Entanglement entropy and the F theorem

Marika Taylor

Mathematical Sciences and STAG research centre, Southampton

April 28, 2016

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Introduction

- This talk will be about:
 - 1. Entanglement entropy
 - 2. The F theorem for 3d field theories
- Both topics have been of considerable current interest and are intimately connected to each other.

프 🖌 🛪 프 🛌

Introduction: Holographic entanglement entropy

Entanglement entropy can be computed geometrically for field theories admitting a gravity dual in one higher dimension.

 Holographic Ryu-Takayanagi (RT) prescription: area of co-dimension two minimal surface homologous to A

$$S_A = rac{\mathcal{A}}{4G}$$

 Leading UV divergence: area of separating surface.

⁽Takayanagi)

F quantity in 3d CFTs

In a 3d CFT we define the F quantity as

$$F = -\ln Z_{S^3}$$

and the F theorem states that $F_{UV} \ge F_{IR}$.

More precisely:

F is conjectured to be stationary at the fixed point, positive in a unitary CFT and to decrease along an RG flow.

(Jafferis, Klebanov, Pufu, Safdi, ...)

Relevance of entanglement entropy

For a CFT in even dimensions the entanglement entropy in the ground state contains universal terms

$$S_A \sim (-)^{rac{d}{2}-1} a \log(rac{R}{\epsilon})$$

where *R* characterises the scale of the entangling region *A*, ϵ is a UV cutoff and *a* is the coefficient appearing in the *a* theorem.

In odd dimensions finite terms

$$S_{A}=2\pi(-)^{\frac{(d-1)}{2}}a$$

are related to the *F* quantity (Casini/Huerta/Myers).

Scheme dependence and renormalisation

- Both the partition function on S³ and the entanglement entropy are UV divergent.
- Implicitly, the F quantity is the renormalized partition function on S³ - scheme dependence?
- The finite terms in the entanglement entropy look ambiguous: as one shifts the cutoff the finite part changes.

Holographic entanglement entropy

In this talk we will use holography to gain insight into:

- 1. The finite contributions to entanglement entropy i.e. renormalization.
- 2. The relation to the F theorem.

프 🖌 🛪 프 🕨

References

- Marika Taylor and William Woodhead
 - 1. Renormalized entanglement entropy, 1604.06808
 - 2. The holographic F theorem, 1604.06809

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Outline

Renormalized entanglement entropy

- 1. CFT: minimal surfaces in AdS
- 2. General definition
- The F theorem

<ロ> (四) (四) (三) (三) (三)

Divergent terms in the entanglement entropy

Consider a 3d CFT:

The entanglement entropy in the vacuum behaves as

$$S_A = c_{-1} \frac{L}{\epsilon} + c_0 + \cdots$$

where (c_0, c_{-1}) are dimensionless, *L* is the length of the boundary of the entangling region and $\epsilon \rightarrow 0$ is the UV cutoff.

- In a quantum critical CMT system *ϵ* would be related to the lattice spacing and *c*₋₁ might be "physical".
- ► In a continuum QFT, we usually regulate with *e* and then renormalize.

Previous attempts at renormalization

Based on differentiating with respect to parameters:

- For a slab domain in a local QFT, divergences in S must be independent of Δx.
- Therefore

$$S_{\Delta x} \equiv \frac{\partial S}{\partial \Delta x}$$

is UV finite. (e.g. Cardy and Calabrese)

Geometry dependence

- For a spherical region of radius *R*, divergences in *S* depend on *R*.
- For a 3d CFT (disk region) the combination

$$S(R) = \left(R\frac{\partial S}{\partial R} - S\right)$$

is UV finite. (Liu and Mezei)

Limitations of this approach

Current interest in dependence of entanglement entropy on shape and theory but:

- No definition for generic shape entangling region.
- S_R does not generically seem to be stationary at a fixed point (see Jafferis et al).
- Scheme dependence is obscure.

Area renormalization

Turning to holography:

- The natural UV cutoff is $r = \epsilon$.
- One can regulate the volume of the minimal surface and define a renormalized area using appropriately covariant counterterms.

Earlier work on renormalized minimal surfaces: (Henningson/Skenderis; Graham/Witten; Gross et al)

General structure of renormalised entanglement entropy

The Ryu-Takayanagi functional is

$$S = rac{1}{4G} \int_{\Sigma} d^{d-1} x \sqrt{\gamma}$$

- Use the equations for the minimal surface to expand the surface area asymptotically near the conformal boundary and regulate divergences.
- Covariant counterterms are

$$S_{ ext{ct}} \sim \int_{\partial \Sigma} d^{d-2}x \sqrt{h} \mathcal{L}(\mathcal{R},\mathcal{K})$$

where \mathcal{K} is the extrinsic curvature of $\partial \Sigma$ into $r = \epsilon$. STAG

Extrinsic curvature of entangling region

Complementarity: for A and B to have the same renormalized entanglement entropy, we can include only terms which are even in the extrinsic curvature.

Results for 3d CFT

The renormalized EE for an entangling surface in AdS₄ is

$$S_{\rm ren} = \frac{1}{4G} \int_{\Sigma} d^2 x \sqrt{\gamma} - \frac{1}{4G} \int_{\partial \Sigma} dx \sqrt{h} (1 - c_s \mathcal{K})$$

with $\partial \sigma$ the boundary of the minimal surface.

- ► Here K is the extrinsic curvature of the bounding curve (into the cutoff surface).
- Complementarity implies that $c_s = 0$.

< 回 > < 回 > < 回 > .

Disc entangling region

• Consider an entangling region which is a disc of radius *R*.

$$S_{\rm ren} = -\frac{\pi}{2G},$$

where *G* is dimensionless.

This EE is related to the F quantity by the CHM map.

Casini-Huerta-Myers map

Starting from

$$ds^2 = -dt^2 + dr^2 + r^2 d\phi^2$$

let

$$t = R \frac{\cos\theta \sinh\tau/R}{(1 + \cos\theta \cosh\tau/R)}$$
$$r = R \frac{\sin\theta}{(1 + \cos\theta \cosh\tau/R)}$$

0	-	
5	L	

$$ds^2 = \Omega^2(-\cos^2\theta d\tau^2 + R^2(d\theta^2 + \sin^2\theta d\phi^2))$$

► Covers $0 \le r < R$ in original coordinates, i.e. disc. STAG $\Im_{r}^{\text{Research}}$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

э

Partition function and EE

- State in de Sitter is thermal with $\beta = 2\pi R$.
- Entanglement entropy for disc is mapped to thermodynamic entropy, which in turn is related to the partition function

$$S_{\text{deSitter}} = -W = \ln Z$$

Working in Euclidean signature the disc entanglement entropy is thus proportional to the partition function on S³.

Matching holographic renormalization schemes

The counterterms for AIAdS₄ manifolds are (de Haro et al)

$$I_{\rm ct} = rac{1}{8\pi G}\int d^3x \sqrt{h}(K+2-rac{\mathcal{R}}{2})$$

There are no possible finite counterterms.

The renormalized onshell action for Euclidean AdS₄ gives

$$F=\frac{\pi}{2G}.$$

Scheme dependence

- The holographically renormalized partition function F indeed matches our renormalized disc entanglement entropy.
- Note that there are no possible finite terms in either renormalization scheme.

Outline

Renormalized entanglement entropy

- 1. CFT case: minimal surfaces in AdS
- 2. General definition
- The F theorem

<ロ> <四> <ヨ> <ヨ> 三日

Definition of REE

- The holographic area renormalization of minimal surfaces is hard to connect with field theory renormalization.
- Related to the issue of first principles derivation of the holographic entanglement entropy formula (cf Lewkowycz/Maldacena).

General definition of renormalized entanglement entropy

Entanglement entropy is often computed using the replica trick:

$$S = -n\partial_n \left[\log Z(n) - n\log Z(1)\right]_{n=1}$$

where Z(1) is the usual partition function and Z(n) is the partition function on the replica space in which a circle coordinate has periodicity $2\pi n$.

 Formally, to renormalise the entanglement entropy we can work with renormalized partition functions

$$S_{\text{ren}} = -n\partial_n \left[\log Z_{\text{ren}}(n) - n\log Z_{\text{ren}}(1)\right]_{n=1}$$

STAG

Replica trick

3d field theory: on replica space τ has periodicity $2\pi n$.

Visualisation of n = 3 replica space.

<= ≣⇒

Holographic renormalization

- Holographically log Z_{ren}(n) is computed by the renormalised onshell action for a geometry with a conical singularity (Lewkowycz and Maldacena).
- From the replica formula, we can then derive the Ryu-Takayanagi formula.
- The standard holographic renormalization counterterms for the bulk action then imply our counterterms!

Holographic renormalization

For example, for an asymptotically locally AdS₄ spacetime the action counterterms are

$$I_{\rm ct} = rac{1}{8\pi G}\int d^3x \sqrt{h}(K+2-rac{\mathcal{R}}{2})$$

► For the replica space (Solodukhin)

$$\mathcal{R}_n = \mathcal{R} + 4\pi(n-1)\delta_{\Sigma} + \mathcal{O}(n-1)^2$$

where Σ is the conical singularity, i.e. the boundary of the entangling surface.

Holographic renormalization

Applying the replica formula then leads to exactly

$$S_{
m ct} = -rac{1}{4G}\int dx \sqrt{\gamma}$$

i.e. our counterterm localized on the boundary of the entangling surface.

- Procedure works for higher derivative theories such as Gauss-Bonnet.
- We can match renormalization scheme for EE with that of action!

Outline

- Renormalized entanglement entropy
 - 1. CFT case: minimal surfaces in AdS
 - 2. General definition
- The F theorem

э

・ロン ・聞 と ・ ヨ と ・ ヨ と

Weak version:

• $F_{UV} > F_{IR}$.

Strong version:

► *F* decreases monotonically under any relevant deformation.

To test the latter, we need to consider RG flows.

프 🖌 🛪 프 🕨

Holographic RG flows

A holographic RG flow is described by:

A "domain wall" geometry

$$ds^2 = dr^2 + \exp(2A(r))dx^{\mu}dx_{\mu}$$

A set of scalar field profiles

 $\phi_{a}(r)$

First order equations of motion relating A(r) and $\phi_a(r)$.

Renormalized EE

The bare Ryu-Takayanagi EE depends only on the Einstein metric

$$S = \frac{1}{4G} \int d^{d-1} x \sqrt{\gamma}$$

The counterterms can and do depend on the matter:

$$S_{ ext{ct}} \sim \int d^{d-2}x \sqrt{h} \mathcal{L}(\mathcal{R},\mathcal{K},\phi_{a},
abla\phi_{a},\cdots)$$

くロト (過) (目) (日)

RG flow of 3d field theory

Consider four dimensional bulk (d = 3), single scalar ϕ .

 Assume UV conformal, so potential can be expanded near boundary as

$$V = 6 - \sum_{n=2}^{\infty} \frac{\lambda_{(n)}}{n!} \phi^n$$

with $\lambda_{(2)} = M^2 = \Delta(\Delta - 3)$.

First order form of equations

$$\dot{A} = W$$
 $\dot{\phi} = -2\partial_{\phi}W$

where V is a known expression quadratic in (fake) superpotential W.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

REE for relevant deformations

We need the following counterterms in the REE:

$$S_{\rm ct} = -\frac{1}{4G}\int dx\sqrt{h}(1+\frac{(3-\Delta)}{8(5-2\Delta)}\phi^2+\cdots)$$

where second term is needed for $\Delta > 5/2$.

 The counterterms can be expressed in terms of the superpotential

$$S_{
m ct} = -rac{1}{4G}\int dx \sqrt{h} Y(\phi)$$

where

$$W(\phi)Y(\phi) + rac{dW}{d\phi}rac{dY}{d\phi} = 1.$$

F quantity

Under a relevant deformation of the 3d CFT

$$I
ightarrow I + \int d^3x \; \lambda {\cal O}_{\Delta}$$

the F quantity should decrease:

$$F(\lambda) = F_{UV} - \lambda^2 F_{(2)} + \mathcal{O}(\lambda^3)$$

with $F_{(2)} > 0$.

・ロン・西方・ ・ ヨン・ ヨン・

Renormalized entanglement entropy

- Compute the change in the REE to order λ², using the change in the Einstein metric induced.
- For $\Delta > 3/2$

$$\delta S_{\text{ren}} = \frac{\pi}{16(2\Delta-5)G}\lambda^2 R^{2(3-\Delta)} + \mathcal{O}(\lambda^3).$$

Positive for $\Delta > 3/2$ (agrees with F theorem) but negative for $\Delta < 5/2!$

• Note that for $\Delta = 3$:

$$\delta S_{\rm ren} = 0$$

ヘロト ヘアト ヘビト ヘビト

Change of F quantity under RG flows

We can also compute the change in F directly, by computing the onshell action for a curved domain wall solution

$$ds^{2} = dw^{2} + e^{2A(w)} ds^{2}_{S^{3}} \qquad \phi(w)$$

corresponding to the RG flow on S^3 .

 Surprisingly this more involved (numerical) calculation has never been done.

Change of F quantity under RG flows

- δF is positive for $\frac{3}{2} \le \Delta_+ < \frac{5}{2}$: strong F theorem is false!
- In our flows $F_{IR} < F_{UV}$.

STA

Dual quantizations

- For $-d^2 \le 4m^2 \le -d^2 + 4$, two quantisations are possible, Δ_{\pm} .
- If for the Δ_+ operator

$$F = F_{(0)} + F_{(2)}\phi_{(0)}^2 + \cdots$$

with $\phi_{(0)}$ the source then for the Δ_{-} operator

$$F = F_{(0)} - \frac{1}{4F_{(2)}}\Psi^2_{(0)}\cdots$$

where $\Psi_{(0)}$ is the source.

★週 ▶ ★ 理 ▶ ★ 理 ▶ …

Violation of the strong F theorem

- Either Δ₊ quantization or the Δ₋ quantization must violate the strong F theorem!
- Both quantizations arise in holographic theories such as ABJM.
- Strong F theorem does not hold.... unless our models are in the swampland.

Renormalized entanglement entropy is useful in field theory applications of entanglement entropy.

To explore further:

- Applications of REE to phase transitions, first law etc.
- Field theory calculation of renormalized EE using the replica trick (i.e. partition functions).

Conclusions and outlook

The strong F theorem does not seem to hold.

However:

- Does the weaker version $F_{UV} \ge F_{IR}$ always hold?
- Is there a modified version of the strong F theorem?

