

CMS

Andrew Gilbert on behalf of the ATLAS and CMS Collaborations

27 October 2016 | HEFT2016 Copenhagen

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS DEPARTMENT

Overview

• Run 1

- Extensively discussed already will focus on CMS+ATLAS combined results
- Properties: mass, width, spin/parity, couplings

• Run 2

- Rediscovery of H(125), first results in many channels now
- Broad and growing range of measurements:

Run 1 Mass Combination

- Using high resolution $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4l$ channels
- Important to establish the best measurement of m_H before attempting couplings
- Statistical uncertainty still dominates, main systematics related to energy or momentum scale of e, μ and γ

 $m_H = 125.09 \pm 0.24 \text{ GeV} = 125.09 \pm 0.21 \text{ (stat.)} \pm 0.11 \text{ (syst)} \text{ GeV}$

Properties

- Indirect constraint on the width using ratio of off-shell to on-shell production in H→ZZ
- SM predicts Γ ~ 4 MeV
- ATLAS and CMS find limits on $\Gamma/\Gamma_{SM} \sim 4-8$
- Also measured with H→WW but less sensitive

Spin/Parity

- Test many alternative hypotheses against SM CP-even scalar, J^P = 0^{+,} e.g. pseudoscalar, spin-2
- All rejected at 99.9% CL

Couplings Combination

 Based on the inputs to the separate CMS and ATLAS combinations: the main five decay channels + ttH analyses

	Untagged	VBF	VH	ttH
Н→үү	✓	✓	✓	✓
H→ZZ→4I	✓	✓	✓	\checkmark
H→WW→2l2v	✓	✓	\checkmark	\checkmark
Η→ττ	✓	\checkmark	\checkmark	\checkmark
H→bb			✓	✓
Η→μμ	✓	\checkmark		

- Not included as not in both CMS and ATLAS combination results:
 - $H \rightarrow Z\gamma$ search
 - Off-shell measurements
 - H→invisible searches
 - VBF H→bb

- $H \rightarrow \mu \mu$ only included for one particular result
- Each analysis targeting a particular production/decay mode may also include contributions from other processes that are not specifically targeted, e.g. H→WW entering H→ττ analysis, single-top + Higgs production in ttH

Signal Parameterisation

• Both parametrisations based on scaling full phase-space cross sections:

Signal strengths,
$$\mu$$

Parameters scale cross sections and
BRS relative to SM

$$\mu_i = \frac{\sigma_i}{\sigma_i^{SM}} \qquad \mu^f = \frac{BR^f}{BR_{SM}^f}.$$
Scaling of generic $i \rightarrow H \rightarrow f$ process

$$\mu_i^f = \frac{\sigma_i \cdot BR^f}{(\sigma_i \cdot BR^f)_{SM}} = \mu_i \times \mu^f$$

Couplings,
$$\kappa$$

Parameters scale cross sections and
Dartial widths relative to SM
 $\kappa_j^2 = \sigma_j / \sigma_j^{SM}$ $\kappa_j^2 = \Gamma_j / \Gamma_j^{SM}$
 $\sigma_i \cdot BR^f = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H},$
Total width determined as
 $\Gamma_H = \frac{\kappa_H^2 \cdot \Gamma_H^{SM}}{1 - BR_{BSM}}$
Where
 $\kappa_H^2 = \sum_j BR_{SM}^j \kappa_j^2$

Signal strengths

Assumptions - SM ratios of BRs or cross sections

$$\mu = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07}$$
 (stat) $^{+0.04}_{-0.04}$ (expt) $^{+0.03}_{-0.03}$ (thbgd) $^{+0.07}_{-0.06}$ (thsig),

• Most significant deviation from μ =1 is ttH (2.3 σ)

Generic signal strength results

Most generic parametrisation: one μ per production x decay combination

 Measurements mostly uncorrelated, except where multiple processes contribute to same categories, e.g.
 H→γγ WH and ZH

Couplings - allowing for BSM loop/decay contributions

- Use effective couplings for ggH (κ_q) and H $\rightarrow \gamma\gamma$ (κ_γ)
- Consider two scenarios: **BR**_{BSM} = **0** and **BR**_{BSM} floating, but $|\kappa_w|$, $|\kappa_z| < 1$
- Sensitive to relative signs of κ_t , κ_W and κ_Z via interference in tH and ggZH production
- Care needed with BR_{BSM}: not just Higgs decays to new particles but also non-SM BRs to unmeasured final states, e.g. gg and cc

27/10/16

Couplings - no BSM loop/d

Run 2

Excellent LHC performance this year has delivered ~ 40 fb⁻¹ of 13 TeV collision data to CMS and ATLAS

CMS Integrated Luminosity, pp

Data included from 2010-03-30 11:22 to 2016-10-26 21:01 UTC 50 Delivered Luminosity [fb⁻¹] 60 60 Total Integrated Luminosity (${ m fb}^{-1}$) **2010, 7 TeV, 45.0** pb⁻¹ 45 ATLAS Online Luminosity **2011, 7 TeV, 6.1** fb⁻¹ 2011 pp vs = 7 TeV 50 50 40 **2012, 8 TeV, 23.3** fb⁻¹ √s = 8 TeV 2012 pp **2015, 13 TeV, 4.2** fb⁻¹ 35 2015 pp √s = 13 TeV **2016, 13 TeV, 41.1** fb⁻¹ 40 40 2016 pp 🛛 🗸 s = 13 TeV 30 25 30 30 20 20 20 15 10E 10 10 5 1 Apr 1 Jun 2 Jul 1 May 1 AUG 2 Dec 1^{0ct} 1 Sep 1 NOV 0 Oct Apr JUI Jan Date (UTC) Month in Year

- Compared to run 1: higher instantaneous luminosity, 50 → 25 ns bunch spacing and increased pileup
- Detectors have been (and are being) upgraded, e.g. ATLAS insertable pixel b-layer during LS1, CMS pixel upgrade coming in extended technical stop
- Despite these challenges already a wide array of Higgs boson measurements

Run 2 - Results

- Already good coverage of major production and decay channels at 13 TeV
- Many preliminary results on the partial 2016 dataset (~ 13 fb⁻¹) and others only on 2015 (~ 2-3 fb⁻¹)

	Unta	gged	V	BF	V	Н	tt	H
H→ZZ→4I								
Н→үү								
H→WW								
H→bb								
Η→ττ								
Η→μμ								
H→inv								

ATLAS 2016 data

A. Gilbert

CMS 2015 data only

CMS 2016 data

Rediscovering H(125) at 13 TeV

ATLAS-CONF-2016-079 ATLAS-CONF-2016-067 CMS-PAS-HIG-16-033 CMS-PAS-HIG-16-020

• Signal re-established in $H \rightarrow ZZ$ and $H \rightarrow \gamma\gamma$ with > 5 σ significance

Best-fit μ / σ @ 125.09 GeV

• H→ZZ

- CMS: $\hat{\mu} = 0.99^{+0.33}_{-0.26}$
- ATLAS: $\sigma = 81 \pm 16 \text{ pb}$ ($\sigma_{SM} = 55.5 \pm 4.1 \text{ pb exp.}$)

Н→үү

- ATLAS: $\hat{\mu} = 0.85 \pm 0.21$
- CMS: $\hat{\mu} = 0.91 \pm 0.20$
- Signal strengths also measured per production mode via dedicated event categories

 \Rightarrow see backup

Measuring properties

- CMS measured the mass and width in the H→ZZ→4l final state: both compatible with SM expectation & Run 1 results
- Width measured using only on-shell region (105 < m_{4l} < 140 GeV) and the combination with the off-shell region (105 < m_{4l} < 1600 GeV) which greatly enhances sensitivity

Kappa framework

- Remains a useful model for testing for deviations from the SM expectation
- 2D κ_V - κ_F scans produced for H \rightarrow ZZ and H $\rightarrow\gamma\gamma$ decay modes
- Eventually combination of all final states will provide the strongest constraint due to complementary regions of sensitivity, i.e. ATLAS+CMS Run 1 combination

15

Fiducial cross sections

- Fiducial volumes chosen to match experimental acceptance as closely as possible
- Minimises extrapolation which depends on theoretical modelling and assumptions on relative production mode rates
- Measured values compared to latest N³LO ggH prediction

Fiducial region	Measured cross section (fb)	SM pr	ediction (fb)
Baseline	$43.2 \pm 14.9 (\text{stat.}) \pm 4.9 (\text{syst.})$	$62.8^{+3.4}_{-4.4}$	$[N^{3}LO + XH]$
VBF-enhanced	$4.0 \pm 1.4 (\text{stat.}) \pm 0.7 (\text{syst.})$	2.04 ± 0.13	[NNLOPS + XH]
single lepton	$1.5 \pm 0.8 ({\rm stat.}) \pm 0.2 ({\rm syst.})$	0.56 ± 0.03	[NNLOPS + XH]

A. Gilbert

Fiducial differential cross sections

- Differential cross sections give even more modelindependent information on the Higgs boson properties
- H→γγ and H→ZZ at 13 TeV given for several variable including p_T^H and N_{jets}
- Can be compared to different generator predictions
- Also possible to use as probe of BSM contributions that appear in the tails of distributions

Simplified template cross sections

- YR4 (arXiv:1610.07922) proposes simplified template cross sections
- Several stages proposed with increasing split of production modes by jet multiplicity, pT^H etc
- Possibility to connect to BSM models in different frameworks, e.g. kappa model, EFT coefficients
- First results from ATLAS combining $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$

Parameter value norm. to SM value

A. Gilbert

Effective Lagrangian interpretation

- Use Higgs Characterisation model to probe for anomalous couplings in H→ZZ→4l:
 - BSM scalar кнуу
 - BSM pseudo-scalar κ_{AVV}*sin(α)
- Split events into categories sensitive to different Higgs production modes
- Fix SM contribution cos(α)*κ_{sm} to 1
- Presence of BSM interactions modifies signal yields

$$\mathcal{L}_{0}^{V} = \left\{ c_{\alpha} \kappa_{\mathrm{SM}} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] - \frac{1}{4} \frac{1}{\Lambda} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right] - \frac{1}{2} \frac{1}{\Lambda} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] - \frac{1}{\Lambda} c_{\alpha} \left[\kappa_{H\partial\gamma} Z_{\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{H\partial Z} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + \left(\kappa_{H\partial W} W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c. \right) \right] \right\} X_{\mu\nu}^{V}$$

JHEP 11 (2013) 043

Anomalous couplings

- CMS updated constraints on anomalous spin-0 couplings in H→ZZ→4l using decay kinematics
- All results compatible with SM expectation so far
- CMS and ATLAS parametrisations are related (\Rightarrow see backup)

Parameter	Observed	Expected
$f_{a3}\cos(\phi_{a3})$	$-0.56^{+0.38}_{-0.32}$ $[-1.00, 1.00]$	$0.00^{+0.26}_{-0.26} \left[-0.59, 0.59 ight]$
$f_{a2}\cos(\phi_{a2})$	$-0.06^{+0.06}_{-0.09} \left[-0.22, 0.24 ight]$	$0.00^{+0.24}_{-0.06} \ [-0.15, 0.92]$
$f_{\Lambda 1} \cos(\phi_{\Lambda 1})$	$-0.93^{+0.90}_{-0.16} \ [-1.00, 0.10] \cup [0.77, 1.00]$	$0.00^{+0.13}_{-0.69} \ [-1.00, 0.24] \cup [0.98, 1.00]$

Anomalous couplings combinations

Eur. Phys. J. C75 (2015) 476 PRD 92 (2015) 012004 PLB 759 (2016) 672

 $CMSH \rightarrow VV + VH \rightarrow bb$ **Results from Run 1:** stronger 18.9 fb⁻¹ (8 TeV) 18.9 fb⁻¹ (8 TeV) ∆ In L constraints possible by combining ⊆ CMS μ_{VV} and μ_{VH} CMS \triangleleft correlated μ correlated VH+VV observed channels but results depend on ∾ 40 Ņ - VH+VV observed - VH+VV expected - VH+VV expected VV observed 15 exact assumptions made ZH+ZZ observed VV expected 7H+77 expected VH observed 30 WH+WW observed VH expected WH+WW expected 68% CL μ_{VV} and μ_{VH} 20 30 -2 In X independent ATLAS 0.5 $H \rightarrow ZZ^* \rightarrow 4l$ 10 $\sqrt{s} = 7 \text{ TeV}, 4.5 \text{ fb}^{-1}$ 99% C 25 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ Combined 95% CL 68% CL 0<u>ℓ</u> 0 $H \rightarrow WW^* \rightarrow ev\mu v$ Observed 0.002 0.004 0.006 0.008 0.01 ٦ 0.005 0.01 $H \rightarrow WW^* \rightarrow ev\mu v$ $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ $f_{a_2}^{ZZ}$ 20 $f_{a_3}^{ZZ}$ Observed $H \rightarrow ZZ^* \rightarrow 4l$ CMS 19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV) 25 -2 Δ InL 15 — H→ZZ ___H→WW, R_{a3}=0.5 20 ___ H→ZZ+WW, R ୁ=0.5 10 -- H \rightarrow ZZ+WW, R_a=0.5, a^{WW}₁=a^{ZZ}₁ $CMSH \rightarrow ZZ + H \rightarrow WW$ 15 5 10 0 -6 -2 2 -8 0 6 8 -4 $(\widetilde{\kappa}_{AVV}/\kappa_{SM}) \cdot \tan \alpha$ 5 95% CL ATLAS $H \rightarrow ZZ + H \rightarrow WW$ 68% Cl 0 0.5 -0.5 0 $f_{a3} \cos(\phi_{a3})$

Reinterpretation of differential cross sections

Results from Run 1: ATLAS reinterpret

 $H \rightarrow \gamma \gamma$ differential cross sections using an effective Lagrangian approach

- Statistical correlation matrix between bins of different observables provided - allows for further reinterpretation
- Likelihood scans performed for coefficients of new CP-even and CP-odd interactions

data

 $\mu \to \eta$

ttH → multileptons

- ttH cross section σ(13 TeV)/σ(8 TeV) ~ 4: improves sensitivity (though backgrounds also increase)
- Heightened interest due to moderate excess in the Run 1 combination:
 - $\mu_{ttH} = 2.3 \pm 0.7$
- Both CMS and ATLAS continue to see this excess at 13 TeV stay tuned!

ttH→bb

ATLAS-CONF-2016-080 CMS-PAS-HIG-16-004

- ATLAS results for 13.2 fb⁻¹ show a moderate excess
 - Systematic uncertainties already important, in particular the modelling of the tt+b(b) background
- CMS results for 2.7 fb⁻¹ show a deficit

Uncertainty source	$\Delta \mu$		
$t\bar{t} + \ge 1b$ modelling	+0.53	-0.53	
Jet flavour tagging	+0.26	-0.26	
$t\bar{t}H$ modelling	+0.32	-0.20	
Background model statistics	+0.25	-0.25	
$t\bar{t} + \ge 1c$ modelling	+0.24	-0.23	
Jet energy scale and resolution	+0.19	-0.19	
<i>tī</i> +light modelling	+0.19	-0.18	
Other background modelling	+0.18	-0.18	
Jet-vertex association, pileup modelling	+0.12	-0.12	
Luminosity	+0.12	-0.12	
$t\bar{t}Z$ modelling	+0.06	-0.06	
Light lepton (e, μ) ID, isolation, trigger	+0.05	-0.05	
Total systematic uncertainty	+0.90	-0.75	
$t\bar{t} + \ge 1b$ normalisation	+0.34	-0.34	
$t\bar{t} + \geq 1c$ normalisation	+0.14	-0.14	
Statistical uncertainty	+0.49	-0.49	
Total uncertainty	+1.02	-0.89	

ttH - combination

 Combination of γγ, multilepton and bb analyses from ATLAS gives a consistent picture with Run 1 results

- Run 2 combination gives 2.8σ observed significance (1.8σ expected)
- Already exceeds Run 1 sensitivity (1.5σ expected)
- Some tensions between individual channels in CMS and ATLAS to be resolved with further data and (hopefully) reduction of systematic uncertainties

CMS ttH \rightarrow **YY** (13 TeV, 12.9 fb⁻¹): **1.9** +1.5 -1.2

ATLAS-CONF-2016-091

VH→bb

- Updated result with 13.2 fb⁻¹ from ATLAS
- Analysis makes use of BDTs trained to separate signal in categories based on the number of jets and p_T(V)
- Validated by extracting VZ→bb as signal instead: µ_{VZ} = 0.91 ± 0.17 (stat) ± 0.30 (syst)

Slight deficit in measured signal strength, similar to run 1

Run 1 CMS+ATLAS	μ
WH→bb	1.0 ± 0.4 (stat) ± 0.3 (syst)
ZH→bb	0.4 ± 0.3 (stat) ± 0.2 (syst)

VBF H→bb

- CMS: 2.3 fb⁻¹ of 13 TeV data similar strategy to Run 1
- **ATLAS**: novel approach requiring high $p_T \gamma$ in the final state more efficient triggering and reduced non-resonant background

Summary

- Currently the best global picture of Higgs boson couplings from the Run 1 ATLAS+CMS combination
- There is good progress on moving beyond the signal strength and kappa framework results:
 - Fiducial inclusive and differential measurements
 - Direct EFT interpretations
 - Template cross sections
- With a large 13 TeV dataset now in hand will significantly improve sensitivity in new results by early next year

Backup

Signal strength ratios

 Normalise the rate for any particular channel to a reference process using ratios of cross sections and branching ratios

Motivation:

- Explicitly no assumptions on relative cross sections or BRs (unlike other results)
- Measured values independent of SM prediction and inclusive theory uncertainties
- Cancellation of common systematic uncertainties in ratios
- Choose reference process as one measured with the smallest systematic uncertainty: gg→H→ZZ

Assumptions - Only the 7/8 TeV ratios

$$\sigma_i \cdot \mathrm{BR}^f = \sigma(gg \to H \to ZZ) \times \left(\frac{\sigma_i}{\sigma_{ggF}}\right) \times \left(\frac{\mathrm{BR}^f}{\mathrm{BR}^{ZZ}}\right),$$

Signal strength ratios

• Largest disagreement in BR^{bb}/BR^{ZZ} (2.4 σ)

 Though some care needed with the uncertainties on ratios ⇒ non-Gaussian behaviour

$$\sigma_i \cdot \mathrm{BR}^f = \sigma(gg \to H \to ZZ) \times \left(\frac{\sigma_i}{\sigma_{ggF}}\right) \times \left(\frac{\mathrm{BR}^f}{\mathrm{BR}^{ZZ}}\right)$$

ATLAS and CMS

-ATLAS+CMS

Signal strength ratios

• Correlation matrix also provided

 Non-zero correlations due to use of ratios which explicitly relate different processes

$$\sigma_i \cdot \mathrm{BR}^f = \sigma(gg \to H \to ZZ) \times \left(\frac{\sigma_i}{\sigma_{ggF}}\right) \times \left(\frac{\mathrm{BR}^f}{\mathrm{BR}^{ZZ}}\right),$$

ATLAS and CMS

ATLAS+CMS

2D scans of κ_V , κ_F

- Commonly-presented model in which
 - $\mathbf{K}_{\mathbf{V}} = \mathbf{K}_{\mathbf{W}} = \mathbf{K}_{\mathbf{Z}}$
 - $\mathbf{K}_{\mathbf{F}} = \mathbf{K}_{t} = \mathbf{K}_{b} = \mathbf{K}_{\tau}$
- Perform additional scans in a model with separate κ_V^f, κ_F^f per decay-mode
 - In contrast to previous CMS combinations this is a 10 parameter fit instead of 5 x 2 parameter fits
- Here the best-fit is restricted to quadrant where $\kappa_V > 0$, $\kappa_F > 0$
- All channels compatible with $\kappa_V = \kappa_F = 1$

2D scans of κ_V , κ_F

Most channels nearly degenerate in relative sign of κ_V and κ_F

2

2.5

2D scans of \kappa_V, \kappa_F

• Most channels nearly degenerate in relative sign of κ_V and κ_F

A. Gilbert

Signal Processes - Summary

Production	Loops	Interference	Multip	licative factor
$\sigma(ggF)$	\checkmark	b-t	$\kappa_{\rm g}^2 \sim$	$1.06 \cdot \kappa_{\rm t}^2 + 0.01 \cdot \kappa_{\rm b}^2 - 0.07 \cdot \kappa_{\rm t} \kappa_{\rm b}$
$\sigma(VBF)$	_	_	~	$0.74 \cdot \kappa_{\rm W}^2 + 0.26 \cdot \kappa_{\rm Z}^2$
$\sigma(WH)$	_	_	~	$\kappa_{\rm W}^2$
$\sigma(qq/qg \to ZH)$	_	_	~	$\kappa_{\rm Z}^2$
$\sigma(gg \to ZH)$	\checkmark	Z-t	~	$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(ttH)$	_	_	~	$\kappa_{\rm t}^2$
$\sigma(gb \to WtH)$	_	W-t	~	$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qb \to tHq)$	_	W-t	~	$3.4 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
$\sigma(bbH)$	_	_	~	$\kappa_{\rm b}^2$
Partial decay width				
Γ^{ZZ}	_	_	~	$\kappa_{\rm Z}^2$
Γ^{WW}	_	_	~	$\kappa_{\rm W}^2$
$\Gamma^{\gamma\gamma}$	\checkmark	W-t	$\kappa_{\gamma}^2 \sim$	$1.59 \cdot \kappa_{\rm W}^2 + 0.07 \cdot \kappa_{\rm t}^2 - 0.66 \cdot \kappa_{\rm W} \kappa_{\rm t}$
$\Gamma^{ au au}$	_	_	~	κ_{τ}^2
Γ^{bb}	_	_	~	$\kappa_{\rm b}^2$
$\Gamma^{\mu\mu}$	_	_	~	κ_{μ}^2
Total width for $BR_{BSM} = 0$				
				$0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_g^2 +$
$\Gamma_{\rm H}$	\checkmark	_	$\kappa_{\rm H}^2 \sim$	$+ 0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 +$
				$+ 0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{Z\gamma}^2 +$
				$+ 0.0001 \cdot \kappa_{\rm s}^2 + 0.00022 \cdot \kappa_{\mu}^2$

13 TeV signal strengths by production mode

A. Gilbert

Anomalous coupling approaches

- **CMS:** $A(\text{HVV}) \sim \left[a_1^{\text{HVV}} + \frac{\kappa_1^{\text{HVV}} q_{V_1}^2 + \kappa_2^{\text{HVV}} q_{V_2}^2}{\left(\Lambda_1^{\text{HVV}}\right)^2}\right] m_{V_1}^2 \epsilon_{V_1}^* \epsilon_{V_2}^* + a_2^{\text{HVV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{\text{HVV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}$
- Define cross section fractions:

BSM CP-even BSM CP-odd

$$f_{a3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda 1} / (\Lambda_1)^4 + \dots}, \qquad \phi_{a3} = \arg\left(\frac{a_3}{a_1}\right)$$

• ATLAS:

$$\mathcal{L}_{0}^{V} = \left\{ \cos(\alpha) \kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] - \frac{1}{4} \frac{1}{\Lambda} \left[\cos(\alpha) \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} - \sin(\alpha) \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] - \frac{1}{2} \frac{1}{\Lambda} \left[\cos(\alpha) \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + \sin(\alpha) \kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \right\} X_{0}.$$

• ATLAS coupling ratios can be related CMS cross sections:

$$f_{gi} = \frac{|g_i|^2 \sigma_i}{|g_1|^2 \sigma_1 + |g_2|^2 \sigma_2 + |g_4|^2 \sigma_4}, \ \phi_i = \arg\left(\frac{g_i}{g_1}\right).$$

$$r_{21}^2 = \frac{\sigma_{HVV}}{\sigma_{SM}} \left(\frac{\tilde{k}_{HVV}}{k_{SM}}\right)^2, \ \text{and} \ r_{41}^2 = \frac{\sigma_{AVV}}{\sigma_{SM}} \left(\frac{\tilde{k}_{AVV}}{k_{SM}}\right)^2 \tan^2 \alpha.$$

$$f_{g_i} = \frac{r_{i1}^2}{1 + r_{i1}^2}; \ (i = 2, 4),$$

Fiducial cross sections

Requirements for the $\mathrm{H} ightarrow 4\ell$ fiducial phase space					
Lepton kinematics and isolation					
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20~\mathrm{GeV}$				
Next-to-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10~\mathrm{GeV}$				
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m ~GeV}$				
Pseudorapidity of electrons (muons)	$ \eta < 2.5(2.4)$				
Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.4$ from lepton	$< 0.4 \cdot p_{\mathrm{T}}$				
Event topology					
Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above					
Inv. mass of the Z_1 candidate	$40 { m GeV} < m_{Z_1} < 120 { m GeV}$				
Inv. mass of the Z_2 candidate	$12 { m GeV} < m_{Z_2} < 120 { m GeV}$				
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$				
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-}>4{ m GeV}$				
Inv. mass of the selected four leptons	$105\mathrm{GeV} < m_{4\ell} < 140\mathrm{GeV}$				

CMS H→ZZ
fiducial
definition

Lepton definition			
Muons: $p_{\rm T} > 5 \text{ GeV}, \eta < 2.7$ Electrons: $p_{\rm T} > 7 \text{ GeV}, \eta < 2.47$			
Pairing			
Leading pair:	SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $		
Sub-leading pair:	Remaining SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $		
Event selection			
Lepton kinematics:	Leading leptons $p_{\rm T} > 20, 15, 10 \text{ GeV}$		
Mass requirements:	$50 < m_{12} < 106 \text{ GeV}; 12 < m_{34} < 115 \text{ GeV}$		
Lepton separation:	$\Delta R(\ell_i, \ell_j) > 0.1(0.2)$ for same(opposite)-flavour leptons		
J/ψ veto:	$m(\ell_i, \ell_j) > 5$ GeV for all SFOS lepton pairs		
Mass window:	$115 < m_{4\ell} < 130 \text{ GeV}$		

ATLAS H→ZZ fiducial definition

Fiducial cross sections

- $\frac{p_{T,gen}^{\gamma_{1,(2)}}}{m_{\gamma\gamma}} > \frac{1}{3}(\frac{1}{4})$ for the generator-level transverse momentum of the leading (subleading) photon,
- $|\eta_{gen}^{\gamma}| < 2.5$ for the generator-level pseudorapidities of both photon
- the generator-level isolation of the photons, calculated as the sum of the transverse momenta of all stable particles inside a cone of aperture R = 0.3 around the photon, is required to be smaller than 10 GeV.

 $\begin{array}{|c|c|c|c|c|c|c|c|} \hline \text{diphoton baseline} & \text{VBF enhanced} & \text{single lepton} \\ \hline \text{Photons} & & & & & & & & & & & & \\ \hline \text{Photons} & & & & & & & & & & & \\ \hline p_{\text{T}}^{\gamma_1} > 0.35 \, m_{\gamma\gamma} & \text{and} & p_{\text{T}}^{\gamma_2} > 0.25 \, m_{\gamma\gamma} \\ \hline \text{Jets} & - & & & & & & & & & \\ \hline p_{\text{T}} > 30 \, \text{GeV} \, , \, |y| < 4.4 & - & & \\ \hline p_{\text{T}} > 400 \, \text{GeV} \, , \, |\Delta y_{jj}| > 2.8 & - & & \\ \hline p_{\text{T}} > 400 \, \text{GeV} \, , \, |\Delta y_{jj}| > 2.8 & - & & \\ \hline \text{Leptons} & - & & & & & & & & \\ \hline \text{Leptons} & - & & & & & & & & & \\ \hline \end{array}$

ATLAS H→γγ fiducial definition

CMS $H \rightarrow \gamma \gamma$

definition

fiducial