Measurement of di- and tri-boson cross sections and differential distributions and EFT interpretations, where available

Multi-Boson results and anomalous couplings at the LHC

Marc-André Pleier

HEFT2016, October 28 2016

Marc-André Pleier

2/19

Brookhaven National Laboratory

Run II Results

First 13 TeV multi-V results available[<u>ATLAS</u>, <u>CMS</u>]...

Run II Results

First 13 TeV multi-V results available[<u>ATLAS</u>, <u>CMS</u>]...

... but only few preliminary results on anomalous couplings

Recent VBF/VV results

Recent VV results

Overview of studied aTGCs:

Coupling	Parameters	Channel	r all
$WW\gamma$	$\Delta \kappa_{\gamma}, \lambda_{\gamma}$	$WW, W\gamma, \text{VBF-}W$	l foi
WWZ	$\Delta g_1^Z, \Delta \kappa_Z, \lambda_Z$	WW, WZ, VBF-W, VBF-Z	ion
$Z\gamma\gamma$	h_3^γ, h_4^γ	$Z\gamma$	ctat
$Z\gamma Z$	h_3^Z,h_4^Z	$Z\gamma$	the
$ZZ\gamma$	f_4^γ, f_5^γ	$ZZ = f_A^V$ violate CP	[ex
ZZZ	f_4^Z, f_5^Z	ZZ	SN

- Experimental access: aTGCs modify total production rate as well as event kinematics
 - Use cross-section measurement or kinematics to constrain aTGCs
- A suppression factor depending on a scale Λ_{FF} ensures conservation of unitarity (divergent xsecs at high \sqrt{s}):

$$\lambda(\hat{s}) = \frac{\lambda_0}{(1 + \hat{s}/\Lambda_{FF}^2)^n}$$

these parameters

$Z\gamma \rightarrow \ell \ell \gamma$, $\nu \nu \gamma @ 8 \text{ TeV}$

PRD 93, 112002 (2016)

<u>PLB 760 (2016) 448</u>

* $e^+e^- / \mu^+ \mu^-$ (ATLAS only) or MET plus isolated photon(s)

***** Early NNLO fully differential <u>calculation for $Z\gamma$ in 2013</u>

$Z\gamma \rightarrow \ell \ell \gamma$, $\nu \nu \gamma @ 8 \text{ TeV}$

PRD 93, 112002 (2016)

<u>PLB 760 (2016) 448</u>

* $e^+e^- / \mu^+ \mu^-$ (ATLAS only) or MET plus isolated photon(s)

***** Early NNLO fully differential <u>calculation for $Z\gamma$ in 2013</u>

$WZ \rightarrow \ell \nu \ell \ell @ 8 \text{ TeV}$

PRD 93, 092004 (2016)

Brookhaven National Laboratory

3 isolated leptons (e or μ), MET

Inclusive NNLO QCD calculation <u>recently became available</u>

Inclusive fiducial xsec precision: 4.2% (ATLAS)! Provided as well:

- Unfolded differential cross sections (ATLAS, CMS)
- Ratio of W⁺Z, W⁻Z cross sections, also as function of kinematic vars (ATLAS)

$WZ \rightarrow \ell \nu \ell \ell @ 8 \text{ TeV}$

PRD 93, 092004 (2016)

✤ 3 isolated leptons (e or µ), MET

Inclusive NNLO QCD calculation <u>recently became available</u>

Inclusive fiducial xsec precision: 4.2% (ATLAS)! Provided as well:

- Unfolded differential cross sections (ATLAS, CMS)
- Ratio of W⁺Z, W⁻Z cross sections, also as function of kinematic vars (ATLAS)

$WZ \rightarrow \ell \nu \ell \ell @ 8 \text{ TeV}$

arXiv:1609.05721

3 isolated leptons (e or μ), MET

Inclusive NNLO QCD calculation <u>recently became available</u>

Inclusive fiducial xsec precision: 4.2% (ATLAS)! Provided as well:

- Unfolded differential cross sections (ATLAS, CMS)
- Ratio of W⁺Z, W⁻Z cross sections, also as function of kinematic vars (ATLAS)

$ZZ \rightarrow 4\ell/2\ell 2\nu @ 8 \text{ TeV}$

arXiv:1610.07585

4 (2) isolated leptons (e or μ), (MET)

Inclusive NNLO QCD calculation <u>available</u>

NLO EWK corrections are taken into account
 Unfolded differential cross sections are provided as well

$ZZ \rightarrow 4\ell/2\ell 2\nu @ 8 \text{ TeV}$

arXiv:1610.07585

4 (2) isolated leptons (e or μ), (MET)

Inclusive NNLO QCD calculation <u>available</u>

NLO EWK corrections are taken into account

Unfolded differential cross sections are provided as well

arXiv:1610.07572

Centra Fit Va	al ATLAS Do lue LEP	Channel	Limits	∫/dt [fb⁻¹]	s [TeV]	م _ح [TeV]
		ww	[-2.5e-002, 2.0e-002]	20.3	8	
		WW	[-5.9e-002, 4.5e-002]	19.4	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		WZ	[-1.9e-001, 3.0e-001]	20.3	8	~~
		WZ	[-2.3e-001, 4.6e-001]	20.3	8	2
	· · · · · ·	WZ	[-2.1e-001, 2.5e-001]	19.6	8	~
		WV	[-1.2e-001, 1.3e-001]	4.6	7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	⊢ → − − 1	D0 Comb.	[-1.1e-001, 1.3e-001]	8.6	1.96	2
	HHH	LEP Comb.	[-7.3e-002, 4.9e-002]	3.0	< 0.21	00
2	—	Wγ	[-6.5e-002, 6.1e-002]	4.6	7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~z	н	Wγ	[-5.0e-002, 3.7e-002]	5.0	7	00
	н	WW	[-1.9e-002, 1.9e-002]	20.3	8	00
	ы	WW	[-2.4e-002, 2.4e-002]	19.4	8	~~
	н	WZ	[-1.6e-002, 1.6e-002]	20.3	8	~~~
	н	WZ	[-2.8e-002, 2.8e-002]	20.3	8	2
	н	WZ	[-1.8e-002, 1.6e-002]	19.6	8	00
	H	WV	[-3.9e-002, 4.0e-002]	4.6	7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Hel	D0 Comb.	[-3.6e-002, 4.4e-002]	8.6	1.96	2
	Hel	LEP Comb.	[-5.9e-002, 1.7e-002]	3.0	< 0.21	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Δq^Z	н	WW	[-1.6e-002, 2.7e-002]	20.3	8	00
01	H	WW	[-4.7e-002, 2.2e-002]	19.4	8	~
	н	WZ	[-1.9e-002, 2.9e-002]	20.3	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	H	WZ	[-2.9e-002, 5.0e-002]	20.3	8	2
	н	WZ	[-1.8e-002, 3.5e-002]	19.6	8	00
	H	WV	[-5.5e-002, 7.1e-002]	4.6	7	∞
	H	D0 Comb.	[-3.4e-002, 8.4e-002]	8.6	1.96	2
	ŀ∙₁	LEP Comb.	[-5.4e-002, 2.1e-002]	3.0	< 0.21	~~
$\lambda(\hat{s})$ =	$= \frac{0}{(1+\hat{s}/\Lambda_{FF}^2)^2}$		aTC	GC Limit	ts @95	5% C.L

Most stringent limits on WWγ, WWZ from WZ and WW

Most stringent limits
 on WWγ, WWZ from
 WZ and WW

Best constraints so far on h_{3,4}^{γ,Z}, driven by ννγ

arXiv:1610.07572

	CMS ATLAS	Channel	Limits	∫ <i>L</i> dt [fb⁻¹]	∦ s [TeV]	$\Lambda_{ m FF}$ [TeV]
fγ	H	ZZ(4I,2I2v)	[-1.5e-002, 1.5e-002]	4.6	7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
' 4	H	ZZ(4I,2I2v)	[-2.2e-002, 2.3e-002]	4.6	7	3
	H	ZZ(4I,2I2v)	[-3.8e-003, 3.8e-003]	20.3	8	~
	—	ZZ(4I)	[-5.0e-003, 5.0e-003]	19.6	8	∞
	H	ZZ(2l2v)	[-3.7e-003, 3.3e-003]	24.7	7,8	∞
	H	ZZ(4I,2I2v)	[-2.9e-003, 2.6e-003]	24.7	7,8	∞ 🔹
۴Z	H	ZZ(4I,2I2v)	[-1.3e-002, 1.3e-002]	4.6	7	~
'4	H	ZZ(4I,2I2v)	[-1.9e-002, 1.9e-002]	4.6	7	3
	H 1	ZZ(4I,2I2v)	[-3.3e-003, 3.2e-003]	20.3	8	∞
	—	ZZ(4I)	[-4.0e-003, 4.0e-003]	19.6	8	∞
	H	ZZ(2l2v)	[-2.8e-003, 3.2e-003]	24.7	7,8	∞
	H	ZZ(4I,2I2v)	[-2.2e-003, 2.6e-003]	24.7	7,8	∞
f ^Y	H	ZZ(4I,2I2v)	[-1.6e-002, 1.5e-002]	4.6	7	~
'5	I	ZZ(4I,2I2v)	[-2.3e-002, 2.3e-002]	4.6	7	3
	H 1	ZZ(4I,2I2v)	[-3.8e-003, 3.8e-003]	20.3	8	∞
	—	ZZ(4I)	[-5.0e-003, 5.0e-003]	19.6	8	∞
	H H	ZZ(2l2v)	[-3.3e-003, 3.7e-003]	24.7	7,8	∞
	H	ZZ(4I,2I2v)	[-2.6e-003, 2.7e-003]	24.7	7,8	∞ ♦
ب Z		ZZ(4I,2I2v)	[-1.3e-002, 1.3e-002]	4.6	7	~~~~
'5	H	ZZ(4I,2I2v)	[-2.0e-002, 1.9e-002]	4.6	7	3
	H 1	ZZ(4I,2I2v)	[-3.3e-003, 3.3e-003]	20.3	8	~
	—	ZZ(4I)	[-4.0e-003, 4.0e-003]	19.6	8	~
	H	ZZ(2l2v)	[-2.9e-003, 3.1e-003]	24.7	7,8	œ
	H-	ZZ(4I,2I2v)	[-2.3e-003, 2.3e-003]	24.7	7,8	~
						I
$\lambda(\hat{s})$ =	$=\frac{\lambda_0^0}{(1+\hat{s}/\Lambda_{FF}^2)^3}$		0.05 aTC	GC Limit	0.1 ts @95	5% C.L

Most stringent limits
 on WWγ, WWZ from
 WZ and WW

- Best constraints so far on h_{3,4}^{γ,Z}, driven by ννγ
- Constraints on $f_{3,4}^{\gamma,Z}$ driven by $\ell \ell \nu \nu$
- Generally modest impact of unitarisation

arXiv:1610.07572

		combined		Channel	Limits	∫Ldt	v s	
f			-	ZZ(2l2v)	[-1.9e-02, 1.9e-02]	4.6 fb⁻¹	7 TeV	_
4				ZZ(4I)	[-1.8e-02, 1.8e-02]	4.6 fb ⁻¹	7 TeV	
				ZZ(2l2v+4l)	[-1.5e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV	
		·;		ZZ(4I)	[-1.2e-02, 1.3e-02]	5.0 fb ⁻¹	7 TeV	•
		······		ZZ(2l2v+4l)	[-1.0e-02, 1.1e-02]	9.6 fb ⁻¹	7 TeV	•
F Z			1	ZZ(2l2v)	[-1.6e-02, 1.6e-02]	4.6 fb⁻¹	7 TeV	_
4	E E			ZZ(4I)	[-1.5e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV	
		·		ZZ(2l2v+4l)	[-1.3e-02, 1.3e-02]	4.6 fb⁻¹	7 TeV	
				ZZ(4I)	[-1.0e-02, 1.1e-02]	5.0 fb ⁻¹	7 TeV	
				ZZ(2l2v+4l)	[-8.7e-03, 9.1e-03]	9.6 fb⁻¹	7 TeV	
f			-	ZZ(2l2v)	[-2.0e-02, 1.9e-02]	4.6 fb⁻¹	7 TeV	-•••
' ⁵ ⊢			-	ZZ(4I)	[-1.8e-02, 1.8e-02]	4.6 fb ⁻¹	7 TeV	
	- E			ZZ(2l2v+4l)	[-1.5e-02, 1.4e-02]	4.6 fb⁻¹	7 TeV	
				ZZ(4I)	[-1.3e-02, 1.3e-02]	5.0 fb⁻¹	7 TeV	
		<u></u>		ZZ(2l2v+4l)	[-1.1e-02, 1.0e-02]	9.6 fb ⁻¹	7 TeV	•
۴Z				ZZ(2l2v)	[-1.7e-02, 1.6e-02]	4.6 fb ⁻¹	7 TeV	_ •
5	- E		I	ZZ(4I)	[-1.6e-02, 1.6e-02]	4.6 fb⁻¹	7 TeV	
				ZZ(2l2v+4l)	[-1.3e-02, 1.2e-02]	4.6 fb⁻¹	7 TeV	
		jj		ZZ(4I)	[-1.1e-02, 1.1e-02]	5.0 fb⁻¹	7 TeV	
		÷		ZZ(2l2v+4l)	[-9.1e-03, 8.9e-03]	. 9.6 fb⁻¹	7 TeV	
	-0.02	0	0.02	(0.04).06	0.0	8
					a I GC Lir	nits @95	5% C.I	L.

Most stringent limits
 on WWγ, WWZ from
 WZ and WW

- Best constraints so far on h_{3,4}^{γ,Z}, driven by ννγ
- Constraints on f_{3,4}^{γ,Z}
 driven by ℓℓνν
- Generally modest impact of unitarisation
 - First ATLAS/CMS
 <u>aTGC combination</u>
 released!

Recent VBS/VVV results

VBS/VVV Production and aQGCs

Overview of studied aQGCs:

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0}, \mathcal{O}_{S,1}$	\checkmark	\checkmark	\checkmark						
$\mathcal{O}_{M,0}, \mathcal{O}_{M,1}, \mathcal{O}_{M,6}, \mathcal{O}_{M,7}$	\checkmark								
$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
${\mathcal O}_{T,0}$, ${\mathcal O}_{T,1}$, ${\mathcal O}_{T,2}$	\checkmark								
${\mathcal O}_{T,5}$, ${\mathcal O}_{T,6}$, ${\mathcal O}_{T,7}$		\checkmark							
${\mathcal O}_{T,8}$, ${\mathcal O}_{T,9}$			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark

Vertex-specific conversions from WHIZARD α_4, α_5 exist, e.g. for WWWW:

$$\alpha_4 = \frac{f_{S,0}}{\Lambda^4} \frac{v^4}{8}, \alpha_4 + 2 \cdot \alpha_5 = \frac{f_{S,1}}{\Lambda^4} \frac{v^4}{8}$$

- Experimental access: aQGCs modify total production rate as well as event kinematics
 - Use cross-section measurement or kinematics to constrain aQGCs
- Unitarisation methods:
 - Form factor
 - K-matrix unitarisation

$Z\gamma\gamma \rightarrow \ell\ell\gamma\gamma$, $\nu\nu\gamma\gamma$

PRD 93, 112002 (2016)CMS-PAS-SMP-15-008 $\bigstar e^+e^- / \mu^+\mu^-$ or MET (ATLAS only) plus isolated photons

Signal @ >5 σ . NLO prediction is still state-of-the-art for signal!

$Z\gamma\gamma \rightarrow \ell\ell\gamma\gamma$, $\nu\nu\gamma\gamma$

PRD 93, 112002 (2016) e⁺e⁻ / μ⁺μ⁻ or MET (ATLAS only) plus isolated photons

Signal @ >5 σ . NLO prediction is still state-of-the-art for signal!

W $\gamma j j \rightarrow \ell \nu \gamma j j @ 8 \text{ TeV}$

<u>CMS-PAS-SMP-14-011</u>

- * 1 isolated lepton (e or μ), MET, isolated photon, two tagging jets
- SM EW signal significance: 2.7 σ ; EW+QCD well-described @NLO

✤ aQGC limits: require p_T^γ > 200 GeV & harsher tagging jets cuts
 ✤ use shape of p_T^W distribution to provide limits on f_{M,0..7}, f_{T,0..2,5..7} (!)

WVjj $\rightarrow \ell v(jj/J)$ jj @ 8 TeV

arXiv:1609.05122

* 1 isolated lepton (e or μ), MET, jj/J hadronic V, two tagging jets

Not sensitive to SM xsec yet, but optimized for aQGC

Merged (J) category improves expected sensitivity by 40%
 No conversion α_{4,5} to f_{s0,1} since WWjj and WZjj contribute

$\gamma\gamma \rightarrow WW$

PRD 94, 032011 (2016)

• eµ pair with large pT, no other charged particles @ vertex

* 1st SM signal evidence: ATLAS: 3.0σ (8TeV), CMS: 3.4σ (7,8TeV)

aQGC limits placed using dilepton pT distribution

No tag jets -> suppressed WWWW, WWZZ, WWZγ contributions

Marc-André Pleier

Brookhaven National Laboratory

arXiv:1610.07572

All results use full
 8 TeV datasets

- Trend that exclusive outperforms VBS, which is better than VVV
- Note strong impact of unitarisation

Fair comparison requires some work

- ATLAS Vγγ limits (VBFNLO) <u>converted</u> to CMS notation (MG5)
- WV γ and $\gamma\gamma \rightarrow$ WW <u>converted</u> from $a_{0,C}^{W}$ limits to std. MG5 as CMS implemented their own Lagrangians in MG5 for $f_{M,i}$
- Checking a_{0,C}^W consistent implementation b/w ATLAS/CMS
 Marc-André Pleier
 16/19

arXiv:1610.07572

- All results use full
 8 TeV datasets
- Trend that exclusive outperforms VBS, which is better than VVV
- Note strong impact of unitarisation
- Fair comparison requires some work
- Conversion of α_{4,5} limits of ATLAS WVjj, ssWW, WZjj analyses not performed: vertex-dependent (missing f_{s,2})

arXiv:1610.07572

- All results use full
 8 TeV datasets
- Trend that exclusive outperforms VBS, which is better than VVV
- Note strong impact of unitarisation
- Fair comparison requires some work
- Semileptonic VBS analysis very sensitive!

Channel

₩[±]₩[±] ii

Limits

[-1.4e-001, 1.5e-001]

K

arXiv:1610.07572

- $\Lambda_{\rm FF}$ [TeV] All results use full • 8 TeV datasets
 - Trend that exclusive outperforms VBS, which is better than VVV
 - Note strong impact of unitarisation
 - Fair comparison requires some work
 - Semileptonic VBS analysis very sensitive!

CMS

ATLAS

Conversion of $f_{S.0/1}$ limits of CMS ssWW, ATLAS WWW analyses using WWWW specific conversion formula.

CL_

Putting it all together...

EFT Limit Combinations

\clubsuit Higgs analyses now also moving away from μ,κ & towards EFT

- First(?) example: ATLAS Hγγ PLB 753, 69 (2016)
- Combining constraints from
 - Higgs/SM in ATLAS
 - ATLAS and CMS
 - LHC and beyond (<u>e.g. B-meson observables</u>)
- Some ingredients: agree on
 - common basis, modeling choices, unitarisation method if needed, tools
 - common binning, treatment of correlations, signal/background (H/VV)
 - Smaller scale "testbench" before moving to "global fit"
 - Best observable (ŝ sensitive)?
 Current sensitivity more from normalization than shape...
- In addition/alternatively,
 - Provide unfolded measurements w/ correlation matrix instead?
 - Provide N-dimensional limits with correlation matrix

Summary

- Harvest of Run I analyses still ongoing establishing new processes.
- Run 2 will provide access to more processes (VBS, VVV), and better BSM sensitivity!
- Starting to prepare for combinations of limits
- THANK YOU to the MC generator + HO correction community
 - NNLO QCD predictions are very important for multi-V
 - HO EWK corrections as well, particularly for aGC limits
- Current "state of the art" ATLAS MC in multi-bosons: see "<u>Multi-Boson Simulation for 13 TeV ATLAS Analyses</u>"
 - Mix & match in modelling: PDF, ME, scales, PS, EW scheme, HO corrections – lots of combinations, some of which will be sub-optimal

Wishlist:

- NNLO (multi-leg) QCD + NLO EWK + PS event generation. ③
- Re-weighting functionality for PDFs, scales, EFTs/aGCs

Encore!

Unitarity bounds

aTGCs in LEP scenario w/o unitarisation can be directly translated into EFT coefficients:

$$\frac{c_W}{\Lambda^2} = \frac{2}{M_Z^2} \Delta g_1^Z = \frac{2}{M_Z^2} (\tan^2 \theta_W \Delta \kappa_\gamma + \Delta \kappa_Z)$$
$$\frac{c_B}{\Lambda^2} = \frac{2}{M_W^2} \Delta \kappa_\gamma - \frac{2}{M_Z^2} \Delta g_1^Z$$
$$\frac{WWW}{\Lambda^2} = \frac{2}{3g^2 m_W^2} \lambda_\gamma = \frac{2}{3g^2 m_W^2} \lambda_Z$$

No unitarity violation expected @LHC for dim-6:

How to reconcile? ATLAS aTGC bound ensures unitarity is not violated at arbitrary high center of mass energies.

WWZ aTGC \rightarrow EFT limits

No unitarisation here!

$W^+W^- \rightarrow \ell^+ \nu \ell^- \nu @ 8 \text{ TeV}$

9 (2016

Brookhaven National Laboratory

- 2 isolated leptons (e or μ) of opposite charge, MET, no jets $(CMS: \leq 1 \text{ jets})$
- qq, gg, gg(H) production mechanisms (CMS subtracts gg(H))

$W^+W^- \rightarrow \ell^+ \nu \ell^- \nu @ 8 \text{ TeV}$

JHEP 09 (2016) 029

- 2 isolated leptons (e or μ) of opposite charge, MET, no jets $(CMS: \leq 1 \text{ jets})$
- qq, gg, gg(H) production mechanisms (CMS subtracts gg(H))

NLO EWK corrections are taken into account Marc-André Pleier 23/19

WZjj $\rightarrow \ell \nu \ell \ell j$ j @ 8 TeV

PRD 93, 092004 (2016)

- ★ 3 isolated leptons (e or μ), MET, \geq two jets
- ↔ VBS/aQGC additional selection on m_{ii} , $\Delta \Phi$ (W,Z), $\Sigma | p_T(\ell) |$

WZjj $\rightarrow \ell \nu \ell \ell j$ j @ 8 TeV

PRD 93, 092004 (2016)

- ★ 3 isolated leptons (e or μ), MET, \geq two jets
- ↔ VBS/aQGC additional selection on m_{ii} , $\Delta \Phi$ (W,Z), $\Sigma | p_T(\ell) |$

WZjj $\rightarrow \ell \nu \ell \ell j$ j @ 8 TeV

PRD 93, 092004 (2016)

- ★ 3 isolated leptons (e or μ), MET, \geq two jets

measured fiducial xsec in aQGC phase space used for limits
 Conversion $\alpha_{4,5}$ to $f_{s0,1}$ after k-matrix unitarisation