Quantum Hallography

Gordon W. Semenoff

University of British Columbia

Current Themes in Holography: Exact Results, Extensions, Applications and Fundamentals Niels Bohr Institute, April, 2016

A top-down holographic model of quantum Hall ferromagnetism

- 1. quantum Hall ferromagnetism (in graphene)
- 2. defect super-conformal field theory, hypermultiplets on 2+1-dim defect, $\mathcal{N} = 4$ Yang-Mills in 3 + 1-dim bulk
- 3. AdS/CFT with probe D5 brane, oriented to have 2+1-dimensional Poincare symmetry 'tHooft limit, probe limit $N_F << N_C = N$, large λ limit
- 4. super-conformal solution, world-volume is $AdS_4 \otimes S^2$ deform with $U(1) \subset U(N_F)$ charge density, magnetic field phase diagram
- 5. mechanism for quantum Hall ferromagnetism, phase diagram

Holograv, April 29, 2016

Splitting of $\nu = 0$ Landau level A.F.Young et.al., Nat. Phys. 2012

Quantum Hall Ferromagnetism at Weak Coupling

Consider a 4-fold degenerate spectrum of relativistic Landau levels Ground state has negative energy levels filled The zero energy states should be half-filled

Quantum Hall Ferromagnetism at Weak Coupling

Consider a 4-fold degenerate spectrum of relativistic Landau levels Ground state has negative energy levels filled The zero energy states should be half-filled Highly degenerate ground state Interaction resolves degeneracy

Graphene with Coulomb interaction $V(r) = \frac{e^2}{4\pi r}$

$$S = \int d^3x \, \sum_{k=1}^{4} \bar{\psi}_k \left[\gamma^t (i\partial_t - A_t) + v_F \vec{\gamma} \cdot (i\vec{\nabla} - \vec{A}) \right] \psi_k$$

$$+\frac{1}{4e^{2}}\int dt d^{2}x \left[F_{0i}\frac{1}{2\sqrt{\partial_{t}^{2}-c^{2}\nabla^{2}}}F_{0i}-F_{ij}\frac{c^{2}}{2\sqrt{\partial_{t}^{2}-c^{2}\nabla^{2}}}F_{ij}\right]$$

- The interaction is not relativistic since speeds of light are different
- This theory is strongly coupled: the graphene fine structure constant is larger than one,

$$\alpha_{\text{graphene}} = \frac{\frac{e^2}{4\pi\lambda}}{\hbar v_F/\lambda} = \frac{e^2}{4\pi\hbar v_F} = \frac{e^2}{4\pi\hbar c} \frac{c}{v_F} \approx \frac{300}{137}$$
$$\beta_{v_F} = \frac{1}{4}\alpha_{\text{gr}}v_F - \left(\frac{1}{3} - (0.03)\right)\alpha_{\text{gr}}^2v_F + \dots$$

Splitting of $\nu = 0$ Landau level A.F.Young et.al., Nat. Phys. 2012

D3 - Probe D5 brane System

• N coincident D3 branes and N_5 coincident D5 branes oriented as

	0	1	2	3	4	5	6	7	8	9
D3	X	X	X	X	0	0	0	0	0	0
D5	X	X	X	0	X	X	X	0	0	0

brane extends in directions X, sits at point in directions O

- #ND = 4 system preserves 1/2 of supersymmetries
- 't Hooft limit: $N \to \infty$, $\lambda = 4\pi g_s N$ fixed: D3's $\to AdS_5 \times S^5$
- probe limit $N_5 \ll N$ embed D5's in $AdS_5 \times S^5$
- flat space ~ strong coupling $R^2 = \sqrt{\lambda} \alpha' >> 1$
- "2DEG" = D3-D5 strings hypermultiplet fund. reps. of $SU(N), U(N_5)$

Probe D5 brane

• Probe brane geometry from solving Dirac-Born-Infeld action plus Wess-Zumino terms

$$S_5 = N_5 T_5 \int d^6 \sigma \left[-\sqrt{-\det(g + 2\pi\alpha' F)} + 2\pi\alpha' F \wedge \omega^{(4)} \right]$$

• \exists a supersymmetric solution with $SO(3) \times SO(3)$ R-symmetry where worldsheet is $AdS_4 \times S^2$,

$$F = 0 , \ ds^2 = \sqrt{\lambda}\alpha' \left[r^2(-dt^2 + dx^2 + dy^2) + \frac{dr^2}{r^2} + d\Omega_2^2 \right]$$

•
$$AdS_5 \times S^5$$
 coordinates and 4-form

$$\frac{dS^2}{\sqrt{\lambda}\alpha'} = r^2(-dt^2 + dx^2 + dy^2 + dz^2) + \frac{dr^2}{r^2} + d\psi^2 + \sin^2\psi d^2\Omega_2 + \cos^2\psi d^2\tilde{\Omega}_2$$

$$\omega^{(4)} = \lambda {\alpha'}^2 r^4 dt \wedge dx \wedge dy \wedge dz + \lambda {\alpha'}^2 \frac{c(\psi)}{2} d\Omega_2 \wedge d\tilde{\Omega}_2$$

Dual to superconformal defect field theory

 Field theory dual is bulk N = 4 Yang-Mills plus a hypermultiplet defect theory with SO(3)×SO(3) R-symmetry
 O.DeWolfe D.Z.Freedman H.Ooguri hep-th/0111135
 J.Erdmenger Z.Guralnik I.Kirsch hep-th/0203020

$$S = \int d^4x \left\{ -\frac{1}{2} \text{Tr} F_{\mu\nu} F^{\mu\nu} + \dots \right\}$$

+
$$\int d^3x \sum_{\sigma=1}^{N_5} \sum_{\alpha=1}^{N} \left[\bar{\psi}^{\sigma}_{\alpha} i \gamma^{\mu} \partial_{\mu} \psi^{\sigma}_{\alpha} + \partial_{\mu} \bar{\varphi}^{\sigma}_{\alpha} \partial^{\mu} \varphi^{\sigma}_{\alpha} \right] + \text{interactions}$$

- Fermion ψ, scalar φ are SO(3) spinors (with different SO(3)'s), fundamental rep. of global U(N₅) and fundamental rep. of SU(N) gauge group.
- Holographic description introduces temperature T, $U(1) \subset U(N_5)$ charge density ρ , magnetic field B

Weak Coupling

$$S = \int d^3x \sum_{\sigma=1}^{N_5} \sum_{\alpha=1}^{N} \left[\bar{\psi}^{\sigma}_{\alpha} i \gamma^{\mu} D_{\mu} \psi^{\sigma}_{\alpha} + D_{\mu} \bar{\varphi}^{\sigma}_{\alpha} D^{\mu} \varphi^{\sigma}_{\alpha} \right] + \text{interactions}$$

External Magnetic field

- $D_{\mu} = \partial_{\mu} + iA_{\mu}$ with a background magnetic field $\vec{\nabla} \times \vec{A} = B$
- Landau levels
 - Fermions $E_n = \sqrt{2Bn}$

$$- Boson \ \omega_n = \sqrt{(2n+1)B}$$

 $-n = 0, 1, 2, \dots$; Landau level density is $\frac{B}{2\pi} \cdot 2 \cdot N \cdot N_5$

- There exist $\frac{B}{2\pi} 2NN_5$ fermion zero modes.
- The lowest energy non-zero modes are scalars.

Landau levels

 $N_5 = 1$, fermion is an SO(3) doublet

In the charge neutral state, half of the zero modes are filled

Hall States

The gapped states have charge densities and Hall conductivities

$$\rho = \frac{B}{2\pi} N \cdot (0, \pm 1, \pm 2, \dots, \pm N_5) , \ \sigma_{xy} = N \cdot (0, \pm 1, \pm 2, \pm 3, \dots, \pm N_5)$$

or filling fractions

$$\nu \equiv \frac{2\pi}{N} \frac{\rho}{B} = 0, \pm 1, \pm 2, \dots, \pm N_5$$

All other quantum Hall states are beyond the threshold for creating scalars.

Do the quantum Hall states survive when we turn on the coupling? Do they survive at strong coupling?

Probe D5 brane with a magnetic field

- Introduce a magnetic field B $(m = 0, \rho = 0, T = 0)$
- V.Filev C.Johnson J.Shock arXiv:0903.5345 For any *B*, D5-brane is no longer $AdS_4 \times S^2$

$$F = Bdx \wedge dy$$

$$ds^{2} = \sqrt{\lambda}\alpha' \left[r^{2}(-dt^{2} + dx^{2} + dy^{2}) + \frac{dr^{2}}{r^{2}}(1 + r^{2}\dot{\psi}(r)^{2}) + \sin^{2}\psi(r)d\Omega_{2}^{2} \right]$$
$$\psi(r \to \infty) = \frac{\pi}{2} + \frac{m = 0}{r} + \frac{\langle \bar{\psi}\vec{\tau}\psi \rangle}{r^{2}} + \dots , \quad \psi(r = r_{0}) = 0$$

- Mass gap for D3-D5 strings
- Spontaneously broken SO(3) chiral symmetry for any nonzero magnetic field (at zero temperature and density).
- Quantum Hall Ferromagnetism/Magnetic catalysis at strong coupling, $\rho = 0$.

Probe D5 brane with a magnetic field and density

• Introduce a magnetic field B and density ρ (m = 0, T = 0)

$$F = A'_t(r)dr \wedge dt + Bdx \wedge dy$$

$$ds^{2} = \sqrt{\lambda}\alpha' \left[r^{2}(-dt^{2} + dx^{2} + dy^{2}) + \frac{dr^{2}}{r^{2}}(1 + r^{2}\dot{\psi}(r)^{2}) + \sin^{2}\psi(r)d\Omega_{2}^{2} \right]$$
$$\psi(r \to \infty) = \frac{\pi}{2} + \frac{m = 0}{r} + \frac{\langle \bar{\psi}\vec{\tau}\psi \rangle}{r^{2}} + \dots$$

- Probe D5 must reach Poincare horizon at $r = 0 \rightarrow$ all finite density states are ungapped (compressible).
- Chiral symmetry restored at critical density K.Jensen A.Karch D.T.Son E.G.Thompson arXiv:1002.3159

$$\nu \equiv \frac{2\pi\rho}{NB}$$
, $\nu_{\rm crit.} = 1.68N_5/\sqrt{\lambda}$

Hall states of the D5 brane

• As N_5 D5 branes enter the bulk of AdS_5 , they blow up to D7 brane with magnetic flux

$$S_{7} = T_{7} \int d^{8}\sigma \left[-\sqrt{-\det(g + 2\pi\alpha' F)} + \frac{(2\pi\alpha')^{2}}{2}F \wedge F \wedge c^{(4)} \right]$$
$$ds^{2} = \sqrt{\lambda}\alpha' \left[r^{2}(-dt^{2} + dx^{2} + dy^{2}) + \frac{dr^{2}}{r^{2}} \left(1 + r^{2}\psi'(r)^{2} \right) + \sin^{2}\psi d^{2}\Omega_{2} + \cos^{2}\psi d^{2}\tilde{\Omega}_{2} \right]$$
$$F = \frac{d}{dr}A_{t}^{7}(r)dr \wedge dt + Bdx \wedge dy + \frac{N_{5}}{2}d\tilde{\Omega}_{2}$$
(1)

- $F \wedge F \wedge c^{(4)}(r)$ term in D7 brane action dissolves electric charge completely only when $\nu = 1$
- For $\nu = 1$, D7 brane has Minkowski embedding and incompressible charge gapped state.

- For $\nu = 2, 3, ..., N_5$, N_5 D5 branes blow up into $2, 3, ..., N_5$ D7 branes, each with $\nu = 1$ which subsequently have Minkowski embeddings and incompressible charge gapped state.
- How many of the states $\nu = 0, \pm 1, \pm 2, ..., \pm N_5$ are stable still open question.

Conclusions

- \exists integer Hall states of the D5 brane
- qualitative comparison with weak coupling is surprisingly good
- Symmetry breaking pattern, D5: $SU(2) \times SU(2) \rightarrow U(1) \times SU(2)$ breaks valley symmetry $\prod_n \psi_{n,1\uparrow}^{\dagger} \psi_{n,1\downarrow}^{\dagger} | 0 >$ D7: $SU(2) \times SU(2) \rightarrow SU(2)$ preserves locked valley and spin symmetry $\prod_n [\psi_{n,1\uparrow}^{\dagger} - \psi_{n,2\downarrow}^{\dagger}] | 0 >$
- When ν divides N_5 , the Hall state has ν identical D7's \rightarrow SU(ν) symmetry