Adam Martin (<u>amarti41@nd.edu</u>)

based on 1503.07537, 1510.00372 L.Lehman, AM also Henning et al 1512.03433, 1507.07240

HEFT, Oct 27th, 2016 Neils Bohr Institute

SM is a poster child EFT: SMEFT

degrees of freedom are: Q, u^c, d^c, L, e^c, H, gauge fields symmetry is: Lorentz \otimes SU(3)c \otimes SU(2)w \otimes U(1)Y

write down all operators, lowest mass dimension terms dominate in the IR

$$\mathcal{L} = \int \sum_{i} c_i \mathcal{O}_i(Q, u^c, d^c, L, e^c, H, F, W, G)$$

low-dimension operators are easy, but quickly gets more complicated

higher dimension operators are complicated because there are more fields = number ways to contract indices grows rapidly. Also IBP and EOM redundancies

dim ≤4: Standard Model

dim 5: 1 operator (neutrino mass)

dim 6: 63 terms (neglecting flavor)

dim 7: 20 terms

[Weinberg '79]

[Büchmuller, Wyler '86, Grzadkowski et al '10]

[Lehman '14]

dim 8+: as of Oct. 2015, no complete set known

now a

SOLVED PROBLEM

now a

SOLVED PROBLEM

1503.07537

Hilbert Series for Constructing Lagrangians: expanding the phenomenologist's toolbox

Landon Lehman and Adam Martin Department of Physics, University of Notre Dame, Notre Dame, IN 46556

E-mail: llehman@nd.edu, amarti41@nd.edu

now a

SOLVED PROBLEM

1503.07537

Hilbert Series for Constructing Lagrangians: the phenomenologist's toolbox

Landon Lehman and Adam Martin

Department of Physics, University of Notre Dame, Notre Dame, IN 46556

E-mail: llehman@nd.edu, amarti41@nd.edu

1512.03433

2, 84, 30, 993, 560, 15456, 11962, 261485,...: Higher dimension operators in the SM EFT

Brian Henning,^a Xiaochuan Lu,^b Tom Melia^{c,d} and Hitoshi Murayama^{c,d,e}

^aDepartment of Physics, Yale University, New Haven, Connecticut 06511, USA ^bDepartment of Physics, University of California, Davis, California 95616, USA ^cDepartment of Physics, University of California, Berkeley, California 94720, USA

^d Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720,

USA

now a

SOLVED PROBLEM

1503.07537

Hilbert Series for Constructing Lagrangians: the phenomenologist's toolbox

Landon Lehman and Adam Martin

Department of Physics, University of Notre Dame, Notre Dame, IN 46556

E-mail: llehman@nd.edu, amarti41@nd.edu

1512.03433

Dec 11, 2015

2, 84, 30, 993, 560, 15456, 11962, 261485,...: Higher dimension operators in the SM EFT

Brian Henning,^a Xiaochuan Lu,^b Tom Melia^{c,d} and Hitoshi Murayama^{c,d,e}

^aDepartment of Physics, Yale University, New Haven, Connecticut 06511, USA ^bDepartment of Physics, University of California, Davis, California 95616, USA

- ^cDepartment of Physics, University of California, Berkeley, California 94720, USA
- ^d Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Specifically:

know **number** and **form** (field content) of SMEFT operators to arbitrary mass dimension, correctly incorporating EOM and IBP redundancies

How? Using an algebraic technique known as **Hilbert series**

Focus on SMEFT, but technique applies to other EFTs

subset of dim-8:

 $3 D (d_c^{\dagger} d_c) (L H e_c)$ $3 D (L^{\dagger} L) (L H e_c)$ $3D(d_c^{\dagger}d_c)(QHd_c)$ $D(e_c^{\dagger} e_c)(L H e_c)$ $6 D (L^{\dagger} L) (Q H d_c)$ $6 D (Q^{\dagger} Q) (L H e_c)$ $6 D (Q^{\dagger} Q) (Q H d_c)$ $3D(e_c^{\dagger}e_c)(QHd_c)$ $6 D \left(d_c^{\dagger} d_c \right) \left(Q H^{\dagger} u_c \right)$ $6 D (L^{\dagger} L) (Q H^{\dagger} u_c)$ $3D(d_c^{\dagger}u_c)(LH^{\dagger}e_c)$ $3D(e_c^{\dagger}e_c)(QH^{\dagger}u_c)$ $3D(u_c^{\dagger}u_c)(LHe_c)$ $3D(u_c^{\dagger}u_c)(QH^{\dagger}u_c)$ $6 D (Q^{\dagger} Q) (Q H^{\dagger} u_c)$ $6 D (u_c^{\dagger} u_c) (Q H d_c)$

181 at O(D)

• • •

This talk:

Motivation for D > 6 and existing work Basics of Hilbert series: no derivatives

Derivatives & conformal picture: **Henning** Formal aspects of Hilbert Series: **Melia**

precision: LHC, HL-LHC, etc. will soon test SM to unprecedented precision = sensitivity to effects from even higher dimension 1507.04548v1

precision: LHC, HL-LHC, etc. will soon test SM to unprecedented precision = sensitivity to effects from even higher dimension

precision: LHC, HL-LHC, etc. will soon test SM to unprecedented precision = sensitivity to effects from even higher dimension

more specifically

• dim-8 vs. dim-6 @ NLO

more specifically

- dim-8 vs. dim-6 @ NLO
- dim-8 ~ $\mathcal{O}(\frac{1}{\Lambda^4})$ same order as $|\text{dim-6}|^2$

naively always small compared to (SM x dim-6) ~ $\mathcal{O}(\frac{1}{\Lambda 2})$

however, when helicity structure of SM \neq helicity structure of dim-6, no interference

[1607.05236 Azatov et al]

	A_4	$ h(A_4^{\rm SM}) $	$ h(A_4^{\mathrm{BSM}}) $
,	VVVV	0	4,2
	$VV\phi\phi$	0	2
	$VV\psi\psi$	0	2
	$V\psi\psi\phi$	0	2
	$\psi\psi\psi\psi\psi$	2,0	2,0
	$\psi\psi\phi\phi$	0	0
	$\phi\phi\phi\phi\phi$	0	0

see talk by Riva

new effects: lower dim. operators have accidental symmetries (i.e. baryon #, lepton #). Higher dim. operators are the first place violation of these symmetries occurs

new effects: lower dim. operators have accidental symmetries (i.e. baryon #, lepton #). Higher dim. operators are the first place violation of these symmetries occurs

Can be studied systematically, i.e. 1604.05772 Kobach

$$\begin{array}{ll} \mbox{from hypercharge} & \frac{\Delta B-\Delta L}{2} & \mbox{even for d} = \mbox{even} \\ \mbox{conservation \& Lorentz} & \frac{\Delta B-\Delta L}{2} & \mbox{odd for d} = \mbox{odd} \\ \mbox{for d} = \mbox{odd} \end{array}$$

A generating function that generates all possible products of its arguments

Ex:

$$\frac{1}{(1-x)(1-y)} = (1+x+x^2+x^3\cdots)(1+y+y^2+y^3+\cdots)$$

generates all xⁿ y^m

A generating function that generates all possible products of its arguments

Ex:

$$\frac{1}{(1-x)(1-y)} = (1+x+x^2+x^3\cdots)(1+y+y^2+y^3+\cdots)$$

generates all xⁿ y^m

We'd like something similar, but forming (group theoretic) products of Q, u^c, d^c, e^c, L, F, W, G. And we'd like to count the number of times a particular product appears (i.e. 2 Q[†]QL[†]L)

A generating function that generates all possible products of its arguments

for us: Plethystic exponential

$$PE[\phi] = \exp\left(\sum_{r=1}^{\infty} \frac{1}{r} \sum_{i} \phi_{i}^{r} \chi_{\phi}^{r}\right)$$

character of field
"fields" in the theory \rightarrow here just
complex #, mod <= 1

$$PE[\phi] = \exp\left(\sum_{r=1}^{\infty} \frac{1}{r} \sum_{i} \phi_{i}^{r} \chi_{\phi}^{r}\right)$$

character of field
under symmetry
groups

A generating function that generates all possible products of its arguments

for us: Plethystic exponential

 $PE[\phi] = \exp\left(\sum_{r=1}^{\infty} \frac{1}{r} \sum_{i} \phi_{i}^{r} \chi_{\phi}^{r}\right)$ character of field "fields" in the theory \rightarrow here just complex #, mod <= 1 under symmetry groups

Character?

if under G $\phi_i \to D_{ij}^R(g)\phi_j$, character $\chi_R = \operatorname{tr}(D_{ij}^R)$ Ex: SU(2) doublet irrep: $D_{ii}^{1/2} = \exp(i\theta^a \tau_a)$ $\chi_{1/2} = \operatorname{tr}(D_{ij}^{1/2}) = e^{-i\theta/2} + e^{i\theta/2}$, $\theta = (\sum \theta_a^2)^{1/2}$ defining $e^{i\theta/2}=z$, ${\rm tr}(D_{ij}^{1/2})=z+\frac{1}{-}$

Character?

if under G $\phi_i \rightarrow D_{ij}^R(g)\phi_j$, character $\chi_R = \operatorname{tr}(D_{ij}^R)$ Ex: SU(2) triplet irrep: $D_{ij}^1 = \exp(i\theta^a J_a)$ $\dots \quad \chi_1 = z^2 + \frac{1}{z^2} + 1$

Generally: $\chi_R(z_i)$

function of **j** complex variables, $\mathbf{j} = \text{rank}$ of group (1 for U(1), SU(2), 2 for SU(3), etc.)

Character?

if under G $\phi_i \to D^R_{ij}(g)\phi_j$, character $\chi_R = \operatorname{tr}(D^R_{ij})$

Ex: U(1), charge Q,
$$\chi_Q = u^Q$$

Ex: SU(3) triplet, $\chi_3 = w_1 + \frac{w_2}{w_1} + \frac{1}{w_2}$

Generally: $\chi_R(z_i)$

function of j complex variables, j = rank of group (1 for U(1), SU(2), 2 for SU(3), etc.)

Okay...

lets stick with one complex field ϕ charged as a doublet under an SU(2)

$$PE[\phi](z) = \exp\left(\sum_{r=1}^{\infty} \frac{1}{r} (\phi^r \chi_{\phi}^r(z) + \phi^{r\dagger} \chi_{\phi}^*(z))\right)$$

expanded out, will give all possible products of ϕ and ϕ^* , i.e.

Okay...

lets stick with one complex field ϕ charged as a doublet under an SU(2)

$$PE[\phi, \phi^*] = \exp\left(\sum_{r=1}^{\infty} \frac{1}{r} (\phi^r + \phi^{*r})(z^r + \frac{1}{z^r})\right)$$
$$= \frac{z^2}{(z-\phi)(z-\phi^*)(z\phi-1)(z\phi^*-1)}$$

$$= (2+z^2+\frac{1}{z^2})\phi\phi^* + (z^3+\frac{1}{z^3}+2z+\frac{2}{z})\phi(\phi^*\phi) + \cdots$$
$$+ (z^8+\frac{1}{z^8}+2z^6+\frac{2}{z^6}+3z^4+\frac{3}{z^4}+4z^2+\frac{4}{z^2}+4)\phi^2(\phi^*\phi)^3$$

Key concept: Peter-Weyl theorem

characters of compact Lie groups form an orthonormal basis set for functions of the j complex variables

Haar measure:
$$\int_{G} d\mu \, \chi_M(z_i) \, \chi_N^*(z_i) = \delta_{MN}$$
 volume of group

therefore we can expand any function of z as a linear combination of $\chi_R(z)$

$$f(z) = \sum_{R} A_{R} \chi_{R}(z)$$
 z-independent

and can project out any A_M using orthonormality

$$A_M = \int d\mu(z) f(z) \chi_M^*(z)$$

Key concept: Peter-Weyl theorem

characters of compact Lie groups form an orthonormal basis set for functions of the j complex variables

Haar measure:
$$\int_{G} d\mu \, \chi_M(z_i) \, \chi_N^*(z_i) = \delta_{MN}$$
 volume of group

In particular:

$$\int d\mu(z) f(z) \mathbf{1} = A_0$$

projects out the **singlet** = group invariant part of f(z)

exactly like Fourier series:

$$f(\theta) = \sum_{n=-\infty}^{\infty} A_n e^{i n \theta}$$
$$= A_0 + \sum_n \tilde{A}_n \cos(n\theta) + \sum_n \tilde{B}_n \sin(n\theta)$$

project out individual coefficient

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} d\theta f(\theta) = A_0$$

exactly like Fourier series:

 \sim

$$f(\theta) = \sum_{n=-\infty}^{\infty} A_n e^{i n \theta}$$
$$= A_0 + \sum_n \tilde{A}_n \cos(n\theta) + \sum_n \tilde{B}_n \sin(n\theta)$$

project out individual coefficient

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} d\theta f(\theta) = A_0$$

in fact: set $x = e^{i\theta}$ $d\theta/(2\pi) \rightarrow dx/(2\pi i x)$

Fourier series = character orthonormality for U(1)

putting pieces together

1.)
$$PE[\phi](z) = \exp\left(\sum_{r=1}^{\infty} \frac{1}{r} (\phi^r \chi_{\phi}^r(z) + \phi^{r\dagger} \chi_{\phi}^*(z))\right)$$
all products of ϕ, ϕ^*

2.) integration: $\int d\mu_{SU(2)} PE[\phi](z) \mathbf{1}$ projects out only the invariant (i.e. singlet) pieces in PE

$$1 + (\phi^* \phi) + (\phi^* \phi)^2 + (\phi^* \phi)^3 + \cdots$$

coefficient = number of invariants at that order

putting pieces together

1.)
$$PE[\phi](z) = \exp\left(\sum_{i=1}^{\infty} \frac{1}{r} (\phi^r \chi_{\phi}^r(z) + \phi^{r\dagger} \chi_{\phi}^*(z))\right)$$
$$\int d\mu_{SU(2)} = \frac{1}{2\pi i} \oint dz \, \frac{(z^2 - 1)}{z} \, \phi, \phi^*$$

2.) integration:
$$\int d\mu_{SU(2)} PE[\phi](z) \mathbf{1}$$
projects out only the invariant (i.e. singlet) pieces in PE

$$1 + (\phi^* \phi) + (\phi^* \phi)^2 + (\phi^* \phi)^3 + \cdots$$

coefficient = number of invariants at that order

putting pieces together $\chi_{1/2} = z + \frac{1}{z}$

1.)
$$PE[\phi](z) = \exp\left(\sum_{i=1}^{\infty} \frac{1}{r} (\phi^r \chi_{\phi}^r(z) + \phi^{r\dagger} \chi_{\phi}^*(z))\right)$$
$$\int d\mu_{SU(2)} = \frac{1}{2\pi i} \oint dz \, \frac{(z^2 - 1)}{z} \, \phi, \phi^*$$

2.) integration:
$$\int d\mu_{SU(2)} PE[\phi](z) \mathbf{1}$$

$$\frac{1}{2\pi i} \oint dz \frac{(1-z^2)}{z} \underbrace{z^2}_{(z-\phi)(z-\phi^*)(z\phi-1)(z\phi^*-1)} = \frac{1}{1-\phi^*\phi}$$

putting pieces together $\chi_{1/2} = z + \frac{1}{z}$

1.)
$$PE[\phi](z) = \exp\left(\sum_{i=1}^{\infty} \frac{1}{r} (\phi^r \chi_{\phi}^r(z) + \phi^{r\dagger} \chi_{\phi}^*(z))\right)$$
$$\int d\mu_{SU(2)} = \frac{1}{2\pi i} \oint dz \, \frac{(z^2 - 1)}{z} \, \phi, \phi^*$$

2.) integration:
$$\int d\mu_{SU(2)} PE[\phi](z) \mathbf{1}$$
projects out only the invariant (i.e. singlet) pieces in PE

$$1 + (\phi^* \phi) + (\phi^* \phi)^2 + (\phi^* \phi)^3 + \cdots$$

coefficient = number of invariants at that order

Getting more general:

multiple groups: character → product of characters under individual groups

$$\chi_{\phi}(z) \to \prod_{G} \chi_{G,\phi}(z_i)$$

integrate over volume of all groups
$$\int d\mu \to \int \prod_G d\mu_G$$

multiple fields: add each field into PE, accompanied by character

Getting more general:

fermions: anti-commuting, non-trivial Lorentz properties

PE for all fermionic fields [Hanany '14] $PEF[\psi] = \exp\left\{\sum_{i=1}^{\infty} \frac{(-1)^{r+1}}{r} (\psi \chi(z_i))^r\right\}$ \therefore total PE = PE[ϕ_i] × PE[ψ_i] Lorentz group: $SO(3,1) \cong SU(2)_L \otimes SU(2)_R$ just two more symmetry groups use LH fermions only for simplicity: Q, u^c , d^c , etc ~ (0, 1/2) Q[†], u^{†c}, d^{†c}, etc ~ (1/2, 0) Field strengths:

$$X^{\pm}_{\mu\nu} = X_{\mu\nu} \pm i \tilde{X}_{\mu\nu}$$
 in (1,0) or (0,1) irrep.

put the pieces together:

$$\mathcal{H}_{0,SM} = \int \prod_{G} d\mu_{Gi} PE[H, F^+, W^+, G^+ + c.c.] \times PEF[Q, u^c, d^c, L, e^c + c.c]$$

$$[SU(2)_L \times SU(2)_R] \times SU(3)_c \times SU(2)_W \times U(1)_Y$$

generates **all** invariants (with one flavor of QUDLE) with no derivatives

example: QQQL operators, $N_f = 3$

PEF[3Q(0, 1/2; 3, 2, 1/6) + 3L(0, 1/2; 1, 2, -1/2)]

x, y for SU(2)_R × SU(2)_L; (w₁, w₂) for SU(3), z for SU(2)_W, u for U(1)_Y

$$PEF[3Q\left(y+\frac{1}{y}\right)\left(z+\frac{1}{z}\right)\left(w_{1}+\frac{w_{2}}{w_{1}}+\frac{1}{w_{2}}\right)u^{1/6} +3L\left(y+\frac{1}{y}\right)\left(z+\frac{1}{z}\right)u^{-1/2}]$$

 $\int d\mu_{\text{Lorentz}}(x,y) \, d\mu_{SU(3)}(w_1,w_2) \, d\mu_{SU(2)}(z) \, d\mu_{U(1)}(u) \, PEF[3Q,3L]$

 $1 + 57 LQ^3 + 4818 L^2 Q^6 + 162774 L^3 Q^9 + \cdots$

 $\partial_{\mu} \sim (1/2, 1/2)$ of Lorentz group... add it in to PE like other fields PE[ϕ , $\partial_{\mu}\phi$] will contain all products of ϕ , $\partial_{\mu}\phi$

 $\partial_{\mu} \sim (1/2, 1/2)$ of Lorentz group... add it in to PE like other fields PE[ϕ , $\partial_{\mu}\phi$] will contain all products of ϕ , $\partial_{\mu}\phi$

repeat for higher derivatives? even at ∂^2 there are two possibilities:

 $\partial_{\{\mu,\nu\}}\phi, \quad \Box\phi$ $(1,1), \quad (0,0)$

 $\partial_{\mu} \sim (1/2, 1/2)$ of Lorentz group... add it in to PE like other fields PE[ϕ , $\partial_{\mu}\phi$] will contain all products of ϕ , $\partial_{\mu}\phi$

repeat for higher derivatives? even at ∂^2 there are two possibilities:

$$\partial_{\{\mu,
u\}}\phi, \quad \Box\phi \quad a$$
lways reduces by $(1,1), \quad (0,0) \quad {\sf EOM..}$ so omit from PE

 $\partial_{\mu} \sim (1/2, 1/2)$ of Lorentz group... add it in to PE like other fields PE[ϕ , $\partial_{\mu}\phi$] will contain all products of ϕ , $\partial_{\mu}\phi$

repeat for higher derivatives? even at ∂^2 there are two possibilities:

$$\partial_{\{\mu,
u\}}\phi,$$
 \square always reduces by $(1,1),$ $(0,0)$ EOM.. so omit from PE

 $\partial_{\mu} \sim (1/2, 1/2)$ of Lorentz group... add it in to PE like other fields PE[ϕ , $\partial_{\mu}\phi$] will contain all products of ϕ , $\partial_{\mu}\phi$

repeat for higher derivatives? even at ∂^2 there are two possibilities:

$$\partial_{\{\mu,
u\}}\phi,$$
 always reduces by $(1,1),$ $(0,0)$ EOM.. so omit from PE

from where? still doesn't account for IBP redundancy — see next talks!

Now what?

Useful subsets of operators, formats?

HS output

 $3 D (d_c^{\dagger} d_c) (L H e_c) \qquad D (e_c^{\dagger} e_c) (L H e_c)$ $6 D (Q^{\dagger} Q) (Q H^{\dagger} u_c) = 3 D (u_c^{\dagger} u_c) (L H e_c)$

translation ~done for bosonic dim-8 (FeynRules UFO too)

normal human output

 $(H^{\dagger}H)^2(D_{\mu}H^{\dagger}D_{\mu}H)$ $\delta_{IJ} (H^{\dagger}H) (H^{\dagger}\tau^{I}H) (D_{\mu}H^{\dagger}\tau^{J}D_{\mu}H)$ $(D_{\mu}H^{\dagger}D_{\nu}H)B^{L}_{o(\mu}B^{R}_{\nu)o}$ $\delta_{AB} \left(D_{\mu} H^{\dagger} D_{\nu} H \right) G^{L,A}_{\rho(\mu} G^{R,B}_{\nu)\rho}$ $\delta_{IJ} \left(D_{\mu} H^{\dagger} D_{\nu} H \right) W^{L,I}_{\rho(\mu} W^{R,J}_{\nu)\rho}$ $\epsilon_{IJK} \left(D_{\mu} H^{\dagger} \tau^{I} D_{\nu} H \right) W^{L,J}_{\rho(\mu} W^{R,K}_{\nu)\rho}$ $(D_{\mu}H^{\dagger}D_{\mu}H)B_{\rho\sigma}^{L}B_{\rho\sigma}^{L}$ + h.c. $\delta_{AB} \left(D_{\mu} H^{\dagger} D_{\mu} H \right) G_{\rho\sigma}^{L,A} G_{\rho\sigma}^{L,B} + \text{h.c.}$ $\delta_{IJ} \left(D_{\mu} H^{\dagger} D_{\mu} H \right) W_{\rho\sigma}^{L,I} W_{\rho\sigma}^{L,J} + \text{h.c.}$ $\epsilon_{IJK} \left(D_{\mu} H^{\dagger} \tau^{I} D_{\nu} H \right) W_{o\{\mu}^{L,J} W_{\nu\}\rho}^{L,K} + \text{h.c.}$ $\delta_{IJ} \left(D_{\mu} H^{\dagger} \tau^{I} D_{\mu} H \right) B^{L}_{\rho\sigma} W^{L,J}_{\rho\sigma} + \text{h.c.}$ $\delta_{IJ} \left(D_{\mu} H^{\dagger} \tau^{I} D_{\nu} H \right) B^{L}_{o \{ \mu} W^{L,J}_{\nu \} o} + \text{h.c.}$

conclusions:

given symmetry group **G**, fields **Φ**_i, **Ψ**_i, **X**_i^{L,R}

and form of all invariant (Lorentz & gauge) operators,

- generates all possible combinations of operators, uses character orthonormality to pick out invariants
- derivatives tricky, but issues recently overcome:
 see next two talks for details!

lots of interesting directions to explore!

conclusions:

given symmetry group **G**, fields **Φ**i, **Ψ**i, **X**i^{L,R} Hilbert series

and form of all invariant (Lorentz & gauge) operators,

- generates all possible combinations of operators, uses character orthonormality to pick out invariants
- derivatives tricky, but issues recently overcome:
 see next two talks for details!

lots of interesting directions to explore!

Thank You!