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Introduction

» This talk will be about:

1. Entanglement entropy
2. The F theorem for 3d field theories

» Both topics have been of considerable current interest and
are intimately connected to each other.
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Introduction: Holographic entanglement entropy

Entanglement entropy can be computed geometrically for field
theories admitting a gravity dual in one higher dimension.

» Holographic Ryu-Takayanagi

et e e drecion (RT) prescription: area of
CFT, co-dimension two minimal
surface homologous to A
Va
A
Db4 Ade+2 SA - E
z
z>a (UVcutoff » Leading UV divergence: area of

separating surface.
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F quantity in 3d CFTs

» In a 3d CFT we define the F quantity as
F=-InZg

and the F theorem states that Fyy > Fig.

More precisely:

» F is conjectured to be stationary at the fixed point, positive
in a unitary CFT and to decrease along an RG flow.

(Jafferis, Klebanov, Pufu, Safdi, ...)
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Relevance of entanglement entropy

» For a CFT in even dimensions the entanglement entropy in
the ground state contains universal terms

R
Sa~ ()% 'alog(~)
€
where R characterises the scale of the entangling region

A, e is a UV cutoff and a is the coefficient appearing in the
a theorem.

» In odd dimensions finite terms

(a=1)

Sa :27r(—) 2 a

are related to the F quantity (Casini/Huerta/Myers).
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Scheme dependence and renormalisation

» Both the partition function on S® and the entanglement
entropy are UV divergent.

» Implicitly, the F quantity is the renormalized partition
function on S® - scheme dependence?

» The finite terms in the entanglement entropy look
ambiguous: as one shifts the cutoff the finite part changes.
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Holographic entanglement entropy

In this talk we will use holography to gain insight into:

1. The finite contributions to entanglement entropy i.e.
renormalization.

2. The relation to the F theorem.
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Outline

» Renormalized entanglement entropy

1. CFT: minimal surfaces in AdS
2. General definition

» The F theorem
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Divergent terms in the entanglement entropy

Consider a 3d CFT:
» The entanglement entropy in the vacuum behaves as

L
SA:C_1E+CO+"'

where (cp, c_1) are dimensionless, L is the length of the
boundary of the entangling region and ¢ — 0 is the UV
cutoff.

» In a quantum critical CMT system e would be related to the
lattice spacing and ¢_1 might be “physical”.

» In a continuum QFT, we usually regulate with ¢ and then
renormalize.

STAG y) e

Marika Taylor Holographic entanglement



Previous attempts at renormalization

Based on differentiating with respect to parameters:

» For a slab domain in a local QFT,
divergences in S must be
independent of Ax.

» Therefore

is UV finite.
(e.g. Cardy and Calabrese)
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Geometry dependence

» For a spherical region of radius
R, divergences in S depend on
R.

» For a 3d CFT (disk region) the
combination

S(R) = (Rgg - s> v

is UV finite. (Liu and Mezei)
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Limitations of this approach

Current interest in dependence of entanglement entropy on
shape and theory but:

» No definition for generic shape
entangling region.

» Sg does not generically seem to
be stationary at a fixed point (see
Jafferis et al).

» Scheme dependence is obscure.
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Area renormalization

Turning to holography:

» The natural UV cutoff is
t = const. # r = €.

/" on-on » One can regulate the
e 9%, g . .
po0 i | B o1y volume of the minimal

surface and define a

P renormalized area using
appropriately covariant
(ANAdS 4 1
counterterms.

Earlier work on renormalized minimal surfaces:
(Henningson/Skenderis; Graham/Witten; Gross et al)
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General structure of renormalised entanglement
entropy

» The Ryu-Takayanagi functional is

_ 1 gt
S4G/zd X/

» Use the equations for the minimal surface to expand the
surface area asymptotically near the conformal boundary
and regulate divergences.

» Covariant counterterms are

Sa~ | d92xVhL(R,K)
ox

ESEARCH
CENTRE

where K is the extrinsic curvature of 9% into r = e.
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Extrinsic curvature of entangling region
» Complementarity: for A and B to have the same

renormalized entanglement entropy, we can include only
terms which are even in the extrinsic curvature.

t = const.

B QFT4
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Results for 3d CFT

» The renormalized EE for an entangling surface in AdS; is

_ 1 (e 1 -
Sren—m/zd X\F}/—4G/ade\Fh(1 Cle)

with do the boundary of the minimal surface.

» Here K is the extrinsic curvature of the bounding curve
(into the cutoff surface).

» Complementarity implies that ¢ = 0.
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Disc entangling region

» Consider an entangling region which is a disc of radius R.

™

Sren = _%a

where G is dimensionless.
» This EE is related to the F quantity by the CHM map.
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Casini-Huerta-Myers map

» Starting from

ds? = —dt? + dr® + r’d¢?

let .
t_R cosfsinht/R
~ (1 +cosf@cosht/R)
sing@
r= R(1 + cosfcosh7/R)
Yo)

ds® = Q2(— cos? 9dr2 + R?(d¢? + sin® Ad¢?))

» Covers 0 < r < Rin original coordinates, i.e. disc.
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Partition function and EE

» State in de Sitter is thermal with 8 = 27 R.

» Entanglement entropy for disc is mapped to
thermodynamic entropy, which in turn is related to the
partition function

SdeSitter =-W=InZ

» Working in Euclidean signature the disc entanglement
entropy is thus proportional to the partition function on S°.
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Matching holographic renormalization schemes

» The counterterms for AIAdS, manifolds are (de Haro et al)

_ 1 3 R
ICt_STrG/d Xﬁ(K-ﬁ-Z— 2)

There are no possible finite counterterms.
» The renormalized onshell action for Euclidean AdS, gives

T
F=2¢
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Scheme dependence

» The holographically renormalized partition function F
indeed matches our renormalized disc entanglement
entropy.

» Note that there are no possible finite terms in either
renormalization scheme.
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Outline

» Renormalized entanglement entropy

1. CFT case: minimal surfaces in AdS
2. General definition

» The F theorem
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Definition of REE

» The holographic area renormalization of minimal surfaces
is hard to connect with field theory renormalization.

» Related to the issue of first principles derivation of the
holographic entanglement entropy formula (cf
Lewkowycz/Maldacena).
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General definition of renormalized entanglement
entropy

» Entanglement entropy is often computed using the replica
trick:
S = —nopllogZ(n) —nlog Z(1)],_4

where Z(1) is the usual partition function and Z(n) is the
partition function on the replica space in which a circle
coordinate has periodicity 27 n.

» Formally, to renormalise the entanglement entropy we can
work with renormalized partition functions

Sren - —nan [lOg Zren(n) —-n |Og Zren(1 )]n:1
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Replica trick

3d field theory: on replica _ o .
space 7 has periodicity 2. Visualisation of n = 3 replica
space.
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Holographic renormalization

» Holographically log Z.n(n) is computed by the
renormalised onshell action for a geometry with a conical
singularity (Lewkowycz and Maldacena).

» From the replica formula, we can then derive the
Ryu-Takayanagi formula.

» The standard holographic renormalization counterterms for
the bulk action then imply our counterterms!
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Holographic renormalization

» For example, for an asymptotically locally AdS, spacetime
the action counterterms are

/d3xf(K+2—R)

e = 8rG 2

» For the replica space (Solodukhin)
Rp=TR+4r(n—1)0x + O(n—1)2

where X is the conical singularity, i.e. the boundary of the
entangling surface.
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Holographic renormalization

» Applying the replica formula then leads to exactly

1
Su = —m/dxﬁ

i.e. our counterterm localized on the boundary of the
entangling surface.

» Procedure works for higher derivative theories such as
Gauss-Bonnet.

» We can match renormalization scheme for EE with that of
action!
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Outline

» Renormalized entanglement entropy

1. CFT case: minimal surfaces in AdS
2. General definition

» The F theorem
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The F theorem

Weak version:
> FU\/ > F/,q.
Strong version:

» F decreases monotonically under any relevant
deformation.

To test the latter, we need to consider RG flows.
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Holographic RG flows

A holographic RG flow is described by:
» A "domain wall" geometry

ds? = dr? + exp(2A(r))dx*dx,
» A set of scalar field profiles

pa(r)

» First order equations of motion relating A(r) and ¢4(r).
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Renormalized EE

» The bare Ryu-Takayanagi EE depends only on the Einstein
metric

L
S_4G/d i

» The counterterms can and do depend on the matter:

SctN/ddZX hE(R,’C,¢a7v¢ay"')
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RG flow of 3d field theory

Consider four dimensional bulk (d = 3), single scalar ¢.

» Assume UV conformal, so potential can be expanded near
boundary as

A
o3 e
n=2
with )\(2) =M= A(A — 3)
» First order form of equations
A=W  ¢=-29,W

where V is a known expression quadratic in (fake)
superpotential W.
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REE for relevant deformations

» We need the following counterterms in the REE:

A) o
Se = / axvh(1 5 852 )
where second term is needed for A > 5/2.

» The counterterms can be expressed in terms of the
superpotential

S = —416 / dxVAY($)

where

dW dY
W(o)Y(¢) + db do =1.
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F quantity

» Under a relevant deformation of the 3d CFT
| — [+ / d®x \Ox

the F quantity should decrease:
F(X\) = Fuv — XFo) + O(\3)
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Renormalized entanglement entropy

» Compute the change in the REE to order A2, using the
change in the Einstein metric induced.

» For A >3/2

_ T \2p2(3-A) 3
3 Sren 16(2A—5)G)\ R + O(X°).

Positive for A > 3/2 (agrees with F theorem) but negative
for A < 5/2!

» Note that for A = 3:
5Sren =0
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Change of F quantity under RG flows

» We can also compute the change in F directly, by
computing the onshell action for a curved domain wall
solution

ds? = dw? + e#AWds2;  ¢(w)
corresponding to the RG flow on S°.

» Surprisingly this more involved (numerical) calculation has
never been done.
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Change of F quantity under RG flows

» 0F is positive for 3 < A, < 3: strong F theorem is false!
» Inour flows Figr < Fyy.
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Dual quantizations

» For —ad? < 4m? < —d? + 4, two quantisations are possible,
A
» If for the A, operator

F = Fo)+ Fyéfo) + -

with ¢ oy the source then for the A operator
F—Fo— w2
= Flo) — iy
(0) 4F ) (0)

where Vg is the source.
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Violation of the strong F theorem

» Either A, quantization or the A_ quantization must violate
the strong F theorem!

» Both quantizations arise in holographic theories such as
ABJM.

» Strong F theorem does not hold.... unless our models are
in the swampland.
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Conclusions and outlook

Renormalized entanglement entropy is useful in field theory ap-
plications of entanglement entropy. J

To explore further:

» Applications of REE to phase transitions, first law etc.

» Field theory calculation of renormalized EE using the
replica trick (i.e. partition functions).
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Conclusions and outlook

The strong F theorem does not seem to hold. )

However:

» Does the weaker version Fyy > Fjg always hold?
» Is there a modified version of the strong F theorem?
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