Pseudo-observables in Higgs Physics

David Marzocca

 Universität Zürich^{™™} h q_1 J_f q_2 J_f q_2 J_f q_2 q_2 q_2 q_2 q_3

HEFT, Copenhagen, 28/10/2016

- Motivation and introduction.
- What are pseudo-observables (PO)?
- PO in Higgs Decay. & Electroweak Higgs Production.
- NLO corrections.
- Matching to the SMEFT at LO

Based on works with various subsets of *{M. Bordone, M.Gonzalez-Alonso, A. Greljo, A. Falkowski, G. Isidori, J. Lindert, D.M., A. Pattori}*

and many discussions with the community

PO in decay: Eur. Phys. J. C75 (2015) 3, 128 arXiv: <u>1412.6038</u> & Eur. Phys. J. C75 (2015) 8, 385 arXiv: <u>1507.02555</u>

PO in production: Eur. Phys. J. C76 (2016) 3, 158 arXiv: <u>1512.06135</u>

 PO & linear EFT:
 Eur. Phys. J. C75 (2015) 7, 341
 arXiv: 1504.04018

 Phys.Rev.Lett. 116 (2016) 1, 011801
 arXiv: 1508.00581

PO Chapter in YR4: arXiv: 1610.07922

Introduction

Run 1 at LHC:

C: discovery of the Higgs and good measurement of many of its couplings... The SM is complete.

Scale of New Physics is high**

So far, from direct searches:

 $\Lambda_{NP} \gg m_h$

What else can the LHC tells about the Higgs?

Run 2 (and beyond): High Precision Higgs era.

Search for smooth deviations from the SM.

Learning on BSM from the Higgs

... Given we do not know what the New Physics will be like

1

Measure all the physical properties of the Higgs, in production and decay, with the highest possible accuracy as much model-independently as possible.

Learning on BSM from the Higgs

... Given we do not know what the New Physics will be like

1

Measure all the physical properties of the Higgs, in production and decay, with the highest possible accuracy as much model-independently as possible.

2

Interpret the results of these measurements in explicit BSM scenarios to learn about the UV. Eg. SMEFT, SUSY, Composite Higgs, **??**, ...

$$\mathcal{L} = \mathcal{L}^{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{d=6} + (\dim > 6)$$

How should the experiments present their result

Experiments

Unfolding of collider & soft radiation effects. *Unfolded distributions, fiducial cross sections*

Theorists

PO

idealized observables, well defined quantities (in QFT).

Matching to a given model at given order in pert. theory

Constraints/measurements on theories

LEP-1 Strategy: on-shell Z decays

[hep-ex/0509008; Bardin, Grunewald, Passarino '99]

The goal was to parametrise on-shell Z decays as much model-independently as possible.

At Run-1, measurements of Higgs properties were reported in the κ -framework: On-shell Higgs in the narrow width approximation:

$$\sigma(ii \to h+X) \times BR(h \to ff) = \sigma_{ii} \frac{\Gamma_{ff}}{\Gamma_{h}} = \frac{\kappa_{ii}^2 \kappa_{ff}^2}{\kappa_{h}^2} \sigma_{SM} \times BR_{SM}$$

Virtues: Clean SM limit $(k \rightarrow 1)$, well-def. exp & th, quite general.

At Run-1, measurements of Higgs properties were reported in the κ -framework: On-shell Higgs in the narrow width approximation:

$$\sigma(ii \to h+X) \times BR(h \to ff) = \sigma_{ii} \frac{\Gamma_{ff}}{\Gamma_{h}} = \frac{\kappa_{ii}^2 \kappa_{ff}^2}{\kappa_{h}^2} \sigma_{SM} \times BR_{SM}$$

Pros: Clear SM limit ($\kappa \rightarrow 1$), theoretically well-defined, it ($k\rightarrow 1$), well-def. exp & th, quite general. systematically improvable, model independent (on-shell Higgs is key), can be matched to any EFT in any basis.

At Run-1, measurements of Higgs properties were reported in the κ -framework: On-shell Higgs in the narrow width approximation:

$$\sigma(ii \to h+X) \times BR(h \to ff) = \sigma_{ii} \frac{\Gamma_{ff}}{\Gamma_{h}} = \frac{\kappa_{ii}^2 \kappa_{ff}^2}{\kappa_{h}^2} \sigma_{SM} \times BR_{SM}$$

Pros: Clear SM limit ($\kappa \rightarrow 1$), theoretically well-defined, it ($k\rightarrow 1$), well-def. exp & th, quite general. systematically improvable, model independent (on-shell Higgs is key), can be matched to any EFT in any basis.

*

Cons: Limited to total rates: can't describe deviations in differential distributions, e.g. CPV or $h \rightarrow 4f$

At Run-1, measurements of Higgs properties were reported in the κ -framework: On-shell Higgs in the narrow width approximation:

$$\sigma(ii \to \mathbf{h} + \mathbf{X}) \times \mathrm{BR}(\mathbf{h} \to ff) = \sigma_{ii} \frac{\Gamma_{ff}}{\Gamma_{\mathbf{h}}} = \frac{\kappa_{ii}^2 \kappa_{ff}^2}{\kappa_{\mathbf{h}}^2} \sigma_{\mathrm{SM}} \times \mathrm{BR}_{\mathrm{SM}}$$

Pros: Clear SM limit ($\kappa \rightarrow 1$), theoretically well-defined, it ($k\rightarrow 1$), well-def. exp & th, quite general. systematically improvable, model independent (on-shell Higgs is key), can be matched to any EFT in any basis.

*

Cons: Limited to total rates: can't describe deviations in differential distributions, e.g. CPV or $h \rightarrow 4f$

Need to extend the κ -framework retaining all its good properties:

Higgs pseudo-observables

Higgs PO: QFT definition

PO are defined from:

decomposition of **on-shell amplitudes** (NWA), based on Lorentz invariance and crossing symmetry,

and a momentum expansion (on measurable quantities) based on analytic properties of the amplitudes (physical poles), assuming no new light states in the kinematical regime of interest.

Two-body Higgs decays

Higgs PO: parametrize the relevant on-shell amplitude.

$$\mathcal{A}(h \to f\bar{f}) = -i\frac{y_{\text{eff}}^{f,\text{SM}}}{\sqrt{2}}\bar{f}\left(\kappa_{f} + i\lambda_{f}^{\text{CP}}\gamma_{5}\right)f$$

2 possible Lorentz structures: CP-even & CP-odd.

$$\mathcal{A}\left[h \to \gamma(q,\epsilon)\gamma(q',\epsilon')\right] = i\frac{2}{v_F} \frac{\epsilon_{\gamma\gamma}^{\mathrm{SM,eff}}}{v_F} \epsilon_{\mu}'\epsilon_{\nu} \left[\frac{\kappa_{\gamma\gamma}(g^{\mu\nu} \ q \cdot q' - q^{\mu}q'^{\nu}) + \lambda_{\gamma\gamma}^{\mathrm{CP}}\varepsilon^{\mu\nu\rho\sigma}q_{\rho}q_{\sigma}'\right]$$

Same decomposition for $h \to Z\gamma$

 $\epsilon_X^{
m SM, eff} \; y_{
m eff}^{f,
m SM} \;\;$ from best SM prediction of the decay rate.

In the SM $\kappa_X \to 1, \ \lambda_X^{\text{CP}} \to 0$

Two-body Higgs decays

Higgs PO: parametrize the relevant on-shell amplitude.

$$\mathcal{A}(h \to f\bar{f}) = -i\frac{y_{\text{eff}}^{f,\text{SM}}}{\sqrt{2}}\bar{f}\left(\kappa_{f} + i\lambda_{f}^{\text{CP}}\gamma_{5}\right)f$$

2 possible Lorentz structures: CP-even & CP-odd.

$$\mathcal{A}\left[h \to \gamma(q,\epsilon)\gamma(q',\epsilon')\right] = i\frac{2}{v_F} \frac{\epsilon_{\gamma\gamma}^{\mathrm{SM,eff}}}{\varepsilon_F} \epsilon_{\mu}'\epsilon_{\nu} \left[\kappa_{\gamma\gamma}(g^{\mu\nu} \ q \cdot q' - q^{\mu}q'^{\nu}) + \lambda_{\gamma\gamma}^{\mathrm{CP}}\varepsilon^{\mu\nu\rho\sigma}q_{\rho}q'_{\sigma}\right]$$

Same decomposition for $h \to Z\gamma$

 $\epsilon_X^{
m SM, eff} \; y_{
m eff}^{f,
m SM} \;$ from best SM prediction of the decay rate.

$$\Gamma(h \to f\bar{f})_{(\text{incl})} = \left[\kappa_f^2 + (\lambda_f^{\text{CP}})^2\right] \Gamma(h \to f\bar{f})_{(\text{incl})}^{(\text{SM})}$$

The kinematics is fixed.

No polarisation information is retained. (maybe possible to measure in ττ channel) the total rate is all that can be extracted from data

4-fermion Higgs decays and EW Higgs Production

By crossing symmetry, all these processes are described by the same correlation function.

(in a different kinematical region and with different fermionic currents)

On-shell Higgs and two on-shell EW currents

$$\langle 0 | \mathcal{T}\left\{J_f^{\mu}(x), J_{f'}^{\nu}(y), h(0)\right\} | 0 \rangle$$

Assumption: neglect chirality-flipping terms, expected to be suppressed by *y*_f.

Use the same parametrization of Higgs decays also for the production.

Only 3 tensor structures allowed by Lorentz symmetry:

e.g.
$$h \rightarrow e^{ie^{\mu}\mu^{\mu}}$$

$$\mathcal{A} = i \frac{2m_Z^2}{v_F} (\bar{e}\gamma_{\alpha} e) (\bar{\mu}\gamma_{\beta}\mu) \times \left[F_L^{e\mu}(q_1^2, q_2^2) g^{\alpha\beta} + F_T^{e\mu}(q_1^2, q_2^2) \frac{q_1 \cdot q_2}{m_Z^2} g^{\alpha\beta} - q_2^{\alpha} q_1^{\beta}}{m_Z^2} + F_{CP}^{e\mu}(q_1^2, q_2^2) \frac{\varepsilon^{\alpha\beta\rho\sigma} q_{2\rho} q_{1\sigma}}{m_Z^2} \right]$$

$$Longitudinal \qquad Transverse \qquad CP-odd$$

Only 3 tensor structures allowed by Lorentz symmetry:

e.g.
$$h \rightarrow e^{+e^{-}\mu^{+}\mu^{-}}$$

 $\mathcal{A} = i \frac{2m_{Z}^{2}}{v_{F}} (\bar{e}\gamma_{\alpha}e)(\bar{\mu}\gamma_{\beta}\mu) \times \left[F_{L}^{e\mu}(q_{1}^{2}, q_{2}^{2})g^{\alpha\beta} + F_{T}^{e\mu}(q_{1}^{2}, q_{2}^{2})\frac{q_{1} \cdot q_{2}}{m_{Z}^{2}} \frac{q^{\alpha\beta} - q_{2}^{\alpha}q_{1}^{\beta}}{m_{Z}^{2}} + F_{CP}^{e\mu}(q_{1}^{2}, q_{2}^{2})\frac{\varepsilon^{\alpha\beta\rho\sigma}q_{2\rho}q_{1\sigma}}{m_{Z}^{2}} \right]$
Longitudinal Transverse CP-odd

Ultimate experimental goal for any of these processes:

measure the double differential distributions in (q_1^2, q_2^2)

Assuming: New Physics scale > Energy scale of the process We perform a momentum expansion around the physical poles of the SM states:

$$F_X(q_1^2, q_2^2) = \sum_V \frac{(\text{const})_{2V}}{(q_1^2 - m_V^2)(q_2^2 - m_V^2)} + \frac{(\text{const})_{1V}}{(q_{1,2}^2 - m_V^2)} + (\text{const}) + f_{\text{reg}}(q_1^2, q_2^2)$$
2 poles
1 pole
no poles

To truncate the expansion, we have to assume $q^2_{max} \ll \Lambda^2$ No problem in Higgs decays.

 $e = e_L, e_R, \qquad \mu = \mu_L, \mu_R$

$$\begin{aligned} \mathcal{A} = & i \frac{2m_Z^2}{v_F} (\bar{e}\gamma_{\alpha} e) (\bar{\mu}\gamma_{\beta} \mu) \times \\ & \left[\left(\frac{\kappa_{ZZ}}{P_Z(q_1^2) P_Z(q_2^2)} + \frac{\epsilon_{Ze}}{m_Z^2} \frac{g_Z^{\mu}}{P_Z(q_2^2)} + \frac{\epsilon_{Z\mu}}{m_Z^2} \frac{g_Z^{e}}{P_Z(q_1^2)} + \frac{\Delta_1^{\mathrm{SM}}(q_1^2, q_2^2)}{P_Z(q_1^2)} \right) g^{\alpha\beta} + \right] \end{aligned}$$

 $e = e_L, e_R, \qquad \mu = \mu_L, \mu_R$

$$\begin{split} \mathcal{A} = & i \frac{2m_Z^2}{v_F} (\bar{e}\gamma_{\alpha} e) (\bar{\mu}\gamma_{\beta} \mu) \times \\ & \left[\left(\kappa_{ZZ} \frac{g_Z^e g_Z^{\mu}}{P_Z(q_1^2) P_Z(q_2^2)} + \frac{\epsilon_{Ze}}{m_Z^2} \frac{g_Z^{\mu}}{P_Z(q_2^2)} + \frac{\epsilon_{Z\mu}}{m_Z^2} \frac{g_Z^e}{P_Z(q_1^2)} + \Delta_1^{\mathrm{SM}}(q_1^2, q_2^2) \right) g^{\alpha\beta} + \\ & + \left(\epsilon_{ZZ} \frac{g_Z^e g_Z^{\mu}}{P_Z(q_1^2) P_Z(q_2^2)} + \kappa_{Z\gamma} \epsilon_{Z\gamma}^{\mathrm{SM-1L}} \left(\frac{eQ_{\mu}g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^{\mu}}{q_1^2 P_Z(q_2^2)} \right) + \kappa_{\gamma\gamma} \epsilon_{\gamma\gamma}^{\mathrm{SM-1L}} \frac{e^2 Q_e Q_{\mu}}{q_1^2 q_2^2} + \Delta_3^{\mathrm{SM}}(q_1^2, q_2^2) \right) \times \\ & \times \frac{q_1 \cdot q_2 \ g^{\alpha\beta} - q_2^{\alpha} q_1^{\beta}}{m_Z^2} + \end{split}$$

In the SM
$$\kappa_X \to 1, \ \epsilon_X \to 0$$
 $P_Z(q^2) = q^2 - m_Z^2 + im_Z\Gamma_Z$ $\epsilon_{\gamma\gamma}^{\text{SM-IL}} \simeq 3.8 \times 10^{-3}, \epsilon_{Z\gamma}^{\text{SM-IL}} \simeq 6.7 \times 10^{-3}$

 $e = e_L, e_R, \qquad \mu = \mu_L, \mu_R$

$$\begin{aligned} \mathcal{A} = & i \frac{2m_Z^2}{v_F} (\bar{e}\gamma_{\alpha} e) (\bar{\mu}\gamma_{\beta} \mu) \times \\ & \left[\left(\kappa_{ZZ} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \frac{\epsilon_{Ze}}{m_Z^2} \frac{g_Z^\mu}{P_Z(q_2^2)} + \frac{\epsilon_{Z\mu}}{m_Z^2} \frac{g_Z^e}{P_Z(q_1^2)} + \Delta_1^{\mathrm{SM}}(q_1^2, q_2^2) \right) g^{\alpha\beta} + \\ & + \left(\epsilon_{ZZ} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \kappa_{Z\gamma} \epsilon_{Z\gamma}^{\mathrm{SM-1L}} \left(\frac{eQ_\mu g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^\mu}{q_1^2 P_Z(q_2^2)} \right) + \kappa_{\gamma\gamma} \epsilon_{\gamma\gamma}^{\mathrm{SM-1L}} \frac{e^2 Q_e Q_\mu}{q_1^2 q_2^2} + \Delta_3^{\mathrm{SM}}(q_1^2, q_2^2) \right) \times \\ & \times \frac{q_1 \cdot q_2 \ g^{\alpha\beta} - q_2^\alpha q_1^\beta}{m_Z^2} + \\ & + \left(\epsilon_{ZZ}^{\mathrm{CP}} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \epsilon_{Z\gamma}^{\mathrm{CP}} \left(\frac{eQ_\mu g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^\mu}{q_1^2 P_Z(q_2^2)} \right) + \epsilon_{\gamma\gamma}^{\mathrm{CP}} \frac{e^2 Q_e Q_\mu}{q_1^2 q_2^2} \right) \frac{\epsilon^{\alpha\beta\rho\sigma} q_{2\rho} q_{1\sigma}}{m_Z^2} \right] \end{aligned}$$

In the SM $\kappa_X \to 1, \ \epsilon_X \to 0$ $P_Z(q^2) = q^2 - m_Z^2 + im_Z\Gamma_Z$ $\epsilon_{\gamma\gamma}^{\text{SM-1L}} \simeq 3.8 \times 10^{-3}, \epsilon_{Z\gamma}^{\text{SM-1L}} \simeq 6.7 \times 10^{-3}$

13

 $\epsilon_{Z\gamma}^{\text{SM-1L}} \simeq 6.7 \times 10^{-3}$

EW Higgs production

The hard contribution to these scattering processes is:

Physical process: all external particles are on-shell.

Higgs + 2 EW currents

Same as 4-fermion Higgs decays:

New PO not accessible in $h \rightarrow 4\ell$

Only quark contact terms are not probed also in $h \rightarrow 4\ell$ decays.

Flavor-independent PO probed in $h \rightarrow 4\ell$ decay. \longrightarrow Focus on quark contact terms.

+ Flavor + CP-violation $\begin{aligned} \epsilon_{Zu_L}, \epsilon_{Zu_R} & \epsilon_{Zc_L}, \epsilon_{Zc_R} \\ \epsilon_{Zd_L}, \epsilon_{Zd_R} & \epsilon_{Zs_L}, \epsilon_{Zs_R} \\ \mathrm{Re}(\epsilon_{Wu_L}) & \mathrm{Re}(\epsilon_{Wc_L}) \end{aligned}$ $\operatorname{Im}(\epsilon_{Wu_L})$ $\operatorname{Im}(\epsilon_{Wc_L})$ h

New PO not accessible in $h \rightarrow 4\ell$

Only quark contact terms are not probed also in $h \rightarrow 4\ell$ decays.

Flavor-independent PO probed in $h \rightarrow 4\ell$ decay. \longrightarrow Focus on quark contact terms.

Vh: $q_1^2 > (m_h + m_V)^2$ $q_2^2 \sim m_V^2$ (if V experimentally taken on-shell) VBF: $q_1^2, q_2^2 < 0$ (t-channel)

Need to be careful with the validity of the momentum expansion around the physical poles.

Parameter Counting & Symmetries

EW decay and production:

Amplitudes	Flavor + CP	Flavor Non Univ.	CPV
$h ightarrow \gamma\gamma, 2e\gamma, 2\mu\gamma \ 4e, 4\mu, 2e2\mu$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\boldsymbol{\mathcal{E}}_{Z\mu_L}, \boldsymbol{\mathcal{E}}_{Z\mu_R}$	$arepsilon_{ZZ}^{CP}, \lambda_{Z\gamma}^{CP}, \lambda_{\gamma\gamma}^{CP}$
$h \rightarrow 2e2v, 2\mu 2v, ev\mu v$	$4 \begin{array}{c} \kappa_{WW}, \varepsilon_{WW} \\ \epsilon_{Zv_e}, \operatorname{Re}(\varepsilon_{We_L}) \end{array}$	$\varepsilon_{Z\nu_{\mu}}, \operatorname{Re}(\varepsilon_{W\mu_{L}})$ Im (ε_{W})	$\varepsilon_{WW}^{CP}, \operatorname{Im}(\varepsilon_{We_L})$

Higgs (EW) decay amplitudes

Higgs (EW) production amplitudes

Test UV symmetries!

Amplitudes	Flavor + CP	Flavor Non Univ.	CPV	
VBF neutral curr. and <i>Zh</i>	$4 \frac{[\kappa_{ZZ}, \kappa_{Z\gamma}, \varepsilon_{ZZ}]}{\varepsilon_{Zu_L}, \varepsilon_{Zu_R}, \varepsilon_{Zd_L}, \varepsilon_{Zd_R}}$	$oldsymbol{\mathcal{E}}_{Zc_L}, oldsymbol{\mathcal{E}}_{Zc_R} \ oldsymbol{\mathcal{E}}_{Zs_L}, oldsymbol{\mathcal{E}}_{Zs_R}$	$\left[\ \boldsymbol{\varepsilon}_{ZZ}^{CP}, \boldsymbol{\lambda}_{Z\gamma}^{CP} \ ight]$	
VBF charged curr. and <i>Wh</i>	$\begin{vmatrix} \kappa_{WW}, \varepsilon_{WW} \\ \kappa_{WW}, \varepsilon_{WW} \end{vmatrix}$ $Re(\varepsilon_{WuL})$	$\operatorname{Re}(\mathcal{E}_{Wc_L})$ Ime	$\operatorname{Im}(\boldsymbol{\varepsilon}_{Wu_L})$ $(\boldsymbol{\varepsilon}_{Wc_L})$	

15 coefficients for 12 independent processes & lots of differential distributions!!

Associate Zh/Wh production

Same variables also relevant for assessing the validity of the momentum expansion.

Higgs VBF @ 13 TeV LHC Higgs VBF @ 13 TeV LHC $2. \times 10^{-2}$ $\kappa_{ZZ} = 1$, $\kappa_{WW} = 1$, $\epsilon_{ZuL} = 0$, $\epsilon_{ZuR} = 0$, $\epsilon_{ZdL} = 0$, $\epsilon_{ZdR} = 0$, $\epsilon_{WuL} = 0.05$ $\kappa_{ZZ} = 1$, $\kappa_{WW} = 1$, $\epsilon_{ZuL} = 0$, $\epsilon_{ZuR} = 0$, $\epsilon_{ZdL} = 0$, $\epsilon_{ZdR} = 0$, $\epsilon_{WuL} = 0$ 1500 600 500 1.6×10^{-3} (*jet*) (*tet*) U^{-4} (*jet*) L^{-4} (jet) (GeV)1000 400 300 500 ^{*L*} 200 100 0 1.×10⁻⁵ ()100 200 300 400 500 600 700 1500 500 1000 0 $\mathbf{0}$ $-q^2$ (GeV) (GeV)18

VBF Higgs production

 q_i^2 correlates with the p_{Tjet_i} $q_i^2 \sim p_{Tjet_i}$

NLO corrections

- PO describe the small-scale (local) contribution to the amplitude
- QCD & QED IR radiation effects (largest NLO corrections) factorize.

Assumption: IR physics (QED & QCD) is unaffected by New Physics.

Universal description of IR corrections

Goal: fully differential QCD NLO description of the process for arbitrary PO. Done for the decays, in progress for EW production.

[For analogous work in the EFT context see Maltoni et al. 1311.1829]

Higgs PO and the SMEFT

We match the Higgs PO to the SM EFT at LO: relations with LEP observables.

e.g h→4ℓ: 'Higgs basis'

$$\epsilon_{Zf} = \frac{2m_Z}{v} \left(\delta g^{Zf} - (c_\theta^2 T_f^3 + s_\theta^2 Y_f) \mathbf{1}_3 \delta g_{1,z} + t_\theta^2 Y_f \mathbf{1}_3 \delta \kappa_\gamma \right)$$

$$\delta \epsilon_{ZZ} = \delta \epsilon_{\gamma\gamma} + \frac{2}{t_{2\theta}} \delta \epsilon_{Z\gamma} - \frac{1}{c_{\theta}^2} \delta \kappa_{\gamma}$$

[Gonzalez-Alonso, Greljo, Isidori, D.M. 1504.04018]

LEP-I: $\delta g^{Z\ell} \lesssim 10^{-2}$ [Efrati, Falkowski, Soreq 2015]Naively ~10 -3 bounds, however the theoretical error is of ~1%.
[Berthier, Trott 2015]No qualitative influence for Higgs physics at present precision.

The less constrained coefficients are the TGC.

We use our combined LEP II + Higgs global fit to derive constraints on the Higgs PO. [Falkowski, Gonzalez-Alonso, Greljo, D.M. 1508.00581]

Predictions for $h \rightarrow 4\ell$ in the SMEFT

5 independent PO only, in the linear EFT.

$$\begin{pmatrix} \kappa_{ZZ} \\ \epsilon_{Z\ell_L} \\ \epsilon_{Z\ell_R} \\ \kappa_{Z\gamma} \\ \kappa_{\gamma\gamma} \end{pmatrix} = \begin{pmatrix} 0.85 \pm 0.17 \\ -0.0001 \pm 0.0078 \\ -0.025 \pm 0.015 \\ 0.96 \pm 1.6 \\ 0.88 \pm 0.19 \end{pmatrix},$$

$$\rho = \begin{pmatrix} 1 .72 .60 .19 .83 \\ \cdot 1 .35 - .16 .62 \\ \cdot \cdot 1 .02 .47 \\ \cdot \cdot 1 .20 \\ \cdot \cdot \cdot 1 .20 \end{pmatrix}$$

From these bounds we can extract precise predictions for Higgs data, such as di-lepton invariant mass spectra.

LHC with Higgs data could test this.

Small deviations allowed in the shape.

PO vs. EFT choose the right tool for the job

Well defined QFT objects at all orders in perturbation theory: residues of poles in on-shell amplitudes

- Naturally provide the best parametrisation for the process: what are the physically observable objects.
- Can be matched to linear or non-linear EFT at LO or NLO, etc..
- Can't be used as couplings in loop computations
- Can't connect different classes of processes
- Choose the EW representation for the Higgs and a basis
- Decide the order in perturbation theory and the scheme
- Recognize the "independent observable parameters in each process": e.g. Higgs basis.

-Can be used in loop computations, e.g. SMEFT at NLO

- Can connect different experiments and allow for global fits

PO Data parametrisation

Interpretation, global fits

FFT

Conclusions

Higgs PO

Characterize all the measurable properties of on-shell Higgs boson processes in a robust and model-independent way.

 general framework to describe on-shell Higgs properties: decay and production.

- defined from physical properties of the Green functions
- clear implementation of QED and QCD soft radiation (leading NLO effect)

simple matching with the SMEFT. Possible both at LO and at NLO.

Backup

Radiative Corrections in $h \rightarrow 4\ell$

The most important radiative corrections are given by soft QED radiation effects since they distort the spectrum.

Effect described by simple and universal radiator functions ω . Also described by showering algorithms (e.g. Pythia).

 $\frac{d\Gamma_{NLO}}{dm_{01}dm_{02}dx_1dx_2} = \frac{d\Gamma_{LO}}{dm_{01}dm_{02}}\omega(x_1)\omega(x_2)$ $x = \frac{m^2}{m_0^2}$

Other NLO corrections are small: ≤1%

Radiative Corrections in $h \rightarrow 4\ell$

Prospects for HL-LHC

Consider 7 PO: κ_{ZZ} , κ_{WW} , ϵ_{ZuL} , ϵ_{ZuR} , ϵ_{ZdL} , ϵ_{ZdR} , ϵ_{WuL}

We fix: $q^{2}_{max} \approx 600 \text{ GeV}$ control the momentum expansion validity.

With 3000 fb⁻¹: ~ 2000 events in VBF (h \rightarrow 2l ℓ 2v) ~ 130 events in Zh (Z \rightarrow 2 ℓ , h \rightarrow 2l ℓ 2v) ~ 67 events in Wh (W \rightarrow ℓ v, h \rightarrow 4 ℓ)

VBF: fit of the 2D p_T distribution.

Zh, Wh: fit of the $1D p_{TV}$ distribution.

LHC will be able to measure all the contact terms with percent accuracy! Same conclusion also if no information on the total rate is retained.

Marginalized 1 and 2σ bounds