
another pole at θ1 = −θ2 + iπ

I The tanh θi
2 factors in the numerator exactly cancel the unwanted

pole
I Use the following ansatz in the general AdS5 × S5 case...

N33L (z1, z2) =
2π2

L
· 1 + f (z1)f (z2)

E (z1) + E (z2)︸ ︷︷ ︸
P(z1,z2)

n(z1)n(z2)

I Pick f (z) to cancel the unwanted pole at z1 = −z2 + τ/2

26 / 30



The kinematical AdS5 × S5 Neumann coefficient

I We will solve the equations following the general structure of the
pp-wave answer:

N33(θ1, θ2) =
2π2

L
·

1 + tanh θ1
2 tanh θ2

2

M cosh θ1 + M cosh θ2︸ ︷︷ ︸
P(θ1,θ2)

n(θ1)n(θ2)

I The denominator generalizes directly to the AdS case – however it
in addition to the kinematical singularity pole at θ1 = θ2 + iπ, it has
another pole at θ1 = −θ2 + iπ

I The tanh θi
2 factors in the numerator exactly cancel the unwanted

pole
I Use the following ansatz in the general AdS5 × S5 case...

N33L (z1, z2) =
2π2

L
· 1 + f (z1)f (z2)

E (z1) + E (z2)︸ ︷︷ ︸
P(z1,z2)

n(z1)n(z2)

I Pick f (z) to cancel the unwanted pole at z1 = −z2 + τ/2

26 / 30



The kinematical AdS5 × S5 Neumann coefficient

I We will solve the equations following the general structure of the
pp-wave answer:

N33(θ1, θ2) =
2π2

L
·

1 + tanh θ1
2 tanh θ2

2

M cosh θ1 + M cosh θ2︸ ︷︷ ︸
P(θ1,θ2)

n(θ1)n(θ2)

I The denominator generalizes directly to the AdS case – however it
in addition to the kinematical singularity pole at θ1 = θ2 + iπ, it has
another pole at θ1 = −θ2 + iπ

I The tanh θi
2 factors in the numerator exactly cancel the unwanted

pole
I Use the following ansatz in the general AdS5 × S5 case...

N33L (z1, z2) =
2π2

L
· 1 + f (z1)f (z2)

E (z1) + E (z2)︸ ︷︷ ︸
P(z1,z2)

n(z1)n(z2)

I Pick f (z) to cancel the unwanted pole at z1 = −z2 + τ/2

26 / 30



The kinematical AdS5 × S5 Neumann coefficient

I We will solve the equations following the general structure of the
pp-wave answer:

N33(θ1, θ2) =
2π2

L
·

1 + tanh θ1
2 tanh θ2

2

M cosh θ1 + M cosh θ2︸ ︷︷ ︸
P(θ1,θ2)

n(θ1)n(θ2)

I The denominator generalizes directly to the AdS case – however it
in addition to the kinematical singularity pole at θ1 = θ2 + iπ, it has
another pole at θ1 = −θ2 + iπ

I The tanh θi
2 factors in the numerator exactly cancel the unwanted

pole
I Use the following ansatz in the general AdS5 × S5 case...

N33L (z1, z2) =
2π2

L
· 1 + f (z1)f (z2)

E (z1) + E (z2)︸ ︷︷ ︸
P(z1,z2)

n(z1)n(z2)

I Pick f (z) to cancel the unwanted pole at z1 = −z2 + τ/2

26 / 30



The kinematical AdS5 × S5 Neumann coefficient

I We will solve the equations following the general structure of the
pp-wave answer:

N33(θ1, θ2) =
2π2

L
·

1 + tanh θ1
2 tanh θ2

2

M cosh θ1 + M cosh θ2︸ ︷︷ ︸
P(θ1,θ2)

n(θ1)n(θ2)

I The denominator generalizes directly to the AdS case – however it
in addition to the kinematical singularity pole at θ1 = θ2 + iπ, it has
another pole at θ1 = −θ2 + iπ

I The tanh θi
2 factors in the numerator exactly cancel the unwanted

pole
I Use the following ansatz in the general AdS5 × S5 case...

N33L (z1, z2) =
2π2

L
· 1 + f (z1)f (z2)

E (z1) + E (z2)︸ ︷︷ ︸
P(z1,z2)

n(z1)n(z2)

I Pick f (z) to cancel the unwanted pole at z1 = −z2 + τ/2

26 / 30



The kinematical AdS5 × S5 Neumann coefficient
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L
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E (z1) + E (z2)︸ ︷︷ ︸
P(z1,z2)
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I f (z) should satisfy

f (−z) = −f (z) f (z + τ/2) =
1

f (z)

I Such a f (z) can be constructed using q-theta functions θ0(z):

f (z) = C
θ0 (z) θ0

(
z − 12

)
θ0
(
z − τ

2

)
θ0
(
z − 12 + τ

2

)
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The kinematical AdS5 × S5 Neumann coefficient — the n(z) part
I n(z) satisfies in particular

n(z)n(z + τ/2) ∝ sin
pL
2

I This already implies a set of zeroes – we should distribute them on
the real line we consider L = 2n

n(z) ∝
√

L
2

n−1∏
k=1

√
1 + 16g2 sin2 πkL − E (z)

4g sin πk
L

I n(z) also satisfies a monodromy property

n(z + τ) = e−ip(z)Ln(z)

I This can be satisfied by a ratio of elliptic Gamma functions...

Γell(z + τ) = θ0(z)Γell(z)

I The complete n(z) for even L is a essentially a product of these two
pieces
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The kinematical AdS5 × S5 Neumann coefficient

We performed a number of checks:

1. We verified that our formula has the correct pp-wave limit

2. The L dependence in the weak coupling limit agrees with spin chain
calculations

3. We observe ‘vanishing of monodromy’ in the asymptotic large L limit
i.e. for any L we have

lim
ε→0+

n(z + τ − iε)

n(z + iε)
= e−ip(z)L

but

lim
ε→0+

lim
L→∞

n(z + τ − iε)

n(z + iε)
= −1 (1)
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Conclusions & outlook

I We propose a framework for formulating functional equations for
string interactions (light cone string field theory vertex) when the
worldsheet theory is integrable

I This approach should work in particular for strings in the full
AdS5 × S5 geometry

I A key step is the existence of an infinite volume setup, which allows
for formulating functional equations incorporating e.g. crossing

I We reproduced pp-wave string field theory formulas for the
Neumann coefficients

I We solved for the ‘kinematical’ part of the AdS5 × S5 Neumann
coefficient describing exact volume dependence (for even L) at any
coupling – may describe all order wrapping w.r.t. one string

I Solve the form factor equations — to obtain the matrix part...
I Understand links with the subsequent ‘hexagon’ approach of Basso,

Komatsu, Vieira
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