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Introduction

3

Run 1 at LHC: discovery of the Higgs and
good measurement of many of its couplings… 
The SM is complete.

So far, from direct searches:
⇤NP � mh (1)
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Scale of New Physics is high**

Search for smooth deviations from the SM.

Run 2 (and beyond): High Precision Higgs era.

What else can the LHC tells about the Higgs?
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Learning on BSM from the Higgs

1
Measure all the physical properties of the Higgs,

in production and decay,
with the highest possible accuracy

as much model-independently as possible.

… Given we do not know what the New Physics will be like
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Learning on BSM from the Higgs

1
Measure all the physical properties of the Higgs,

in production and decay,
with the highest possible accuracy

as much model-independently as possible.

2
Interpret the results of these measurements

in explicit BSM scenarios to learn about the UV.
Eg. SMEFT, SUSY, Composite Higgs, ??, …  
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ĉH log

⇤

mZ
+ . . .
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ĉH
⇤

mZ
+ . . .

(15)
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PO idealized observables,
well defined quantities (in QFT).

Experimental data
Unfolding of collider &
soft radiation effects.

Matching to a given model
at given order in pert. theory

Constraints/measurements on theories

Experiments

Theorists

General comments about Pseudo Observables

Experimental data Lagrangian parametersPseudo Observables

raw data,
fiducial cross-sections,
...

masses, widths,
slopes, ...

Wilson coefficients,
renormalization scale,
running masses, ...

G. Isidori –  PO in Higgs decays                                               CERN, March 2015

Unfolded distributions,
fiducial cross sections

How should the experiments 
present their result
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Figure 1.12: Average over measurements of the hadronic cross-sections (top) and of the muon
forward-backward asymmetry (bottom) by the four experiments, as a function of centre-of-mass
energy. The full line represents the results of model-independent fits to the measurements, as
outlined in Section 1.5. Correcting for QED photonic effects yields the dashed curves, which
define the Z parameters described in the text.

33

from ∆rw implicitly through sin2 θW, as can be seen in Equation 1.26. Here the implicit
correction is of opposite sign, and in fact dominates the direct correction, so that the mt and
mH dependences of sin2 θlept

eff are opposite in sign from the dependences of ∆κse described in
Equation 1.20.

The discussion of radiative corrections given here is leading order only. The actual calcu-
lations used in fits (e.g., Chapters 7 and 8) are performed to higher order, using the programs
TOPAZ0 [30] and ZFITTER [31]. The interested reader is encouraged to consult the authori-
tative discussion in Reference 32.

1.5 The Process e+e− → ff

The differential cross-sections for fermion pair production (see Figure 1.1) around the Z res-
onance can be cast into a Born-type structure using the complex-valued effective coupling
constants given in the previous section. Effects from photon vacuum polarisation are taken
into account by the running electromagnetic coupling constant (Equation 1.30), which also ac-
quires a small imaginary piece. Neglecting initial and final state photon radiation, final state
gluon radiation and fermion masses, the electroweak kernel cross-section for unpolarised beams
can thus be written as the sum of three contributions, from s-channel γ and Z exchange and
from their interference [32],
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+8ℜ {GVeGAe
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(1.34)

with:

χ(s) =
GFm2

Z

8π
√

2

s

s − m2
Z + isΓZ/mZ

, (1.35)

where θ is the scattering angle of the out-going fermion with respect to the direction of the e−.
The colour factor N f

c is one for leptons (f=νe, νµ, ντ , e, µ, τ) and three for quarks (f=d, u, s,
c, b), and χ(s) is the propagator term with a Breit-Wigner denominator with an s-dependent
width.

If the couplings are left free to depart from their SM values, the above expression allows
the resonance properties of the Z to be parametrised in a very model-independent manner.
Essentially the only assumptions imposed by Equation 1.34 are that the Z possesses vector
and axial-vector couplings to fermions, has spin 1, and interferes with the photon. Certain SM
assumptions are nevertheless employed when extracting and interpreting the couplings; these
are discussed in Sections 1.5.4 and 2.5.3.
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Unfold QED (and/or QCD) soft radiation effect

Parametrize the shape with some PO
defined at amplitude level:

Fit the PO from data3)

LEP-1 Strategy: on-shell Z decays
[hep-ex/0509008; Bardin, Grunewald, Passarino ’99]

The goal was to parametrise on-shell Z decays as much model-independently as possible.

Lineshape

3 Pseudo-Observables

There remains to be investigated the systematic errors arising from theory and
possible ambiguities in the definition of the MI fit parameters, the POs.

3.1 Definition of Pseudo-Observables

Independent of the particular realization of the effective couplings they are
complex-valued functions, due to the imaginary parts of the diagrams. In the
past this fact had some relevance only for realistic observables while for pseudo-
observables they were conventionally defined to include only real parts. This
convention has changed lately with the introduction of next-to-leading correc-
tions: imaginary parts, although not next-to-leading in a strict sense, are size-
able two-loop effects. These are enhanced by factors π2 and sometimes also
by a factor Nf , with Nf being the total number of fermions (flavour⊗ colour)
in the SM. Once we include the best of the two-loop terms then imaginary
parts should also come in. The latest versions of TOPAZ0 and ZFITTER therefore
include imaginary parts of the Z-resonance form factors.

The explicit formulae for the Zff vertex are always written starting from a
Born-like form of a pre-factor × fermionic current, where the Born parameters
are promoted to effective, scale-dependent parameters,

ρf
Z
γµ

[(

I(3)
f + i aL

)

γ+ − 2 Qfκf
Z
s2 + i aQ

]

= γµ

(

Gf
V

+ Gf
A

γ5

)

, (6)

where γ+ = 1 + γ5 and aQ,L are the SM imaginary parts. Note that imaginary
parts are always factorized in ZFITTER and added linearly in TOPAZ0.

By definition, the total and partial widths of the Z boson include all cor-
rections, also QED and QCD corrections. The partial decay width is therefore
described by the following expression:

Γf ≡ Γ
(

Z → ff
)

= 4 cf Γ0

(

|Gf
V
|2 Rf

V + |Gf
A
|2 Rf

A

)

+ ∆
EW/QCD

, (7)

where cf = 1 or 3 for leptons or quarks (f = l, q), and the radiator factors

Rf
V and Rf

A describe the final state QED and QCD corrections and take into
account the fermion mass mf .

There is a large body of contributions to the radiator factors in particular for
the decay Z → qq; both TOPAZ0 and ZFITTER implement the results that have
been either derived or, in few cases, confirmed in some more general setting by
the Karlsruhe group, see for instance [15]. The splitting between radiators and
effective couplings follows well defined recipes that can be found and referred to
in [4, 16]. In particular our choice has been that top-mass dependent QCD cor-
rections are to be considered as QCD corrections and included in the radiators
and not in the effective quark couplings.

The last term,

∆
EW/QCD

= Γ(2)
EW/QCD

−
αS

π
Γ(1)

EW
, (8)

10

Parametrise the on-shell Z f ̅f  vertex as
The PO are defined as

accounts for the non-factorizable corrections. The standard partial width, Γ0,
is

Γ0 =
GF M3

Z

24
√

2 π
= 82.945(7) MeV. (9)

The hadronic and leptonic pole cross-sections are defined by

σ0
h = 12π

ΓeΓh

M2
Z
Γ2

Z

σ0
ℓ = 12π

ΓeΓl

M2
Z
Γ2

Z

, (10)

where ΓZ is the total decay width of the Z boson, i.e, the sum of all partial
decay widths. Note that the mass and total width of the Z boson are defined
based on a propagator term χ with an s-dependent width:

χ−1(s) = s − M2
Z

+ isΓZ /MZ . (11)

The effective electroweak mixing angles (effective sinuses) are always defined by
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where we define
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V
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A
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The forward-backward asymmetry A
FB

is defined via

A
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− σ
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σ
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, σ
T
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F

+ σ
B

, (14)

where σ
F

and σ
B

are the cross sections for forward and backward scattering,
respectively. Before analysing the forward-backward asymmetries we have to
describe the inclusion of imaginary parts. A

FB
is calculated as
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In case of quark-pair production, an additional radiator factor multiplies σ
VA

,
see also Eq.(53).

This result is valid in the realization where ρf is a real quantity, i.e., the
imaginary parts are not re-summed in ρf . In this case
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(
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+ i Im
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1)

2)
mZ, ΓZ

The 1 + cos2 θ terms in the above formula contribute to the total cross-section, whereas the
terms multiplying cos θ contribute only to the forward-backward asymmetries for an experi-
mental acceptance symmetric in cos θ. In the region of the Z peak, the total cross-section is
completely dominated by Z exchange. The γ–Z interference determines the energy dependence
of the forward-backward asymmetries and dominates them at off-peak energies, but its leading
contribution, from the real parts of the couplings, vanishes at

√
s = mZ.

In Bhabha scattering, e+e− → e+e−, the t-channel diagrams also contribute to the cross-
sections, with a very dominant photon contribution at large cos θ, i.e., in the forward direction.
This contribution, and its interference with the s-channel, add to the pure s-channel cross-
section for e+e− → e+e− (see Section 2.4.2 for details).

The definition of the mass and width with an s-dependent width term in the Breit-Wigner
denominator is suggested [33] by phase-space and the structure of the electroweak radiative
corrections within the SM. It is different from another commonly used definition, the real part
of the complex pole [34], where the propagator term takes the form χ(s) ∝ s/(s−mZ

2+imZΓZ).

However, under the transformations mZ = mZ/
√

1 + Γ2
Z/m

2
Z and ΓZ = ΓZ/

√

1 + Γ2
Z/m2

Z, and
adjusting the scales of Z exchange and γ/Z interference, the two formulations lead to exactly
equivalent resonance shapes, σ(s).

Photon radiation (Figure 1.11) from the initial and final states, and their interference, are
conveniently treated by convoluting the electroweak kernel cross-section, σew(s), with a QED
radiator, Htot

QED,

σ(s) =
∫ 1

4m2
f
/s

dz Htot
QED(z, s)σew(zs). (1.36)

The difference between the forward and backward cross-sections entering into the determination
of the forward-backward asymmetries, σF − σB, is treated in the same way using a radiator
function HFB

QED. These QED corrections are calculated to third order, and their effects on the
cross-sections and asymmetries are shown in Figure 1.12. At the peak the QED deconvoluted
cross-section is 36% larger than the measured one, and the peak position is shifted downwards
by about 100 MeV. At and below the peak Aµ

FB and Aτ
FB are offset by an amount about equal

to their deconvoluted value of 0.017. The estimated precision of these important corrections is
discussed in Section 2.4.4. It is important to realize that these QED corrections are essentially
independent of the electroweak corrections discussed in Section 1.4, and therefore allow the
parameters of Equation 1.34 to be extracted from the data in a model-independent manner.

1.5.1 Cross-Sections and Partial Widths

The partial Z decay widths are defined inclusively, i.e., they contain QED and QCD [35] final-
state corrections and contributions from the imaginary and non-factorisable parts [36] of the
effective couplings,

Γff = N f
c

GFm3
Z

6
√

2π

(

|GAf |2RAf + |GVf |2RVf

)

+ ∆ew/QCD. (1.37)

The primary reason to define the partial widths including final state corrections and the con-
tribution of the complex non-factorisable terms of the couplings is that the partial widths
defined in this way add up straightforwardly to yield the total width of the Z boson. The
radiator factors RVf and RAf take into account final state QED and QCD corrections as well
as non-zero fermion masses; ∆ew/QCD accounts for small contributions from non-factorisable
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At Run-1, measurements of Higgs properties were reported in the κ-framework: 

M. González-Alonso /10EFT analyses of  NP

What was done in run 1? Kappa framework

Application to Higgs physics

Virtues: Clean SM limit (k→1), well-def. exp & th, quite general.

Limitations: 

What about NP affecting mainly diff. distr?  
(easy to conceive, e.g. CPV) 

What about hVff terms? (diff. in production & decay)
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On-shell Higgs in the narrow width approximation:
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Limitations: 

What about NP affecting mainly diff. distr?  
(easy to conceive, e.g. CPV) 

What about hVff terms? (diff. in production & decay)

Clear SM limit (κ → 1),
theoretically well defined,
systematically improvable,
model independent (on-shell Higgs is key),
can be matched to any EFT in any basis.

Pros:

Cons: Limited to total rates:
can’t describe deviations in differential distributions, e.g. CPV or h → 4f

Need to extend the κ-framework retaining all its good properties:

Higgs pseudo-observables

7

PO used at Run 1: the κ-framework

On-shell Higgs in the narrow width approximation:
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PO are defined from:

Higgs PO: QFT definition

h

decomposition of on-shell amplitudes (NWA),
based on Lorentz invariance and crossing symmetry,

and a momentum expansion (on measurable quantities)
based on analytic properties of the amplitudes (physical poles),

assuming no new light states in the kinematical regime of interest.
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h

f̅, γ, Z

f, γ, γ

2 possible Lorentz structures:
CP-even & CP-odd.

Two-body Higgs decays

Same decomposition for h→Zγ
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h

f̅, γ, Z

f, γ, γ

The kinematics is fixed.
No polarisation information is retained.

the total rate is all that can be 
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2 possible Lorentz structures:
CP-even & CP-odd.

Two-body Higgs decays

Same decomposition for h→Zγ
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By crossing symmetry, all these processes are described
by the same correlation function.
(in a different kinematical region and with different fermionic currents)

2.2 Pseudo-observables in h ! ff̄ decays

In analogy to the e↵ective couplings of Z and W bosons to fermions, for each fermion
species we can introduce two real e↵ective couplings (yfS,P ) defined by

A(h ! ff̄) = � ip
2

h
(yfS + iyfP )f̄LfR + (yfS � iyfP )f̄RfL

i
. (5)

The “dressing” of this amplitude with soft QED and QCD radiation is straightforward.
The measurement of �(h ! ff̄) determines the combination |yfS|2+ |yfP |2, while the yfP/yfS
ratio can be determined only if the lepton polarization is experimentally accessible. If CP
is conserved only one of the two e↵ective couplings is allowed: if h is a CP-even state,
then only yfS is allowed.

Within the SM, at the tree-level, one finds

yf,SMS =

p
2mf

vF
, yf,SMP = 0 , (6)

where vF = (
p
2GF )�1/2, and GF is the Fermi constant extracted from the muon decay.

The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.

7

On-shell Higgs and two on-shell EW currents

h

Jq

V/Jℓ

h

Jq

Jq’

h

Jℓ

Jℓ’

Use the same parametrization of Higgs decays
also for the production.

Assumption: neglect chirality-flipping terms, expected to be suppressed by yf.



e.g. h → e+e- μ+μ- 

Only 3 tensor structures allowed by Lorentz symmetry:
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Longitudinal Transverse CP-odd

OHf = i(H† $
DµH)f̄�µf = �1

2

p
g2 + g02Zµ(v + h)2f̄�µf (1)

To eq.(8) I added a (flavour universal) local interaction

F ff 0

1 � �ff 0

m4
Z

(2)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 2ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
�
✏2ZeR + ✏2ZeL + ✏2ZµL

+ ✏2ZµR
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+ 8.4(�2`L`L + 2�2`L`R + �2`R`R)+

+ all the mixed terms

(3)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m2
Z/⇤

2
and �X ⇠ m4

Z/⇤
4
, and therefore to neglect the quadratic

terms.

h ! eReLµLµR / yeyµ (4)

O(x) = h(x) ē(x)�µe(x) µ̄(x)�
µµ(x) (5)

e = eL, eR, µ = µL, µR (6)
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h

Je

Jμ

As an example, let’s focus on
h → e+e- μ+μ-
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(ē�↵e)(µ̄��µ)⇥


F eµ
L (q21, q

2
2)g

↵� + F eµ
T (q21, q

2
2)
q1 · q2 g↵� � q2↵q1�

m2
Z

+ F eµ
CP(q

2
1, q

2
2)
"↵�⇢�q2⇢q1�

m2
Z

�
(7)

A =i
2m2

Z

vF
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Ultimate experimental goal for any of these processes:

measure the double differential distributions in (q12, q22 )
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Je
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As an example, let’s focus on
h → e+e- μ+μ-
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2.2 Pseudo-observables in h ! ff̄ decays

In analogy to the e↵ective couplings of Z and W bosons to fermions, for each fermion
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A(h ! ff̄) = � ip
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(yfS + iyfP )f̄LfR + (yfS � iyfP )f̄RfL

i
. (5)

The “dressing” of this amplitude with soft QED and QCD radiation is straightforward.
The measurement of �(h ! ff̄) determines the combination |yfS|2+ |yfP |2, while the yfP/yfS
ratio can be determined only if the lepton polarization is experimentally accessible. If CP
is conserved only one of the two e↵ective couplings is allowed: if h is a CP-even state,
then only yfS is allowed.

Within the SM, at the tree-level, one finds

yf,SMS =

p
2mf

vF
, yf,SMP = 0 , (6)

where vF = (
p
2GF )�1/2, and GF is the Fermi constant extracted from the muon decay.

The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.

7

Long-distance (non-local) modes (poles):
propagation of EW gauge bosons.

Short-distance modes:
contact terms, x and/or y → 0

includesh

Je

Jμ
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We perform a momentum expansion around the physical poles of the SM states:
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Assuming:     New Physics scale > Energy scale of the process

To truncate the expansion, we have to assume q2max ≪ Λ2

No problem in Higgs decays.
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To eq.(8) I added a (flavour universal) local interaction
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(ē�↵e)(µ̄��µ)⇥

✓
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+

✏Ze

m2
Z

gµZ
PZ(q22)

+
✏Zµ

m2
Z

geZ
PZ(q21)

+�SM
1 (q21, q

2
2)

◆
g↵�+

+

✓
✏ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ Z�✏

SM-1L
Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ��✏

SM-1L
��

e2QeQµ

q21q
2
2

+�SM
3 (q21, q

2
2)

◆
⇥

⇥ q1 · q2 g↵� � q2↵q1�

m2
Z

+

+

✓
✏CP
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ ✏CP

Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ✏CP

��
e2QeQµ

q21q
2
2

◆
"↵�⇢�q2⇢q1�

m2
Z

�

(4)

A = i
2m2

Z

vF
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To eq.(8) I added a (flavour universal) local interaction

F ff 0

1 �
�ff 0

m4
Z

(1)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�
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See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m2
Z/⇤

2
and �X ⇠ m4
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4
, and therefore to neglect the quadratic

terms.

e = eL, eR, µ = µL, µR (3)
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The Higgs PO are defined from the residues on the physical poles.

h

J
µ
f ′

J
µ
f

h

q2

q1

J
µ
f ′

J
µ
f

h

J
µ
f ′

J
µ
f

+ +
Z, γ

Z, γ

Z

Z

=

e+

e-

μ+

μ-

h

Jf

Jf’



In the SM

A =i
2m2

Z

vF

X

e=eL,eR

X

µ=µL,µR

(ē�µe)(µ̄�⌫µ)⇥


✓
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+

✏Ze

m2
Z

gµZ
PZ(q22)

+
✏Zµ

m2
Z

geZ
PZ(q21)

◆
gµ⌫+

+

✓
✏ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ Z�✏

SM-1L
Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ��✏

SM-1L
��

e2QeQµ

q21q
2
2

◆
q1 · q2 gµ⌫ � q2µq1⌫

m2
Z

+

+

✓
✏CP
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ ✏CP

Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ✏CP

��
e2QeQµ

q21q
2
2

◆
"µ⌫⇢�q2⇢q1�

m2
Z

�

(1)

X ! 1, ✏X ! 0 (2)

hZµZ
µ hVµ⌫V

µ⌫ h"µ⌫⇢�Vµ⌫V⇢� hZµf̄�
µf (3)

ZZ ,Z� ,�� , ✏ZZ ,

✏CP
Z� , ✏

CP
�� , ✏CP

ZZ ,

✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR

(4)

WW , ✏WW , ✏CP
WW ,

✏We, ✏Wµ, (complex)

(5)

1

X ! 1, ✏X ! 0 (2)

hZµZ
µ hVµ⌫V

µ⌫ h"µ⌫⇢�Vµ⌫V⇢� hZµf̄�
µf (3)

ZZ ,Z� ,�� , ✏ZZ ,

✏CP
Z� , ✏

CP
�� , ✏CP

ZZ ,

✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR

(4)

WW , ✏WW , ✏CP
WW ,

✏We, ✏Wµ, (complex)

(5)

✏SM-1L
�� ' 3.8⇥ 10�3 ,

✏SM-1L
Z� ' 6.7⇥ 10�3

(6)

2

A =i
2m2

Z

vF

X

e=eL,eR

X

µ=µL,µR
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The Higgs PO are defined from the residues on the physical poles.
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Z-pole PO
As measured at LEP-I

non-local NLO
SM contribution

(very small)

The Higgs PO are defined from the residues on the physical poles.
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EW Higgs production
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The hard contribution to these scattering processes is:

Physical process: all external particles are on-shell.

Higgs + 2 EW currents
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Same as 4-fermion Higgs decays:
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Flavor-independent PO probed in h→4ℓ decay. Focus on quark contact terms.
Amplitudes/processes U(2)3 flavor symm. flavor non universality CPV

neutral currents ✏ZuL , ✏ZuR ✏ZcL , ✏ZcR

(VBFn.c.+Zh) ✏ZdL , ✏ZdR ✏ZsL , ✏ZsR

charged currents
Re(✏WuL)

Re(✏WcL) Im(✏WuL)
(VBFc.c.+Wh) Im(✏WcL)

VBF and VH ✏ZuL , ✏ZuR ✏ZcL , ✏ZcR

[with custodial symm.] ✏ZdL , ✏ZdR ✏ZsL , ✏ZsR

Table 1: Summary of the “production PO”, namely the PO appearing in VBF and VH
in addition to those already present in Higgs decays (classified in Ref. [1]). In the second
column we show the independent PO needed for a given set of amplitudes, assuming both
CP invariance and U(2)3 flavor symmetry. The additional variables needed if we relax
these symmetry hypotheses are reported in the third and fourth columns. In the bottom
row we show the independent PO needed for a combined description of VBF and VH
under the hypothesis of custodial symmetry. The number of independent PO range from
12 (sum of the first two lines) to 4 (bottom row, second column).

and only 2 complex parameters in the charged-current case:

✏Wui
Ld

j
L
⌘ Vij✏Wuj

L
, ✏Wui

RdjR
= 0 . (11)

A further interesting reduction of the number of parameters occurs under the assump-
tion of an U(2)3 symmetry acting on the first two generations, namely the maximal flavor
symmetry compatible with the SM gauge group [12–14]. The independent parameters in
this case reduces to six:

✏ZuL , ✏ZuR , ✏ZdL , ✏ZdR , ✏WuL , (12)

where ✏WuL is complex, or five if we further neglect CP-violating contributions (in such
case ✏WuL is real). We employ this set of assumptions (U(2)3 flavor symmetry and CP
conservation) in the phenomenological analysis of VBF and VH processes discussed in
the rest of the paper. Finally, we can enforce custodial symmetry that, as shown in [1],
implies

✏WuL =
cWp
2
(✏ZuL � ✏ZdL) , (13)

reducing the number of independent PO to four in the U(2)3 case (independently of any
assumption about CP).

As far as dynamical hypotheses are concerned, numerical constraints on the Higgs
PO can be derived under the hypothesis that the Higgs particle is the massive excitation
of a pure SU(2)L doublet, i.e. within the so-called linear EFT (or SMEFT). In this
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+ Flavor + CP-violation

New PO not accessible in h→4ℓ
Only quark contact terms are not probed also in h→4ℓ decays.

Need to be careful with the validity of the momentum expansion around 

the physical poles.

Vh:   q12 > (mh + mV)2        q22 ~ mV2   (if V experimentally taken on-shell) 

VBF:   q12, q22  < 0    (t-channel)
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Higgs (EW) decay amplitudes

Amplitudes Flavor + CP Flavor Non Univ. CPV
h ! gg,2eg,2µg kZZ,kZg

,k
gg

,eZZ
eZµL ,eZµR e

CP
ZZ ,l

CP
Zg

,lCP
gg4e,4µ,2e2µ eZeL ,eZeR

h ! 2e2n ,2µ2n ,enµn

kWW ,eWW eZn

µ

, Re(eW µL) e

CP
WW , Im(eWeL)

eZne , Re(eWeL) Im(eW µL)

Higgs (EW) production amplitudes

Amplitudes Flavor + CP Flavor Non Univ. CPV
VBF neutral curr.

⇥

kZZ,kZg

,eZZ
⇤

eZcL ,eZcR
h

e

CP
ZZ ,l

CP
Zg

i

and Zh eZuL ,eZuR ,eZdL ,eZdR eZsL ,eZsR

VBF charged curr. [ kWW ,eWW ] Re(eWcL) Im(eWuL)
and Wh Re(eWuL) Im(eWcL)

EW production and decay modes, with custodial symmetry

Amplitudes Flavor + CP Flavor Non Univ. CPV

production & decays kZZ,kZg

,eZZ e

CP
ZZ ,l

CP
Zg

VBF and VH only eZuL ,eZuR ,eZdL ,eZdR

eZcL ,eZcR

eZsL ,eZsR

decays only k

gg

,eZeL ,eZeR , Re(eWeL) eZµL ,eZµR l

CP
gg

Table 2: Summary of the effective couplings PO appearing in EW Higgs decays and in the VBF and
VH production cross-sections (see main text). The terms between square brakes in the middle table are
the PO present both in production and decays. The last table denote the PO needed to describe both
production and decays under the assumption of custodial symmetry.

29

EW decay and production:

6

4

4

1

15 coefficients for 12 independent processes & lots of differential distributions!!

Test UV symmetries!

Parameter Counting & Symmetries
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h

Jq

V/Jℓ
To extract the contact terms: 
measure the differential distribution in mZh.
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Figure 7: The correlation between the Zh invariant mass and the pT of the Z boson in Zh
associate production at the 13TeV LHC in the SM (left plot) and for a BSM point ZZ = 1,
✏ZuL = 0.1 (right plot). A very similar correlation is present in the Wh channel.

structure of the form factors appearing in Eq. (9), namely F qiZ
L (q2) or G

qijW
L (q2), see also

Ref. [52]. The invariant mass of the V h system is given by m2
V h = q2 = m2

V +m2
h+2pV ·ph.

In the c.m. frame, we have pV = (EV , ~pT, pz) and ph = (Eh,�~pT,�pz) and

m2
V h = m2

V +m2
h + 2p2T + 2p2z + 2

q
m2

V + p2T + p2z

q
m2

h + p2T + p2z
|p

T

|!1�! 4p2T . (23)

For pz = 0 this equation gives the minimum q2 for a given pT, which can be seen as the left
edge of the distributions in Fig. 7. This is already a valuable information, especially to
address the validity of the momentum expansion. For example the boosted Higgs regime
utilized in many bb̄ analyses implies a potentially dangerous lower cut-o↵ on q2: here a bin
with pT > 300 GeV implies

p
q2 & 630 GeV, which might be a problem for the validity

of the momentum expansion.
In the Wh process, for a leptonic W boson decay, the pT,W can not be reconstructed

independently of the Higgs decay channel. It is tempting to consider the pT of the charged
lepton from the W decay as correlated with the Wh invariant mass. However, we checked
explicitly that any correlation is washed out by the decay.

4.2 NLO QCD corrections in VH

At the inclusive and exclusive level QCD corrections to VH processes are well under
control [26,27,53]. The dominant QCD corrections of Drell-Yan-like type are known fully
di↵erentially up to NNLO [54–56] and on the inclusive level amount to about 30% with
respect to the LO predictions for both Wh and Zh. Remaining scale uncertainties are at
the level of a few percent.

In Fig. 8 we illustrate the NLO QCD corrections to Zh in the SM looking at di↵erential
distributions in pT,Z and mZh, while the qualitative picture is very similar for Wh. The

20

mZh   correlates with the  pTZ.
[See also Ellist et al. 1410.7703 and Englert et al. 1511.05170]
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✏ZuL = 0.1 (right plot). A very similar correlation is present in the Wh channel.

structure of the form factors appearing in Eq. (9), namely F qiZ
L (q2) or G

qijW
L (q2), see also

Ref. [52]. The invariant mass of the V h system is given by m2
V h = q2 = m2

V +m2
h+2pV ·ph.

In the c.m. frame, we have pV = (EV , ~pT, pz) and ph = (Eh,�~pT,�pz) and

m2
V h = m2

V +m2
h + 2p2T + 2p2z + 2

q
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V + p2T + p2z

q
m2

h + p2T + p2z
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|!1�! 4p2T . (23)

For pz = 0 this equation gives the minimum q2 for a given pT, which can be seen as the left
edge of the distributions in Fig. 7. This is already a valuable information, especially to
address the validity of the momentum expansion. For example the boosted Higgs regime
utilized in many bb̄ analyses implies a potentially dangerous lower cut-o↵ on q2: here a bin
with pT > 300 GeV implies

p
q2 & 630 GeV, which might be a problem for the validity

of the momentum expansion.
In the Wh process, for a leptonic W boson decay, the pT,W can not be reconstructed

independently of the Higgs decay channel. It is tempting to consider the pT of the charged
lepton from the W decay as correlated with the Wh invariant mass. However, we checked
explicitly that any correlation is washed out by the decay.

4.2 NLO QCD corrections in VH

At the inclusive and exclusive level QCD corrections to VH processes are well under
control [26,27,53]. The dominant QCD corrections of Drell-Yan-like type are known fully
di↵erentially up to NNLO [54–56] and on the inclusive level amount to about 30% with
respect to the LO predictions for both Wh and Zh. Remaining scale uncertainties are at
the level of a few percent.

In Fig. 8 we illustrate the NLO QCD corrections to Zh in the SM looking at di↵erential
distributions in pT,Z and mZh, while the qualitative picture is very similar for Wh. The
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BSMSM

Same variables also relevant for assessing the validity of the momentum expansion.
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Figure 1: Leading order parton level simulation of the Higgs VBF production at 13 TeV
pp c.m. energy. Show in blue is the distribution in the opening angle of the color connected
incoming and outgoing quarks ](~p3, ~p1), while in red is the distribution for the opposite pairing,
\(~p3, ~p2). The left plot is for the SM, while the plot on the right is for a specific NP benchmark.

κZZ=1, κWW=1, ϵZuL=0, ϵZuR=0,
ϵZdL=0, ϵZdR=0, ϵWuL=0

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

-q2 (GeV )

p T
(j
et
)(
G
eV

)

Higgs VBF @ 13 TeV LHC

1.×10-5

1.3×10-4

1.6×10-3

2.×10-2
κZZ=1, κWW=1, ϵZuL=0, ϵZuR=0,
ϵZdL=0, ϵZdR=0, ϵWuL=0.05

0 500 1000 1500
0

500

1000

1500

-q2 (GeV )

p T
(j
et
)(
G
eV

)

Higgs VBF @ 13 TeV LHC

1.×10-5

1.6×10-4

2.5×10-3

4.×10-2

Figure 2: Leading order parton level simulation of the Higgs VBF production at 13 TeV pp
c.m. energy. Shown here is the density histogram in two variables; the outgoing quark pT and
the momentum transfer

p
�q2 with the initial “color-connected” quark. The left plot is for the

SM, while the plot on the right is for a specific NP benchmark.
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Jq

Jq’qi2 correlates with the pTjeti

qi2 ~ pTjeti
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Figure 3: Double di↵erential distribution in the two VBF-tagged jet pT for VBF Higgs pro-
duction at 13 TeV LHC. The distribution is normalized such that the total sum of events in all
bins is 1. (Left) Prediction in the SM. (Right) Prediction for NP in ✏WuL = 0.05.

2E = E 0
1 + E 0

2 + Eh, where Eh is the Higgs energy, usually of order mh if the Higgs is
not strongly boosted. In this case E � E 0

i = �Ei ⌧ E since the process is symmetric in
1 $ 2. For each leg, energy and momentum conservation (along the z axis) give

⇢
qzi = E �p

E 02
i � p2Ti ,

q0i = E � E 0
i ,

!
(

q0i � qzi =
p
E 02

i � p2Ti � E 0
i ⇡ � p2

Ti
2E0

i
,

q0i + qzi ⇡ 2�Ei +
p2
Ti

2E0
i
.

. (18)

Putting together these two relations, one finds

q2i ⇡ �p2Ti �
p2Ti�Ei

2E 0
i

+O(p4Ti/E
02) ⇡ �p2Ti , (19)

where in the last step we assumed�Ei ⌧ E 0, i.e. the Higgs being produced near threshold.
In order to confirm the above conclusion, in Fig. 2 we show a density histogram in

two variables: the (observable) pT of the outgoing jet and the (unobservable) momentum
transfer

p�q2 obtained from the correct color flow pairing (the left and the right plots
are for the SM and for a specific NP benchmark, respectively). These plots indicate a
very strong correlation of the jet pT with the momentum transfer

p�q2 associated with
the correct color pairing. We stress that this conclusion holds both within and beyond
the SM. Therefore, we encourage the experimental collaborations to report the unfolded
measurement of the double di↵erential distributions in the two VBF tagged jet pT’s:
F̃ (pTj

1

, pTj
2

). This measurable distribution is indeed closely related to the form factor
entering the amplitude decomposition, FL(q21, q

2
2), and encode (in a model-independent

way) the dynamical information about the high-energy behavior of the process. More-
over, as we will discuss in Section 3.3, the extraction of the PO in VBF must be done

13

Double-differential distribution in the jets pT.

PZ(q
2) = q2 �m2

Z + imZ�Z (16)

✏CP
X = Im ✏W `L = 0 (17)

X ! 1, ✏X ! 0 (18)

hZµZ
µ, hZµ@⌫Vµ⌫ hVµ⌫V

µ⌫ h"µ⌫⇢�Vµ⌫V⇢� hZµf̄�
µf, hZµ@⌫Vµ⌫ (19)

V = Z, � (20)

ZZ ,Z� ,�� , ✏ZZ ,

✏CP
Z� , ✏

CP
�� , ✏CP

ZZ ,

✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR

(21)

WW , ✏WW , ✏CP
WW ,

✏We, ✏Wµ, (complex)

(22)

✏SM-1L
�� ' 3.8⇥ 10�3 ,

✏SM-1L
Z� ' 6.7⇥ 10�3

(23)

WW � ZZ = �2

g

⇣p
2✏WeL + 2cw✏ZeL

⌘
(24)

|yfS |2 + |yfP |2 (25)

|✏�� |2 + |✏CP
�� |2 (26)

�f ��� (27)

Jµ
f (x) = f̄(x)�µf(x) (28)

d�NLO

dm01dm02dx1dx2
=

d�LO

dm01dm02
!(x1)!(x2) (29)

d�NLO

dm1dm2
x =

m2

m2
0

(30)

�(obs)i =
X

j

↵ij
cj
⇤2

+O
✓

1

⇤4

◆
(31)

↵ij (32)

F (q21, q
2
2) ! F̃ (p2T1, p

2
T2) (33)
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h

Jq

Jq’qi2 correlates with the pTjeti

qi2 ~ pTjeti
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Assumption: IR physics (QED & QCD) is unaffected by New Physics.

Goal: fully differential QCD NLO description of the process for arbitrary PO.

[For analogous work in the EFT context see Maltoni et al. 1311.1829]

NLO corrections
- PO describe the small-scale (local) contribution to the amplitude

- QCD & QED IR radiation effects (largest NLO corrections) factorize.

Universal description of IR corrections

Done for the decays, in progress for EW production.

h
m02

m2 < m02

γ
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e.g h→4 :

To eq.(8) I added a (flavour universal) local interaction

F

ff 0

1 �
�ff 0

m

4
Z

(1)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 

2
ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
�
✏

2
ZeR + ✏

2
ZeL + ✏

2
ZµL

+ ✏

2
ZµR

�
+ 8.4(�2`L`L + 2�2`L`R + �

2
`R`R)+

+ all the mixed terms

(2)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m

2
Z/⇤

2
and �X ⇠ m

4
Z/⇤

4
, and therefore to neglect the quadratic

terms.

e = eL, eR, µ = µL, µR (3)

A =i

2m2
Z

vF
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⇣
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See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m
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, and therefore to neglect the quadratic
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1

δεγγ ≲ 10-3 

δεZγ ≲ 10-2 
From LHC:Naively ~10 -3 bounds, however the theoretical error is of ~1%.

No qualitative influence for Higgs physics at present precision.

LEP-I:     δgZℓ ≲ 10-2 [Efrati, Falkowski, Soreq 2015]

[Berthier, Trott 2015]

The less constrained coefficients are the TGC.

We use our combined LEP II + Higgs global fit to derive constraints on the Higgs PO.

[Gonzalez-Alonso, Greljo, Isidori, D.M. 1504.04018]

We match the Higgs PO to the SM EFT at LO:  relations with LEP observables.

Higgs PO and the SMEFT

[Falkowski, Gonzalez-Alonso, Greljo, D.M. 1508.00581]

‘Higgs basis’
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with the correlation matrix:

⇢ =

0

BBBBBBBBBBBB@

1 �.53 .20 �.49 .47 .15 �.41 .63 �.19 .22
· 1 .56 �.29 .31 �.13 .20 �.22 �.38 �.85
· · 1 �.91 .91 .00 �.13 .26 .35 �.79
· · · 1 �.999 �.06 .25 �.42 �.27 .59
· · · · 1 .06 �.24 .40 .27 �.06
· · · · · 1 �.88 .30 .06 .07
· · · · · · 1 �.22 .10 �.06
· · · · · · · 1 .30 .01
· · · · · · · · 1 �.38
· · · · · · · · · 1

1

CCCCCCCCCCCCA

.

(A.11)

h ! 4` pseudo-observables

Here we report the bounds on the Higgs pseudo-
observables relevant to h ! 4` decays, obtained via a
tree-level matching with the D=6 operators in the Higgs
basis [23]. At this level, only five pseudo-observables are
independent and the constraints we find are:

0

BBB@

ZZ

✏Z`L

✏Z`R

Z�

��

1

CCCA
=

0

BBB@

0.85± 0.17
�0.0001± 0.0078
�0.025± 0.015

0.96± 1.6
0.88± 0.19

1

CCCA
,

⇢ =

0

BBB@

1 .72 .60 .19 .83
· 1 .35 �.16 .62
· · 1 .02 .47
· · · 1 .20
· · · · 1

1

CCCA
.

(A.12)

Appendix B: Single Z and W Drell-Yan production

Using Madgraph 5 [44] we compute the leading order
(LO) contribution of the D=6 operators in the Higgs
basis to the Z- and W -boson Drell-Yan production cross-

section at 8 TeV in the flavor-general EFT finding:

�LO(pp ! Z)

�SM,LO(pp ! Z)
= 1 + 2.20 �gZu

L � 1.01 �gZu
R

� 1.89 �gZd
L + 0.34 �gZd

R ,

�LO(pp ! W )

�SM,LO(pp ! W )
= 1 + 1.73 (�gZu

L � �gZd
L ) ,

(B.1)

where �SM,LO(pp ! Z) ⇡ 23.9 nb and �SM,LO(pp !
W ) ⇡ 84.5 nb. From Ref. [17], we get the experimental
constraints from 8 TeV data:

�exp(pp ! Z ! `+`�)

�SM, NNLO(pp ! Z ! `+`�)
= 1.02± 0.05. (B.2)

�exp(pp ! W ! `⌫)

�SM, NNLO(pp ! W ! `⌫)
= 1.00± 0.04. (B.3)

As explained in the main text, we assume that the NLO
QCD corrections largely cancel in the BSM vs SM ratio
of Eq. (B.1), and that NLO EW corrections can be ne-
glected. Taking into account that NP e↵ects in leptonic Z
decays are negligible at this level of precision [10], we use
these experimental results to improve the bounds on the
�gV q

L,R coe�cients obtained from LEP1 data in Ref. [10].
These limits are used to constrain the extra contribu-

tion to the production modes VBF, Wh and Zh due to
such anomalous W and Z couplings, which are given by

��V BF

�SM
VBF

= �6.7�gZu
L + 0.9�gZu

R + 6.1�gZd
L � 0.28�gZd

R ,

��Wh

�SM
Wh

= 28�gZu
L � 28�gZd

L ,

��Zh

�SM
Zh

= 31�gZu
L � 14�gZu

R � 23�gZd
L + 4.3�gZd

R . (B.4)
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From these bounds we can extract
precise predictions for Higgs data,
such as di-lepton invariant mass 
spectra.

Predictions for h→4ℓ in the SMEFT
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Small deviations allowed in the shape.

5 independent PO only, in the linear EFT.

LHC with Higgs data could test this.



- Well defined QFT objects at all orders in perturbation theory: 
  residues of poles in on-shell amplitudes

- Naturally provide the best parametrisation for the process: 
  what are the physically observable objects.

- Can be matched to linear or non-linear EFT at LO or NLO, etc..
- Can’t be used as couplings in loop computations
- Can’t connect different classes of processes

22

PO vs. EFT 
choose the right tool for the job

PO

EFT
- Choose the EW representation for the Higgs and a basis
- Decide the order in perturbation theory and the scheme
- Recognize the “independent observable parameters in each 

process”: e.g. Higgs basis.
- Can be used in loop computations, e.g. SMEFT at NLO
- Can connect different experiments and allow for global fits

+

-

+
+
-
-
-
+

-

+

Data parametrisation

Interpretation, global fits



23

Higgs PO 

h

J
µ
f ′

J
µ
f

h

Characterize all the measurable properties of on-shell Higgs boson processes
in a robust and model-independent way.

Conclusions

• general framework to describe on-shell Higgs properties:
decay and production.

• defined from physical properties of the Green functions

• clear implementation of QED and QCD soft radiation (leading NLO effect)

• simple matching with the SMEFT. Possible both at LO and at NLO.



Backup
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Radiative Corrections in h→4ℓ
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The most important radiative corrections are 
given by soft QED radiation effects since they 
distort the spectrum.

h
m02

m2 < m02

γ

Effect described by simple and universal
radiator functions ω. Also described by 
showering algorithms (e.g. Pythia).
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Fig. 1 Dilepton invariant mass spectra in the SM for h ! 2e2µ decay.

blue bands for µ+µ� and e

+
e

� invariant mass spectra, re-
spectively. The important conclusion is that our procedure
gives an excellent approximation to full NLO EW correc-
tions at the level of one percent accuracy in this observable.
As expected, the corrections are larger for smaller recombi-
nation parameter m⇤. Moreover, the distributions in µ+µ�

and e

+
e

� invariant masses are the same within MC uncer-
tainty due to the fact that large fermion-mass logarithms can-
cel in sufficiently inclusive observables.

4 Conclusions
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~15% effect!
Other NLO corrections are small: ≲1%
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Taking this effect into account is 
necessary to extract the PO from data.
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Fig. 1 Left: Dilepton invariant mass spectrum in the SM for the h ! 2e2µ decay (full line: PO decomposition “dressed” with QED corrections;
red and blue bands: complete NLO result from Prophecy4f). Right: Dilepton invariant mass spectrum in the presence of new physics for various
benchmark scenarios (see text for details).

the treatment of soft and collinear divergences, and the so-
called “photon-recombination” is applied. In particular, if
the invariant mass of a lepton and a photon is smaller than
m⇤, the photon momentum is added to the lepton momen-
tum [10] . As a result, m⇤ coincides with the collinear cut-off
introduced in the previous section.

In Fig. 1 (left) we show the decay distribution as a func-
tion of the dilepton invariant mass normalized to the total
decay width for h ! 2e2µ in the SM (upper plot) and the ra-
tio between NLO and leading-order (LO) predictions (lower
plot). Shown in solid black is our improved prediction ob-
tained by convoluting the leading order distribution, shown
in dashed black, with the radiator function as described in the
previous section. The PO have been fixed to their SM tree-
level reference values (kZZ = 1, ei = 0 [1]). The Prophecy4f
predictions within MC uncertainty are shown with red and
blue bands for µ+µ� and e+e� invariant mass spectra, re-
spectively.

We list here a series of conclusions that can be derived
from this numerical comparison.

– The spectrum obtained with the PO decomposition of the
amplitude, “dressed” with leading QED corrections, pro-
vides an excellent approximation (within 1% accuracy)
to the spectrum obtained with full NLO EW corrections.2

– The effect of the leading QED corrections can be large,
exceeding 10% in specific regions of the phase space.
It therefore must be included, in view of a precise data-
theory comparison, also when fitting beyond-the-SM pa-
rameters.

– The PO “dressed” spectrum is obtained setting ei = 0
(i.e. to their LO SM values). The good agreement with
the complete NLO calculation confirms that the O(a/p)
redefinition of the ei is a small effect, with no observable
consequences for the h ! 2e2µ dilepton invariant mass
spectrum.

2The ⇠ 2% deviations at the border of the phase space are expected
due the breakdown of the approximation m`` � m⇤ employed in the
analytic evaluation of the radiation function.
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Fig. 1 Left: Dilepton invariant mass spectrum in the SM for the h ! 2e2µ decay (full line: PO decomposition “dressed” with QED corrections;
red and blue bands: complete NLO result from Prophecy4f). Right: Dilepton invariant mass spectrum in the presence of new physics for various
benchmark scenarios (see text for details).

the treatment of soft and collinear divergences, and the so-
called “photon-recombination” is applied. In particular, if
the invariant mass of a lepton and a photon is smaller than
m⇤, the photon momentum is added to the lepton momen-
tum [10] . As a result, m⇤ coincides with the collinear cut-off
introduced in the previous section.

In Fig. 1 (left) we show the decay distribution as a func-
tion of the dilepton invariant mass normalized to the total
decay width for h ! 2e2µ in the SM (upper plot) and the ra-
tio between NLO and leading-order (LO) predictions (lower
plot). Shown in solid black is our improved prediction ob-
tained by convoluting the leading order distribution, shown
in dashed black, with the radiator function as described in the
previous section. The PO have been fixed to their SM tree-
level reference values (kZZ = 1, ei = 0 [1]). The Prophecy4f
predictions within MC uncertainty are shown with red and
blue bands for µ+µ� and e+e� invariant mass spectra, re-
spectively.

We list here a series of conclusions that can be derived
from this numerical comparison.

– The spectrum obtained with the PO decomposition of the
amplitude, “dressed” with leading QED corrections, pro-
vides an excellent approximation (within 1% accuracy)
to the spectrum obtained with full NLO EW corrections.2

– The effect of the leading QED corrections can be large,
exceeding 10% in specific regions of the phase space.
It therefore must be included, in view of a precise data-
theory comparison, also when fitting beyond-the-SM pa-
rameters.

– The PO “dressed” spectrum is obtained setting ei = 0
(i.e. to their LO SM values). The good agreement with
the complete NLO calculation confirms that the O(a/p)
redefinition of the ei is a small effect, with no observable
consequences for the h ! 2e2µ dilepton invariant mass
spectrum.

2The ⇠ 2% deviations at the border of the phase space are expected
due the breakdown of the approximation m`` � m⇤ employed in the
analytic evaluation of the radiation function.

Showering algorithms
(e.g. PYTHIA) correctly 
describe these corrections.

All these benchmark points give a SM-like total rate.

Radiative Corrections in h→4ℓ
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Consider 7 PO:

VBF: fit of the 2D pT distribution.

Zh, Wh: fit of the 1D pTV distribution.

LHC will be able to measure all the 
contact terms with percent accuracy!
Same conclusion also if no information on the 
total rate is retained.

With 3000 fb-1:  ~ 2000 events in VBF (h→2l 2ν)
                                 ~ 130 events in Zh (Z→ 2 , h→2l 2ν)

                           ~ 67 events in Wh (W→ ν, h→4 )
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Figure 5: Prospects for measuring Higgs PO in electroweak Higgs production at the HL-
LHC at 13 TeV with 3000 fb�1 of integrated luminosity. For VBF and Zh we considered the
h ! 2`2⌫ channel (with Z ! 2` in Zh) while for Wh we considered only the clean h ! 4`,
W ! `⌫ channel. The solid (dashed) intervals represent the 1� (2�) constraints in each PO,
where all the others are profiled. The red bounds are from VBF, the blue ones from Zh and the
green ones from Wh production. More details can be found in the main text.

3.3 Prospects for the Higgs PO in VBF at the HL-LHC

The extraction of the PO from the double di↵erential distribution F̃ (pTj
1

, pTj
2

) has to be
done with care. Here we make an attempt to perform such analysis. In the following we
estimate the sensitivity of the HL-LHC, operated at 13 TeV with 3000 fb�1 of data, on
measuring the PO assuming maximal flavor symmetry in a seven dimensional fit to ZZ ,
WW , ✏ZuL , ✏ZuR , ✏ZdL , ✏ZdR and ✏WuL . The ATLAS search for h ! WW ⇤ reported in
Ref. [42] considers the VBF-enriched category in which the detection of two jets consistent
with VBF kinematics is required. The expected yields in this category are reported in
Table VII of Ref. [42]. After the final selection cuts at 8 TeV with 20.3 fb�1 of integrated
luminosity, the expected number of Higgs VBF events in the SM is 4.7 (compared to 5.5
background events) in the eµ sample. Rescaling the number of expected events with the
expected HL-LHC luminosity (3000 fb�1) and cross section, we expect about 2000 SM
Higgs VBF events to be collected by each experiment. In the following, we make a brave
approximation and neglect any background events in the fit and assume that the HL-LHC
will observe a total of 2000 events compatible with the SM expectations.
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