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A top-down holographic model of quantum Hall

ferromagnetism

1. quantum Hall ferromagnetism (in graphene)

2. defect super-conformal field theory,

hypermultiplets on 2+1-dim defect,

N = 4 Yang-Mills in 3 + 1-dim bulk

3. AdS/CFT with probe D5 brane, oriented to have

2+1-dimensional Poincare symmetry

’tHooft limit, probe limit NF << NC = N , large λ limit

4. super-conformal solution, world-volume is AdS4 ⊗ S2

deform with U(1) ⊂ U(NF ) charge density, magnetic field -

phase diagram

5. mechanism for quantum Hall ferromagnetism, phase diagram
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Graphene: relativstic 2+1-D fermions with U(4) symmetry

Graphene: E(k) = h̄vF |⃗k| vF ∼ c/300 cutoff ∼ 1ev, 2 valleys×2

spins

S =

∫
d3x

4∑
σ=1

ψ̄σ iγµ∂µ ψ
σ + interactions

Holograv, April 29, 2016



Non-Relativistic and Relativistic Landau Levels

Non-relativistic: E = h̄ωC

(
n+ 1

2

)
, n = 0, 1, 2, ...

Relativistic E = ±h̄vF
√
2|B|n degeneracy = e|B|

2π
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K. Novoselov et. al. Nature 438, 197 (2005)

Y. Zhang et. al. Nature 438, 201 (2005)

σxy = 4 e2

h

(
n+ 1

2

)
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Splitting of ν = 0 Landau level Zhang et.al.

arXiv:1003.2738

QHE data as a function of the gate voltage Vg, for B = 18 T at T

= 0.25 K
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Splitting of ν = 0 Landau level A.F.Young et.al., Nat.

Phys. 2012
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Quantum Hall Ferromagnetism at Weak Coupling

Consider a 4-fold degenerate spectrum of relativistic Landau levels

Ground state has negative energy levels filled

The zero energy states should be half-filled

E=0

E=(2B)^(1/2)

E=-(2B)^(1/2)

E=(4B)^(1/2)

E=-(4B)^(1/2)
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Quantum Hall Ferromagnetism at Weak Coupling

Consider a 4-fold degenerate spectrum of relativistic Landau levels

Ground state has negative energy levels filled

The zero energy states should be half-filled

Highly degenerate ground state

Interaction resolves degeneracy

E=0

E=(2B)^(1/2)

E=-(2B)^(1/2)

E=(4B)^(1/2)

E=-(4B)^(1/2)
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But, graphene is strongly coupled
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Graphene with Coulomb interaction V (r) = e2

4πr

S =

∫
d3x

4∑
k=1

ψ̄k

[
γt(i∂t −At) + vF γ⃗ · (i∇⃗ − A⃗)

]
ψk

+
1

4e2

∫
dtd2x

[
F0i

1

2
√
∂2t − c2∇2

F0i − Fij
c2

2
√
∂2t − c2∇2

Fij

]
• The interaction is not relativistic since speeds of light are

different

• This theory is strongly coupled: the graphene fine structure

constant is larger than one,

αgraphene =
e2

4πλ

h̄vF /λ
=

e2

4πh̄vF
=

e2

4πh̄c

c

vF
≈ 300

137

βvF
=

1

4
αgrvF −

(
1

3
− (0.03)

)
α2
grvF + . . .
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Splitting of ν = 0 Landau level A.F.Young et.al., Nat.

Phys. 2012
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Electron dispersion relation with ARPES

D.A. Siegel et. al. PNAS,1100242108
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Electron dispersion relation with ARPES

D.A. Siegel et. al. PNAS,1100242108
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D3 - Probe D5 brane System

• N coincident D3 branes and N5 coincident D5 branes oriented

as

0 1 2 3 4 5 6 7 8 9

D3 X X X X O O O O O O

D5 X X X O X X X O O O

brane extends in directions X, sits at point in directions O

• #ND = 4 system – preserves 1/2 of supersymmetries

• ’t Hooft limit: N → ∞, λ = 4πgsN fixed: D3’s → AdS5 × S5

• probe limit N5 << N embed D5’s in AdS5 × S5

• flat space ∼ strong coupling R2 =
√
λα′ >> 1

• “2DEG” = D3-D5 strings hypermultiplet - fund. reps. of

SU(N), U(N5)
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Probe D5 brane

• Probe brane geometry from solving Dirac-Born-Infeld action

plus Wess-Zumino terms

S5 = N5T5

∫
d6σ

[
−
√
− det(g + 2πα′F ) + 2πα′F ∧ ω(4)

]
• ∃ a supersymmetric solution with SO(3)× SO(3) R-symmetry

where worldsheet is AdS4 × S2,

F = 0 , ds2 =
√
λα′

[
r2(−dt2 + dx2 + dy2) +

dr2

r2
+ dΩ2

2

]
• AdS5 × S5 coordinates and 4-form

dS2

√
λα′

= r2(−dt2+dx2+dy2+dz2)+dr
2

r2
+dψ2+sin2 ψd2Ω2+cos2 ψd2Ω̃2

ω(4) = λα′2r4dt ∧ dx ∧ dy ∧ dz + λα′2 c(ψ)

2
dΩ2 ∧ dΩ̃2
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Dual to superconformal defect field theory

• Field theory dual is bulk N = 4 Yang-Mills plus a

hypermultiplet defect theory with SO(3)×SO(3) R-symmetry

O.DeWolfe D.Z.Freedman H.Ooguri hep-th/0111135

J.Erdmenger Z.Guralnik I.Kirsch hep-th/0203020

S =

∫
d4x

{
−1

2
TrFµνF

µν + . . .

}
+

∫
d3x

N5∑
σ=1

N∑
α=1

[
ψ̄σ
αiγ

µ∂µψ
σ
α + ∂µφ̄

σ
α∂

µφσ
α

]
+ interactions

• Fermion ψ, scalar φ are SO(3) spinors (with different SO(3)’s),

fundamental rep. of global U(N5) and fundamental rep. of

SU(N) gauge group.

• Holographic description introduces temperature T ,

U(1) ⊂ U(N5) charge density ρ, magnetic field B
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Weak Coupling

S =

∫
d3x

N5∑
σ=1

N∑
α=1

[
ψ̄σ
αiγ

µDµψ
σ
α +Dµφ̄

σ
αD

µφσ
α

]
+ interactions

External Magnetic field

• Dµ = ∂µ + iAµ with a background magnetic field ∇⃗ × A⃗ = B

• Landau levels

– Fermions En =
√
2Bn

– Boson ωn =
√
(2n+ 1)B

– n = 0, 1, 2, ... ; Landau level density is B
2π · 2 ·N ·N5

• There exist B
2π2NN5 fermion zero modes.

• The lowest energy non-zero modes are scalars.
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Landau levels

N5 = 1, fermion is an SO(3) doublet

In the charge neutral state, half of the zero modes are filled

0

E

(2B)^(1/2)

-(2B)^(1/2)

(4B)^(1/2)

(6B)^(1/2)

-(4B)^(1/2)

-(6B)^(1/2)
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0

E

(2B)^(1/2)

-(2B)^(1/2)

(4B)^(1/2)

(6B)^(1/2)

-(4B)^(1/2)

-(6B)^(1/2)

E_int

Holograv, April 29, 2016



Hall States

The gapped states have charge densities and Hall conductivities

ρ =
B

2π
N ·(0,±1,±2, . . . ,±N5) , σxy = N ·(0,±1,±2,±3, . . . ,±N5)

or filling fractions

ν ≡ 2π

N

ρ

B
= 0,±1,±2, . . . ,±N5

All other quantum Hall states are beyond the threshold for creating

scalars.

Do the quantum Hall states survive when we turn on the coupling?

Do they survive at strong coupling?
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Probe D5 brane with a magnetic field

• Introduce a magnetic field B (m = 0, ρ = 0, T = 0)

• V.Filev C.Johnson J.Shock arXiv:0903.5345

For any B, D5-brane is no longer AdS4 × S2

F = Bdx ∧ dy

ds2 =
√
λα′

[
r2(−dt2 + dx2 + dy2) +

dr2

r2
(1 + r2ψ̇(r)2) + sin2 ψ(r)dΩ2

2

]
ψ(r → ∞) =

π

2
+
m = 0

r
+
< ψ̄τ⃗ψ >

r2
+ . . . , ψ(r = r0) = 0

• Mass gap for D3-D5 strings

• Spontaneously broken SO(3) chiral symmetry for any nonzero

magnetic field (at zero temperature and density).

• Quantum Hall Ferromagnetism/Magnetic catalysis at strong

coupling, ρ = 0.
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D5 brane & magnetic field breaks chiral symmetry
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E=0

E=(2B)^(1/2)

E=-(2B)^(1/2)

E=(4B)^(1/2)

E=-(4B)^(1/2)

↓

E=0

E=(2B)^(1/2)

E=-(2B)^(1/2)

E=(4B)^(1/2)

E=-(4B)^(1/2)
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Probe D5 brane with a magnetic field and density

• Introduce a magnetic field B and density ρ (m = 0, T = 0)

F = A′
t(r)dr ∧ dt+Bdx ∧ dy

ds2 =
√
λα′

[
r2(−dt2 + dx2 + dy2) +

dr2

r2
(1 + r2ψ̇(r)2) + sin2 ψ(r)dΩ2

2

]
ψ(r → ∞) =

π

2
+
m = 0

r
+
< ψ̄τ⃗ψ >

r2
+ . . .

• Probe D5 must reach Poincare horizon at r = 0 → all finite

density states are ungapped (compressible).

• Chiral symmetry restored at critical density

K.Jensen A.Karch D.T.Son E.G.Thompson arXiv:1002.3159

ν ≡ 2πρ

NB
, νcrit. = 1.68N5/

√
λ
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D5 brane & magnetic field breaks chiral symmetry
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Hall states of the D5 brane

• As N5 D5 branes enter the bulk of AdS5, they blow up to D7

brane with magnetic flux

S7 = T7

∫
d8σ

[
−
√

−det(g + 2πα′F ) +
(2πα′)2

2
F ∧ F ∧ c(4)

]
ds2 =

√
λα′

[
r2(−dt2 + dx2 + dy2) +

dr2

r2
(
1 + r2ψ′(r)2

)
+

+sin2 ψd2Ω2 + cos2 ψd2Ω̃2

]
F =

d

dr
A7

t (r)dr ∧ dt+Bdx ∧ dy + N5

2
dΩ̃2 (1)

• F ∧ F ∧ c(4)(r) term in D7 brane action dissolves electric

charge – completely only when ν = 1

• For ν = 1, D7 brane has Minkowski embedding and

incompressible charge gapped state.
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• For ν = 2, 3, ..., N5, N5 D5 branes blow up into 2, 3, ..., N5 D7

branes, each with ν = 1 which subsequently have Minkowski

embeddings and incompressible charge gapped state.

• How many of the states ν = 0,±1,±2, ...,±N5 are stable still

open question.
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Conclusions

• ∃ integer Hall states of the D5 brane

• qualitative comparison with weak coupling is surprisingly good

• Symmetry breaking pattern,

D5: SU(2)× SU(2) → U(1)× SU(2) breaks valley symmetry∏
n ψ

†
n,1↑ψ

†
n,1↓|0 >

D7: SU(2)× SU(2) → SU(2) preserves locked valley and spin

symmetry
∏

n[ψ
†
n,1↑ − ψ†

n,2↓]|0 >

• When ν divides N5, the Hall state has ν identical D7’s →
SU(ν) symmetry
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