Highlights from LHCb

Mitesh Patel (Imperial College London) HEFT 2016 Copenhagen, 26th Oct 2016

The interest in flavour

- Standard Model has no tree-level Flavour Changing Neutral Currents (FCNC)
- FCNC only occur as loop processes, proceed via penguin or box diagrams sensitive to contributions from new (virtual) particles

 \rightarrow Probe particle masses > E_{CM} of the accelerator

- Exploration of flavour processes has played a central role in the development of the SM
 - c-quark inferred from measured suppression of $K^0 \rightarrow \mu^+ \mu^- cf K^+ \rightarrow \mu^+ \nu$ (GIM, 1970); J/ ψ discovered in 1974
 - t-quark mass from B⁰ mixing (ARGUS, 1987); discovered D0, CDF 1995
 - t, b-quarks inferred from CP violation in K sector (KM of CKM 1973)
- Will argue that flavour still has discovery potential in the LHC era

Outline

- Theoretical foundation and LHCb data-taking
- Measurements of $b \rightarrow sll$ decays
- $B^0 \rightarrow \mu^+ \mu^-$ branching fraction measurements
- A critical look at the theory predictions
- Theoretically pristine observables
- Future outlook

Outline

- Theoretical foundation and LHCb data-taking
- Measurements of $b \rightarrow sll$ decays
- $B^0 \rightarrow \mu^+ \mu^-$ branching fraction measurements
- A critical look at the theory predictions
- Theoretically pristine observables
- Future outlook

Theoretical Foundation

• The **Operator Product Expansion** is the theoretical tool that underpins rare decay measurements – rewrite SM Lagrangian as :

$$\mathcal{L} = \sum_{i} C_{i} O_{i}$$

- "Wilson Coefficients" C_i
 - Describe the short distance part, can compute perturbatively in given theory
 - Integrate out the heavy degrees of freedom that can't resolve at some scale μ
 - Mixing between different operators : $C_i \rightarrow C_i^{\text{effective}}$
- "Operators" O_i
 - Describe the long distance, non-perturbative part involving particles below $\boldsymbol{\mu}$
 - Account for effects of strong interactions and are difficult to calculate reliably
- The challenge : measure those observables where the uncertainties on the operators cancel out – are then free from theoretical problems and measuring the C_i tells us about the heavy degrees of freedom

LHCb data-taking

- Results in this talk from Run-I data recorded 3.0 fb⁻¹ at instantaneous luminosities up to twice the design value
- Start of Run-II has been spectacular, have 1.5 fb⁻¹ on-tape, but collision energy means nearly twice the cross-section for bb production

Outline

- Theoretical foundation and LHCb data-taking
- Measurements of b→sll decays
- $B^0 \rightarrow \mu^+ \mu^-$ branching fraction measurements
- A critical look at the theory predictions
- Theoretically pristine observables
- Future outlook

Rare decays $-b \rightarrow sll$

- b→sll decays involve flavour changing neutral currents → loop process
- At LHCb, best studied decay $B^0 \rightarrow K^{*0} \mu \mu$
- Large number of observables: BF, A_{CP} and angular observables – dynamics can be described by three angles (θ_I, θ_K, φ) and di-μ invariant mass q²
- Try to use observables where theoretical uncertainties cancel e.g. Forward-backward asymmetry A_{FB} of θ_{I} distribution
- Interpreted in effective field theory describing couplings (C) of photon (O₇), vector (O₉) and axial-vector (O₁₀) operators

dimuon invariant mass squared. q²

$B^0 \rightarrow K^{*0} \mu \mu$ full angular analysis

• Have performed first full angular analysis

[JHEP 02 (2016) 104]

- Extract the full set of CP-averaged angular terms and their correlations
- Determine a full set of CP-asymmetries

• Vast majority of observables in agreement with SM predictions, giving some confidence in theory control of relevant form-factors

$B^0 \rightarrow K^{*0} \mu \mu$ full angular analysis

 In SCET/QCD factorisation can reduce to just two form-factors- can then construct ratios of observables which are independent of formfactors at LO [JHEP 1204 (2012) 104]

- Form-factor "independent" P₅' has a local discrepancy in two bins (subsequently confirmed by Belle [arxiv:1604.04042])
- Form-factor dependent A_{FB} hints at a trend, but is consistent with SM
- \rightarrow 3.4 σ discrepancy with the vector coupling ΔC_9 = -1.04±0.25

b→sll Branching Fractions

 Several b→sll branching fractions measured, show some tension with predictions, particular at low q²

$b \rightarrow sll$ interpretation

• Several groups have interpreted LHCb results by performing global fits to b→sll data e.g. [arXiv:1503.06199,1510.04239,1512.07157,1603.00865]

Consistent picture, tensions solved simultaneously by a modified vector coupling (ΔC₉ != 0) at 3-4σ

$b \rightarrow sll$ interpretation

- Observe significant tension in b→sll processes, a consistent theory interpretation is *possible*, but is it correct?
- Community have started to critically look at the theory predictions
 - Problem with $B \rightarrow K^*$ form factors?
 - Charm loop contribution?

[With thanks to D.Straub @ LHCb implications workshop]

 Before addressing these – effect could be substantiated in another way…

$B^0 \rightarrow \mu^+ \mu^-$ analysis

- Single-particle explanations of all anomalies predict $C_9^{NP} = -C_{10}^{NP}$
- Data are clearly still compatible with such a solution
- If this were the case would expect to see effect in $B^0 \rightarrow \mu^+ \mu^-$ decays
 - Helicity and GIM suppressed
 - Dominant contribution from Zpenguin diagram
 - Precise predictions for BFs : $B(B_s^0 \rightarrow \mu\mu)=(3.66\pm0.23)\times10^{-9}$ $B(B_d^0 \rightarrow \mu\mu)=(1.06\pm0.09)\times10^{-10}$
 - BF can be altered by modification of C₁₀ or new scalar or pseudoscalar contribution (C_{S,P}) [high tan β SUSY]

$B^0 \rightarrow \mu^+ \mu^-$ analysis

- CMS and LHCb (LHC run I) Candidates / (40 MeV/c²) 8 01 71 11 91 LHCb and CMS measurements • 🔶 Data Signal and background combined [Nature 522 (2015) 68] $B_{a}^{0} \rightarrow \mu^{+}\mu^{-}$ $B^0 \rightarrow \mu^+ \mu^-$ Combinatorial background - $B_s^0 \rightarrow \mu^+ \mu^-$ established at 6.2 σ 10 Semi-leptonic background Peaking background - $B_d^0 \rightarrow \mu^+ \mu^-$ evidence at 3.2 σ ATLAS have also made a search ۲ μ⁻⁾[10⁻⁹] 5000 5200 5400 5600 5800 ATLAS $m_{\mu^+\mu^-}$ [MeV/c²] √s = 7 TeV, 4.9 fb⁻¹ 0.6 CMS and LHCb (LHC run I) vs = 8 TeV. 20 fb⁻¹ $\rightarrow \mu^+$ 8 S^B° B(B⁰ -8 7 SM **farXiv**: 99.73°/c 6 🗄 1604.04263 95.45% Contours for $-2 \Delta \ln(L) = 2.3$, ATLAS 5 E 6.2, 11.8 from maximum of L .27% 4 3 2 $B(B_s^0 \to \mu^+ \mu^-)$ [10⁻⁹] No evidence for any deviation from ulletSM SM so far... but this measurement will be important for the future 2.5 0.5 1.5 2 $S_{SM}^{B_s^0}$
- LHCb update in progress, CMS should also be v. competitive here

Outline

- Theoretical foundation and LHCb data-taking
- Measurements of $b \rightarrow sll$ decays
- $B^0 \rightarrow \mu^+ \mu^-$ branching fraction measurements
- A critical look at the theory predictions
- Theoretically pristine observables
- Future outlook

Problem with $B \rightarrow K^*$ form factors?

- Form factor calculations made using both LCSR and LQCD techniques [arXiv: 1503.05534, 1501.00367]
 - These show good agreement
- Some analysts prefer to use form factors evaluated in heavy quark limit (so-called "soft" form factors) rather than full [arXiv:1510.04239]
 - Again, these show good agreement
 - Vigorous debate about how to quantify (power) corrections without using info from LCSR or LQCD [arXiv:1407.8526, 1412.3183]
- Branching fractions less theoretically clean than angular observables LHCb's updated $B^0 \rightarrow K^{*0} \mu \mu$ angular analysis will be important!

 The O_{1,2} operator has a component that could mimic a new physics effect in C₉ through cc loop

В

- Effect can be parameterised as function of three helicity amplitudes h_{+0}
- Absorb effect of these amplitudes into a helicity dependent shift in C₉, C₉SM + ΔC₉⁺⁻⁰(q²) cf. C₉SM + ΔC₉^{NP} (!= ΔC₉^{NP}(q²)) Look for q² and helicity dependence of apparent shift in C₉

 The O_{1,2} operator has a component that could mimic a new physics effect in C₉ through cc loop

В

- Effect can be parameterised as function of three helicity amplitudes h_{+0}
- Absorb effect of these amplitudes into a helicity dependent shift in C₉, C₉SM + ΔC₉⁺⁻⁰(q²) cf. C₉SM + ΔC₉^{NP} (!= ΔC₉^{NP}(q²)) Look for q² and helicity dependence of apparent shift in C₉

Bayesian fit assuming polynomial form for h₊₋₀ [arXiv:1512.07157]

• Assumes small ΔC_9^x for small q^2 – true in SM, but not for NP

 q² dependence is compatible with both SM and NP

 \rightarrow need to analyse the Run-II data and improve the precision!

- No way for charm loop effects to give a contribution to C₁₀ evidence of a V-A effect in b→sll, or anomaly in B⁰→µ⁺µ⁻, would be a game-changer
- At low q², ΔC₉⁺⁻⁰(q²) term arises mainly from interference penguin decay and J/ψ
 - Measure phase of interference by fitting differential rate results for $B^+{\rightarrow}K^+\mu^+\mu^-$ imminent

Outline

- Theoretical foundation and LHCb data-taking
- Measurements of $b \rightarrow sll$ decays
- $B^0 \rightarrow \mu^+ \mu^-$ branching fraction measurements
- A critical look at the theory predictions
- Theoretically pristine observables
- Future outlook

Lepton universality with loop decays

• The ratio of $b \rightarrow s \mu \mu$ and $b \rightarrow see$ branching fractions, R_K , is a theoretically pristine quantity

 $R_{K} = B(B^{+} \rightarrow K^{+} \mu \mu) / B(B^{+} \rightarrow K^{+} ee)$

- Precisely predicted in SM,
 R_K = 1.00030 ^{+0.00010} -0.00007
- LHCb measurement in $1.0 < q^2 < 6.0 \text{ GeV}^2$ $R_{\kappa} = 0.745^{+0.090}_{-0.074} (\text{stat})^{+0.036}_{-0.036} (\text{syst})$

\rightarrow 2.6 σ from SM prediction

• Several theorists have pointed out this is consistent with $\Delta C_9^{ee}=0$, $\Delta C_9^{\mu\mu}=-1$ (latter consistent with $B^0 \rightarrow K^{*0}\mu\mu$) – work on-going to add range of other measurements e.g. R_{K^*} , R_{ϕ} ,.. angular analysis $K^{*0}ee$

Lepton universality with tree decays

An anomalous effect is seen in the ratio of tree-level branching fractions

 $R_D^*=B(B^0 \rightarrow D^{*+}\tau\nu)/B(B^0 \rightarrow D^{*+}\mu\nu)$

- At LHCb reconstruct the tauonic decay through τ→μνν, final state has three neutrinos!
- Confirms effect seen in R_D, R_{D*} at BaBar/Belle, including latest Belle hadronic result from ICHEP combined significance now 4σ

• LHCb measurement of (R_D, R_{D^*}) in preparation. Also working on hadronic τ decay. Will also perform measurements with other b-hadrons e.g. B_s , B_c and Λ_b

Outline

- Theoretical foundation and LHCb data-taking
- Measurements of $b \rightarrow sll$ decays
- $B^0 \rightarrow \mu^+ \mu^-$ branching fraction measurements
- A critical look at the theory predictions
- Theoretically pristine observables
- Future outlook

Future Outlook

- LHCb will upgrade detector in LS2 (2019-20) then take ~50 fb⁻¹ during Run 3 (2021-23) and Run 4 (2027-29)
- Expect approximately linear increase in rare muon decays such as $B^0{\rightarrow}K^{*0}{\mu}{\mu}$
- Have talked about b→s decays, will then be able to make comparable tests for (CKM suppressed) b→d decays

– E.g. $B^+ {\rightarrow} \pi^+ \mu^+ \mu^-$ differential BF ${\rightarrow}$ test of MFV hypothesis

[arXiv:1602.03560, PRD93 (2016) 034005] 26

Conclusions

- A number of discrepancies seen wrt Standard Model predictions
 - b \rightarrow sll decays angular observables and branching fractions
 - Lepton universality tests in both loop and tree decays
 - will be interesting to add Run-II data to try and clarify the picture
- Beyond this working on LHCb upgrade to secure the next generation of measurements

Backup

Δm_d with $B^0 \rightarrow D^{(*)} \mu \nu X$

- In the SM, the B⁰ oscillation frequency $\Delta m_d \sim V_{tb} V_{td}$
- Measure using $B^0 \rightarrow D^{(*)-}\mu^+\nu X$ decays with 6.7×10⁶ $D^- \rightarrow K^+\pi^-\pi^-$ and 8.3×10⁵ $D^{*-} \rightarrow D^0(K^+\pi^-)\pi^-$

- Tagging power 2.32–2.55% depending on mode
- LHCb measurement : ∆m_d = (505.0±2.1±1.0) ns⁻¹
- World average [HFAG]

 $\Delta m_d = (509.8 \pm 3.5) \text{ ns}^{-1} \text{ w/o this result}$ (506.4 ± 1.9) ns⁻¹ w/ this result

i.e. improvement of factor 1.8 in the uncertainty

$b \rightarrow sll$ interpretation

30

$B^0 \rightarrow K^{*0} \mu \mu C_i$ and form factors

- Amplitudes that describe the $B_d^0 \rightarrow K^{*0} \mu \mu$ decay involve
 - The (effective) Wilson Coefficients : C₇^{eff} (photon), C₉^{eff} (vector), C₁₀^{eff} (axial-vector) and their right-handed (') counterparts
 - Seven (!) form factors these are the origin of the primary theoretical uncertainties

$$\begin{aligned} A_{\perp}^{L(R)} &= N\sqrt{2\lambda} \left\{ \left[(\mathbf{C}_{9}^{\text{eff}} + \mathbf{C}_{9}'^{\text{eff}}) \mp (\mathbf{C}_{10}^{\text{eff}} + \mathbf{C}_{10}'^{\text{eff}}) \right] \frac{\mathbf{V}(\mathbf{q}^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (\mathbf{C}_{7}^{\text{eff}} + \mathbf{C}_{7}'^{\text{eff}}) \mathbf{T}_{1}(\mathbf{q}^{2}) \right\}^{B} \left[\mathbf{V}_{10}^{\mathbf{q}} - \mathbf{V}_{10}'^{\mathbf{q}} \right] \\ A_{\parallel}^{L(R)} &= -N\sqrt{2} (m_{B}^{2} - m_{K^{*}}^{2}) \left\{ \left[(\mathbf{C}_{9}^{\text{eff}} - \mathbf{C}_{9}'^{\text{eff}}) \mp (\mathbf{C}_{10}^{\text{eff}} - \mathbf{C}_{10}'^{\text{eff}}) \right] \frac{\mathbf{A}_{1}(\mathbf{q}^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (\mathbf{C}_{7}^{\text{eff}} - \mathbf{C}_{7}'^{\text{eff}}) \mathbf{T}_{2}(\mathbf{q}^{2}) \right\} \\ A_{0}^{L(R)} &= -\frac{N}{2m_{K^{*}}\sqrt{q^{2}}} \left\{ \left[(\mathbf{C}_{9}^{\text{eff}} - \mathbf{C}_{9}'^{\text{eff}}) \mp (\mathbf{C}_{10}^{\text{eff}} - \mathbf{C}_{10}'^{\text{eff}}) \right] \left[(m_{B}^{2} - m_{K^{*}}^{2} - q^{2})(m_{B} + m_{K^{*}}) \mathbf{A}_{1}(\mathbf{q}^{2}) - \lambda \frac{\mathbf{A}_{2}(\mathbf{q}^{2})}{m_{B} + m_{K^{*}}} \right] \\ &+ 2m_{b} (\mathbf{C}_{7}^{\text{eff}} - \mathbf{C}_{7}'^{\text{eff}}) \left[(m_{B}^{2} + 3m_{K^{*}} - q^{2}) \mathbf{T}_{2}(\mathbf{q}^{2}) - \frac{\lambda}{m_{B}^{2} - m_{K^{*}}^{2}} \mathbf{T}_{3}(\mathbf{q}^{2}) \right] \right\} \end{aligned}$$

- BFs have relatively large theoretical uncertainties from form factors
- Angular observables much smaller theory uncertainties

$B^0 \rightarrow K^{*0} \mu \mu - theoretical view$

- Need a new vector contribution \rightarrow adjusts C₉ Wilson Coefficient
- Very difficult to generate in SUSY models [arXiv:1308.1501] : "[C₉ remains] SM-like throughout the viable MSSM parameter space, even if we allow for completely generic flavour mixing in the squark section"

- Models with composite Higgs/extra dimensions have same problem
- Could generate observed deviation with a Z'