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Introduction

I This talk will be about:
1. Entanglement entropy
2. The F theorem for 3d field theories

I Both topics have been of considerable current interest and
are intimately connected to each other.
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Introduction: Holographic entanglement entropy

Entanglement entropy can be computed geometrically for field
theories admitting a gravity dual in one higher dimension.

(Takayanagi)

I Holographic Ryu-Takayanagi
(RT) prescription: area of
co-dimension two minimal
surface homologous to A

SA =
A

4G

I Leading UV divergence: area of
separating surface.
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F quantity in 3d CFTs

I In a 3d CFT we define the F quantity as

F = − ln ZS3

and the F theorem states that FUV ≥ FIR.

More precisely:
I F is conjectured to be stationary at the fixed point, positive

in a unitary CFT and to decrease along an RG flow.
(Jafferis, Klebanov, Pufu, Safdi, ...)
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Relevance of entanglement entropy

I For a CFT in even dimensions the entanglement entropy in
the ground state contains universal terms

SA ∼ (−)
d
2−1a log(

R
ε

)

where R characterises the scale of the entangling region
A, ε is a UV cutoff and a is the coefficient appearing in the
a theorem.

I In odd dimensions finite terms

SA = 2π(−)
(d−1)

2 a

are related to the F quantity (Casini/Huerta/Myers).

Marika Taylor Holographic entanglement



STAG RESEARCH
CENTERSTAG RESEARCH

CENTERSTAG RESEARCH
CENTER

Scheme dependence and renormalisation

I Both the partition function on S3 and the entanglement
entropy are UV divergent.

I Implicitly, the F quantity is the renormalized partition
function on S3 - scheme dependence?

I The finite terms in the entanglement entropy look
ambiguous: as one shifts the cutoff the finite part changes.
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Holographic entanglement entropy

In this talk we will use holography to gain insight into:
1. The finite contributions to entanglement entropy i.e.

renormalization.
2. The relation to the F theorem.
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Outline

I Renormalized entanglement entropy
1. CFT: minimal surfaces in AdS
2. General definition

I The F theorem
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Divergent terms in the entanglement entropy

Consider a 3d CFT:
I The entanglement entropy in the vacuum behaves as

SA = c−1
L
ε

+ c0 + · · ·

where (c0, c−1) are dimensionless, L is the length of the
boundary of the entangling region and ε→ 0 is the UV
cutoff.

I In a quantum critical CMT system ε would be related to the
lattice spacing and c−1 might be “physical".

I In a continuum QFT, we usually regulate with ε and then
renormalize.
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Previous attempts at renormalization

Based on differentiating with respect to parameters:

∆x
L2 L2

I For a slab domain in a local QFT,
divergences in S must be
independent of ∆x .

I Therefore

S∆x ≡
∂S
∂∆x

is UV finite.
(e.g. Cardy and Calabrese)
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Geometry dependence

I For a spherical region of radius
R, divergences in S depend on
R.

I For a 3d CFT (disk region) the
combination

S(R) =

(
R
∂S
∂R
− S

)
is UV finite. (Liu and Mezei)
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Limitations of this approach

Current interest in dependence of entanglement entropy on
shape and theory but:

I No definition for generic shape
entangling region.

I SR does not generically seem to
be stationary at a fixed point (see
Jafferis et al).

I Scheme dependence is obscure.
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Area renormalization

Turning to holography:

ρ = ε

Bρ = 0

A∂Σ = ∂A

∂Σε

Σε

t = const.

QFTd

ρ

(Al)AdSd+1

I The natural UV cutoff is
r = ε.

I One can regulate the
volume of the minimal
surface and define a
renormalized area using
appropriately covariant
counterterms.

Earlier work on renormalized minimal surfaces:
(Henningson/Skenderis; Graham/Witten; Gross et al)
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General structure of renormalised entanglement
entropy

I The Ryu-Takayanagi functional is

S =
1

4G

∫
Σ

dd−1x
√
γ

I Use the equations for the minimal surface to expand the
surface area asymptotically near the conformal boundary
and regulate divergences.

I Covariant counterterms are

Sct ∼
∫
∂Σ

dd−2x
√

hL(R,K)

where K is the extrinsic curvature of ∂Σ into r = ε.
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Extrinsic curvature of entangling region

I Complementarity: for A and B to have the same
renormalized entanglement entropy, we can include only
terms which are even in the extrinsic curvature.

Bρ = 0

A∂A

t = const.

QFTd

(Al)AdSd+1
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Results for 3d CFT

I The renormalized EE for an entangling surface in AdS4 is

Sren =
1

4G

∫
Σ

d2x
√
γ − 1

4G

∫
∂Σ

dx
√

h(1− csK)

with ∂σ the boundary of the minimal surface.
I Here K is the extrinsic curvature of the bounding curve

(into the cutoff surface).
I Complementarity implies that cs = 0.
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Disc entangling region

I Consider an entangling region which is a disc of radius R.

Sren = − π

2G
,

where G is dimensionless.
I This EE is related to the F quantity by the CHM map.
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Casini-Huerta-Myers map

I Starting from

ds2 = −dt2 + dr2 + r2dφ2

let
t = R

cos θ sinh τ/R
(1 + cos θ cosh τ/R)

r = R
sin θ

(1 + cos θ cosh τ/R)

so

ds2 = Ω2(− cos2 θdτ2 + R2(dθ2 + sin2 θdφ2))

I Covers 0 ≤ r < R in original coordinates, i.e. disc.
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Partition function and EE

I State in de Sitter is thermal with β = 2πR.
I Entanglement entropy for disc is mapped to

thermodynamic entropy, which in turn is related to the
partition function

SdeSitter = −W = ln Z

I Working in Euclidean signature the disc entanglement
entropy is thus proportional to the partition function on S3.
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Matching holographic renormalization schemes

I The counterterms for AlAdS4 manifolds are (de Haro et al)

Ict =
1

8πG

∫
d3x
√

h(K + 2− R
2

)

There are no possible finite counterterms.
I The renormalized onshell action for Euclidean AdS4 gives

F =
π

2G
.
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Scheme dependence

I The holographically renormalized partition function F
indeed matches our renormalized disc entanglement
entropy.

I Note that there are no possible finite terms in either
renormalization scheme.
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Outline

I Renormalized entanglement entropy
1. CFT case: minimal surfaces in AdS
2. General definition

I The F theorem
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Definition of REE

I The holographic area renormalization of minimal surfaces
is hard to connect with field theory renormalization.

I Related to the issue of first principles derivation of the
holographic entanglement entropy formula (cf
Lewkowycz/Maldacena).
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General definition of renormalized entanglement
entropy

I Entanglement entropy is often computed using the replica
trick:

S = −n∂n [log Z (n)− n log Z (1)]n=1

where Z (1) is the usual partition function and Z (n) is the
partition function on the replica space in which a circle
coordinate has periodicity 2πn.

I Formally, to renormalise the entanglement entropy we can
work with renormalized partition functions

Sren = −n∂n [log Zren(n)− n log Zren(1)]n=1
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Replica trick

3d field theory: on replica
space τ has periodicity 2πn. Visualisation of n = 3 replica

space.
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Holographic renormalization

I Holographically log Zren(n) is computed by the
renormalised onshell action for a geometry with a conical
singularity (Lewkowycz and Maldacena).

I From the replica formula, we can then derive the
Ryu-Takayanagi formula.

I The standard holographic renormalization counterterms for
the bulk action then imply our counterterms!
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Holographic renormalization

I For example, for an asymptotically locally AdS4 spacetime
the action counterterms are

Ict =
1

8πG

∫
d3x
√

h(K + 2− R
2

)

I For the replica space (Solodukhin)

Rn = R+ 4π(n − 1)δΣ +O(n − 1)2

where Σ is the conical singularity, i.e. the boundary of the
entangling surface.
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Holographic renormalization

I Applying the replica formula then leads to exactly

Sct = − 1
4G

∫
dx
√
γ

i.e. our counterterm localized on the boundary of the
entangling surface.

I Procedure works for higher derivative theories such as
Gauss-Bonnet.

I We can match renormalization scheme for EE with that of
action!
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Outline

I Renormalized entanglement entropy
1. CFT case: minimal surfaces in AdS
2. General definition

I The F theorem
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The F theorem

Weak version:
I FUV > FIR.

Strong version:
I F decreases monotonically under any relevant

deformation.
To test the latter, we need to consider RG flows.
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Holographic RG flows

A holographic RG flow is described by:
I A "domain wall" geometry

ds2 = dr2 + exp(2A(r))dxµdxµ

I A set of scalar field profiles

φa(r)

I First order equations of motion relating A(r) and φa(r).
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Renormalized EE

I The bare Ryu-Takayanagi EE depends only on the Einstein
metric

S =
1

4G

∫
dd−1x

√
γ

I The counterterms can and do depend on the matter:

Sct ∼
∫

dd−2x
√

hL(R,K, φa,∇φa, · · · )
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RG flow of 3d field theory

Consider four dimensional bulk (d = 3), single scalar φ.
I Assume UV conformal, so potential can be expanded near

boundary as

V = 6−
∞∑

n=2

λ(n)

n!
φn

with λ(2) = M2 = ∆(∆− 3).
I First order form of equations

Ȧ = W φ̇ = −2∂φW

where V is a known expression quadratic in (fake)
superpotential W .
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REE for relevant deformations

I We need the following counterterms in the REE:

Sct = − 1
4G

∫
dx
√

h(1 +
(3−∆)

8(5− 2∆)
φ2 + · · · )

where second term is needed for ∆ > 5/2.
I The counterterms can be expressed in terms of the

superpotential

Sct = − 1
4G

∫
dx
√

hY (φ)

where
W (φ)Y (φ) +

dW
dφ

dY
dφ

= 1.
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F quantity

I Under a relevant deformation of the 3d CFT

I → I +

∫
d3x λO∆

the F quantity should decrease:

F (λ) = FUV − λ2F(2) +O(λ3)

with F(2) > 0.
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Renormalized entanglement entropy

I Compute the change in the REE to order λ2, using the
change in the Einstein metric induced.

I For ∆ > 3/2

δSren =
π

16(2∆− 5)G
λ2R2(3−∆) +O(λ3).

Positive for ∆ > 3/2 (agrees with F theorem) but negative
for ∆ < 5/2!

I Note that for ∆ = 3:
δSren = 0
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Change of F quantity under RG flows

I We can also compute the change in F directly, by
computing the onshell action for a curved domain wall
solution

ds2 = dw2 + e2A(w)ds2
S3 φ(w)

corresponding to the RG flow on S3.
I Surprisingly this more involved (numerical) calculation has

never been done.

Marika Taylor Holographic entanglement



STAG RESEARCH
CENTERSTAG RESEARCH

CENTERSTAG RESEARCH
CENTER

Change of F quantity under RG flows

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Δ

-0.4

-0.2

0.2

0.4

δFG

ϕ0
2

I δF is positive for 3
2 ≤ ∆+ < 5

2 : strong F theorem is false!
I In our flows FIR < FUV .
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Dual quantizations

I For −d2 ≤ 4m2 ≤ −d2 + 4, two quantisations are possible,
∆±.

I If for the ∆+ operator

F = F(0) + F(2)φ
2
(0) + · · ·

with φ(0) the source then for the ∆− operator

F = F(0) −
1

4F(2)
Ψ2

(0) · · ·

where Ψ(0) is the source.
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Violation of the strong F theorem

I Either ∆+ quantization or the ∆− quantization must violate
the strong F theorem!

I Both quantizations arise in holographic theories such as
ABJM.

I Strong F theorem does not hold.... unless our models are
in the swampland.
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Conclusions and outlook

Renormalized entanglement entropy is useful in field theory ap-
plications of entanglement entropy.

To explore further:

I Applications of REE to phase transitions, first law etc.
I Field theory calculation of renormalized EE using the

replica trick (i.e. partition functions).
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Conclusions and outlook

The strong F theorem does not seem to hold.

However:

I Does the weaker version FUV ≥ FIR always hold?
I Is there a modified version of the strong F theorem?
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