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SM is a poster child EFT: SMEFT

degrees of freedom are: Q, uc, dc, L, ec, H, gauge fields
symmetry is:  Lorentz ⊗ SU(3)c⊗SU(2)w⊗ U(1)Y

low-dimension operators are easy, but quickly gets more 
complicated

write down all operators, lowest mass dimension terms 
dominate in the IR

L =

Z X

i

ci Oi(Q, uc, dc, L, ec, H, F,W,G)



dim ≤4: Standard Model 
dim 5: 1 operator (neutrino mass) 

dim 6: 63 terms (neglecting flavor) 
dim 7: 20 terms 

[Weinberg ‘79]

[Büchmuller, Wyler ’86, 
Grzadkowski et al ’10]

[Lehman ’14]

dim 8+: as of Oct. 2015, no complete set known 

higher dimension operators are complicated because there 
are more fields = number ways to contract indices grows 

rapidly. Also IBP and EOM redundancies



Main message: For EFTs with fields in linear irreps:
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Hilbert Series for Constructing Lagrangians: expanding

the phenomenologist’s toolbox

Landon Lehman and Adam Martin

Department of Physics, University of Notre Dame, Notre Dame, IN 46556

E-mail: llehman@nd.edu, amarti41@nd.edu

Abstract: This note presents the Hilbert series technique to a wider audience in the context

of constructing group-invariant Lagrangians. This technique provides a fast way to calculate

the number of operators of a specified mass dimension for a given field content, and is a

useful cross check on more well-known group theoretical methods. In addition, at least when

restricted to invariants without derivatives, the Hilbert series technique supplies a robust way

of counting invariants in scenarios which, due to the large number of fields involved or to

high dimensional group representations, are intractable by traditional methods. We work out

several practical examples.
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Abstract: In a forthcoming paper [1], we show that operator bases for general effective
field theories are controlled by the conformal algebra. Equations of motion and integration
by parts identities can be systematically treated by organizing operators into irreducible
representations of the conformal group. In the present work, we use this result to study
the standard model effective field theory (SM EFT), determining the content and num-
ber of higher dimension operators up to dimension 12, for an arbitrary number of fermion
generations. We find additional operators to those that have appeared in the literature at
dimension 7 (specifically in the case of more than one fermion generation) and at dimension
8.

(The title sequence is the total number of independent operators in the SM EFT with one fermion
generation, including hermitian conjugates, ordered in mass dimension, starting at dimension 5. )
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Specifically:

know number and form (field content) of SMEFT 
operators to arbitrary mass dimension, correctly 

incorporating EOM and IBP redundancies

How? Using an algebraic technique known as  
Hilbert series

Focus on SMEFT, but technique applies to other EFTs



subset of dim-8:

and, the LL LL terms at O(H2) are

2 (L†L)2 (H†H)

3 (Q†Q)2 (H†H)

5 (L†L)(Q†Q) (H†H)

(B.2)

Finally, there are the BNV terms. These all come at O(H2)
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B.2 Field strengths, no other derivatives
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µ⌫
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At one power of X
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and more than one power of the Higgs field.

(e
c

L)H (H†H)FL (d
c

Q)H (H†H)FL (u
c

Q)H† (H†H)FL 2 (e
c

L)H (H†H)WL

2 (d
c

Q)H (H†H)WL 2 (u
c

Q)H† (H†H)WL (d
c

Q)H (H†H)GL (u
c

Q)H† (H†H)GL

(we could write any of the above using only FL,WL and using the h.c. ). At two powers

of X there must be at least one Higgs. At O(X2H)
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Where the D indicates the derivative, which can act on any of the fields to the right.

As with the earlier operators, Lorentz structure is suppressed but can be figured out from

context. At O(H):
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The last set of baryon number respecting, single derivative terms have O(H4):
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Without flavor indices, this gives 181 operators at O(D).
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This talk:

Motivation for D > 6 and existing work

Basics of Hilbert series: no derivatives

Derivatives & conformal picture: Henning

Formal aspects of Hilbert Series: Melia



Why D > 6?

precision: LHC, HL-LHC, etc. will soon test SM to 
unprecedented precision = sensitivity to effects from even 
higher dimension 
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Figure 12: Results of fits for the two-parameter benchmark model defined in Section 5.2.1 that probes di↵erent
coupling-strength scale factors for fermions and vector bosons, assuming only SM contributions to the total width:
(a) results of the two-dimensional fit to F and V , including 68% and 95% CL contours; overlaying the 68%
CL contours derived from the individual channels and their combination; (b) the same measurement, without the
overlays of the individual channels; (c) the profile likelihood ratio as a function of the coupling-strength scale
factors F (V is profiled) and (d) as a function of V (F is profiled). The dashed curves in (c) and (d) show the
SM expectations. In (d) the sign of the chosen profiled solution for F changes at V ⇡ 0.8 , causing a kink in the
likelihood. The profile likelihood curves restricting F to be either positive or negative are also shown to illustrate
that this sign change in the unrestricted profile likelihood is the origin of the kink. The red (green) horizontal
line indicates the value of the profile likelihood ratio corresponding to a 68% (95%) confidence interval for the
parameter of interest, assuming the asymptotic �2 distribution for the test statistic.
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more specifically

• dim-8 vs. dim-6 @ NLO



more specifically

• dim-8 vs. dim-6 @ NLO

• dim-8 ∼ O(
1

⇤4
) same order as |dim-6|2

naively always small compared to (SM x dim-6) ∼ O(
1

⇤2
)

however, when helicity structure of SM ≠ helicity 
structure of dim-6, no interference

[1607.05236 Azatov et al]

see talk by Riva

2

A4 |h(ASM
4 )| |h(ABSM

4 )|
V V V V 0 4,2

V V �� 0 2

V V   0 2

V   � 0 2

    2,0 2,0

  �� 0 0

���� 0 0

TABLE I: Four-point amplitudes A4 that do not vanish in
the massless limit and the total helicity h(A4) of their SM
and BSM contributions. V = V ±,  =  ± and � denote,
respectively, transversely-polarized vectors, fermions (or
antifermions) and scalars in the SM. For processes with
at least one transversely-polarized vector (listed above the
double line in the table), SM and BSM contributions do
not interfere in the massless limit because have di↵erent
total helicity.

terference term in the amplitude squared. Obviously,
interference is possible only if SM and BSM give non-
vanishing contribution to the same helicity ampli-
tude. In this section we study the helicity structure
of scattering amplitudes at tree-level, in the SM and
at leading order in the e↵ective field theory expan-
sion, i.e. at the level of D=6 operators. We will
denote the corresponding new-physics contribution
as BSM6 in the following. We focus first on the phe-
nomenologically relevant case of 2 ! 2 scatterings
and work in the massless limit; the massive case and
higher-points amplitudes are discussed below. We
use the spinor-helicity formalism (see Refs. [9, 10]
for a review), where the fundamental objects which
define the scattering amplitudes are Weyl spinors
 ↵ and  ̄↵̇, transforming as (1/2, 0) (undotted in-
dices) and (0, 1/2) (dotted indices) representations
of SU(2) ⇥ SU(2) ' SO(3, 1), and Lorentz vectors
Aµ�

µ
↵↵̇, transforming as (1/2, 1/2). 2 In this lan-

guage, the field strength is written as

Fµ⌫�
µ
↵↵̇�

⌫
��̇

⌘ F↵� ✏̄↵̇�̇ + F̄↵̇�̇✏↵� (2)

in terms of its self-dual and anti-self dual parts F
and F̄ (transforming respectively as (1, 0) and (0, 1)
representations).

2 We will not distinguish between fermions and anti-fermions
except where explicitly mentioned, as this distinction is not
crucial to our analysis. We will denote a Weyl fermion or
anti-fermion of helicity + (�) with  + ( �). When indi-
cating a scattering amplitude, the symbol  will stand for
either  + or  �.

Am Am0

± ⌥

FIG. 1: When the factorization channel goes on-shell, it
propagates a well-defined helicity eigenstate and Eq. (3)
holds.

Our analysis will be in terms of complex momenta
p 2 C: this allows one to make sense of 3-point ampli-
tudes on-shell, even though these vanish for massless
states with real kinematics. We will need three well-
known results, that we summarize here and discuss
in the Appendices, see Refs. [9–11]. These are:

1. Consider an amplitude An with n external legs
(n-point amplitude), and let Am and Am0 be any two
sub-amplitudes, with m+m0� 2 = n, see Fig. 1. We
define the net helicity of an on-shell amplitude, h(A),
as the sum of the helicities of all its external states,
where all momenta are taken to be outgoing. Then
one has:

h(An) = h(Am) + h(Am0) (3)

for all possible sub-amplitudes Am and Am0 . This re-
lation is a consequence of the fact that the amplitude
has a pole when the intermediate line goes on-shell,
and that in this limit it factorizes into the product of
the two sub-amplitudes. While in the SM there are
no exceptions to Eq. (3), in the D=6 e↵ective theory
this relation fails if an e↵ective operator gives a con-
tribution to the vertex attached to the intermediate
line that vanishes on shell. In this case the pole from
the propagator is canceled by the vertex, and factor-
ization does not hold. When this occurs the operator
can be rewritten through the equations of motion in
terms of other operators with more fields. We will
discuss below how this complication is avoided.

2. Dimensional analysis, Little group scaling and
the 3-particle special kinematics fix completely the
form of the 3-point amplitudes, and in particular re-
late their total helicity h(A3) to the dimensionality
of the coupling g characterizing the 3-point vertex:

|h(A3)| = 1� [g] . (4)

For instance, the triple gauge interaction of the SM
is characterized by a dimensionless coupling, and the
corresponding 3-point on-shell amplitude has |h| = 1.
The D=6 operator O3W = tr(Wµ⌫W ⌫

⇢ W
⇢µ) instead
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symmetries (i.e. baryon #, lepton #). Higher dim. operators 
are the first place violation of these symmetries occurs



Why D > 6?

new effects: lower dim. operators have accidental 
symmetries (i.e. baryon #, lepton #). Higher dim. operators 
are the first place violation of these symmetries occurs

Can be studied systematically, i.e.1604.05772 Kobach

�B ��L

2

�B ��L

2
even for d = even

odd for d = odd



How? Basic ingredient

A generating function that generates all possible products 
of its arguments

Ex: 
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How? Basic ingredient

A generating function that generates all possible products 
of its arguments

Ex: 
1

(1� x)(1� y)
= (1 + x+ x

2 + x

3 · · · )(1 + y + y

2 + y

3 + · · · )

generates all xn ym

We’d like something similar, but forming (group theoretic) 
products of Q, uc, dc, ec, L, F, W, G. And we’d like to count the 
number of times a particular product appears (i.e. 2 Q†QL†L)



How? Basic ingredient
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How? Basic ingredient

A generating function that generates all possible products 
of its arguments

for us: Plethystic exponential 

PE[�] = exp

⇣ 1X

r=1

1

r

X

i

�r
i�

r
�

⌘



Character?

if under G , character

Ex: SU(2)

doublet irrep:

, ✓ = (
X

a

✓2a)
1/2

defining ,



Character?

if under G , character

Ex: SU(2)

triplet irrep:

…

Generally: 
function of j complex variables, j = rank of group

�R(zi)

(1 for U(1), SU(2), 2 for SU(3), etc.)



Character?

if under G , character

Generally: 
function of j complex variables, j = rank of group

�R(zi)

(1 for U(1), SU(2), 2 for SU(3), etc.)

Ex: U(1), charge Q, �Q = uQ

Ex: SU(3) triplet, �3 = w1 +
w2

w1
+

1

w2



Okay…

lets stick with one complex field φ charged as a doublet 
under an SU(2)

PE[�](z) = exp

⇣ 1X

r=1

1

r
(�r�r

�(z) + �r†�⇤
�(z)

⌘

expanded out, will give all possible products of φ and φ*, 
i.e. 

c0(z)�
⇤�+ c1(z)�(�

⇤�) + · · ·+ c2(z)�
2(�⇤�)3 + · · ·



Okay…

lets stick with one complex field φ charged as a doublet 
under an SU(2)

PE[�,�⇤
] = exp

⇣ 1X

r=1

1

r
(�r

+ �⇤r
)(zr +

1

zr
)

⌘

=
z2

(z � �)(z � �⇤)(z �� 1)(z �⇤ � 1)

+(z8 +
1

z8
+ 2 z6 +

2

z6
+ 3 z4 +

3

z4
+ 4 z2 +

4

z2
+ 4)�2(�⇤�)3

= (2 + z2 +
1

z2
)��⇤ + (z3 +

1

z3
+ 2 z +

2

z
)�(�⇤�) + · · ·



Key concept: Peter-Weyl theorem
characters of compact Lie groups form an orthonormal 

basis set for functions of the j complex variables
Z

G
dµ�M (zi)�

⇤
N (zi) = �MN

therefore we can expand any function of z as a linear 
combination of χR(z)

and can project out any AM using orthonormality 



Key concept: Peter-Weyl theorem
characters of compact Lie groups form an orthonormal 

basis set for functions of the j complex variables
Z

G
dµ�M (zi)�

⇤
N (zi) = �MN

In particular: 

projects out the singlet = group invariant 
part of f(z)



exactly like Fourier series: 

f(✓) =
1X

n=�1
An e

i n ✓

1

2⇡

Z ⇡

�⇡
d✓ f(✓) = A0

project out individual coefficient

= A0 +

X

n

˜An cos(n✓) +
X

n

˜Bn sin(n✓)



exactly like Fourier series: 

f(✓) =
1X

n=�1
An e

i n ✓

1

2⇡

Z ⇡

�⇡
d✓ f(✓) = A0

project out individual coefficient

= A0 +

X

n

˜An cos(n✓) +
X

n

˜Bn sin(n✓)

Fourier series = character orthonormality for U(1)
in fact: set x = eiθ dθ/(2π) → dx/(2π i x)



putting pieces together

PE[�](z) = exp

⇣ 1X

r=1

1

r
(�r�r

�(z) + �r†�⇤
�(z)

⌘

all products of φ,φ*

projects out only the invariant (i.e. singlet) 
pieces in PE

1.) 

2.) integration: 

1 + (�⇤�) + (�⇤�)2 + (�⇤�)3 + · · ·

Z
dµSU(2) PE[�](z)1



putting pieces together

PE[�](z) = exp

⇣ 1X

r=1

1

r
(�r�r

�(z) + �r†�⇤
�(z)

⌘

all products of φ,φ*

projects out only the invariant (i.e. singlet) 
pieces in PE

1.) 

2.) integration: 

1 + (�⇤�) + (�⇤�)2 + (�⇤�)3 + · · ·

Z
dµSU(2) =

1

2⇡i

I
dz

(z2 � 1)

z

Z
dµSU(2) PE[�](z)1



putting pieces together

PE[�](z) = exp

⇣ 1X

r=1

1

r
(�r�r

�(z) + �r†�⇤
�(z)

⌘

all products of φ,φ*

projects out only the invariant (i.e. singlet) 
pieces in PE

1.) 

2.) integration: 

1 + (�⇤�) + (�⇤�)2 + (�⇤�)3 + · · ·

Z
dµSU(2) =

1

2⇡i

I
dz

(z2 � 1)

z

Z
dµSU(2) PE[�](z)1

1

2⇡i

I
dz

(1� z2)

z

z2

(z � �)(z � �⇤)(z �� 1)(z �⇤ � 1)

=
1

1� �⇤�

�1/2 = z +
1

z



putting pieces together

PE[�](z) = exp

⇣ 1X

r=1

1

r
(�r�r

�(z) + �r†�⇤
�(z)

⌘

all products of φ,φ*

projects out only the invariant (i.e. singlet) 
pieces in PE

1.) 

2.) integration: 

1 + (�⇤�) + (�⇤�)2 + (�⇤�)3 + · · ·

Z
dµSU(2) =

1

2⇡i

I
dz

(z2 � 1)

z

Z
dµSU(2) PE[�](z)1

�1/2 = z +
1

z



Getting more general:

multiple fields: add each field into PE, accompanied by 
character 

multiple groups: character → product of characters under 
individual groups 

��(z) !
Q
G
�G,�(zi)

integrate over volume 
of all groups Z

dµ !
Z Y

G

dµG



Getting more general:

fermions: anti-commuting, non-trivial Lorentz properties

PE for all fermionic fields

PEF [ ] = exp

n

1
X

r=1

(�1)

r+1

r
( �(zi))

r
o

∴ total PE = PE[φᵢ]× PE[ψᵢ] 

Lorentz group: SO(3, 1) ⇠= SU(2)L ⌦ SU(2)R

just two more symmetry groups
use LH fermions only for simplicity: Q, uc, dc, etc ∼ (0, 1/2)

Q†, u†c, d†c, etc ∼ (1/2, 0)

[Hanany ’14]



Field strengths: 

X±
µ⌫ = Xµ⌫ ± iX̃µ⌫ in (1,0) or (0,1) irrep.

Z Y

G

dµGi PE[H,F+,W+, G+ + c.c.]⇥
PEF [Q, uc, dc, L, ec + c.c]

H0,SM =

put the pieces together: 

generates all invariants (with one flavor of QUDLE) with no 
derivatives  

[SU(2)L ⇥ SU(2)R]⇥ SU(3)c ⇥ SU(2)W ⇥ U(1)Y



example: QQQL operators, Nf = 3

PEF [3Q(0, 1/2; 3, 2, 1/6) + 3L(0, 1/2; 1, 2,�1/2)]

x, y for SU(2)R × SU(2)L; (w1, w2) for SU(3), z for SU(2)W, u for U(1)Y

PEF [3Q
⇣
y +

1

y

⌘⇣
z +

1

z

⌘⇣
w1 +

w2

w1
+

1

w2

⌘
u1/6

+3L
⇣
y +

1

y

⌘⇣
z +

1

z

⌘
u�1/2]

Z
dµ

Lorentz

(x, y) dµSU(3)

(w
1

, w

2

)dµSU(2)

(z)dµU(1)

(u)PEF [3Q, 3L]

1 + 57LQ3 + 4818L2 Q6 + 162774L3 Q9 + · · ·



A first step towards derivatives:

∂μ ∼ (1/2, 1/2) of Lorentz group… add it in to PE like other fields

PE[φ, ∂μφ] will contain all products of φ, ∂μφ 
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A first step towards derivatives:

∂μ ∼ (1/2, 1/2) of Lorentz group… add it in to PE like other fields

PE[φ, ∂μφ] will contain all products of φ, ∂μφ 

repeat for higher derivatives? even at ∂² there are two 
possibilities:

(1, 1), (0, 0)

@{µ,⌫}�, ⇤�

from where? still doesn’t account for IBP redundancy
— see next talks!



Now what?

D (e†
c

e
c

)FLFR D (d†
c

d
c

)FLFR D (d†
c

d
c

)FLGL

D (d†
c

d
c

)FRGL D (d†
c

d
c

) (GL)2 3D (d†
c

d
c

)GLGR

D (e†
c

e
c

)GLGR D (L† L)FLFR D (L† L)GLGR

D (Q†Q)FLFR D (Q†Q)FLGL D (Q†Q)FRGL

4D (Q†Q) (GL)2 3D (Q†Q)GLGR D (u†
c

u
c

)FLFR

D (u†
c

u
c

)FLGL D (u†
c

u
c

)FRGL D (u†
c

u
c

) (GL)2

3D (u†
c

u
c

)GLGR D (L† L)FLWL D (L† L)FRWL

D (Q†Q)FLWL D (Q†Q)FRWL D (Q†Q)GLWL

D (Q†Q)GRWL D (L† L) (WL)2 D (Q†Q) (WL)2

D (d†
c

d
c

)WLWR D (e†
c

e
c

)WLWR D (u†
c

u
c

)WLWR

2D (L† L)WLWR 2D (Q†Q)WLWR

Where the D indicates the derivative, which can act on any of the fields to the right.

As with the earlier operators, Lorentz structure is suppressed but can be figured out from

context. At O(H):

3D (d†
c

d
c

)(LH e
c

) D (e†
c

e
c

)(LH e
c

) 3D (L† L)(LH e
c

) 3D (d†
c

d
c

)(QH d
c

)

3D (e†
c

e
c

)(QH d
c

) 6D (L† L)(QH d
c

) 6D (Q†Q)(LH e
c

) 6D (Q†Q)(QH d
c

)

3D (d†
c

u
c

)(LH† e
c

) 6D (d†
c

d
c

)(QH† u
c

) 3D (e†
c

e
c

)(QH† u
c

) 6D (L† L)(QH† u
c

)

6D (Q†Q)(QH† u
c

) 3D (u†
c

u
c

)(LH e
c

) 6D (u†
c

u
c

)(QH d
c

) 3D (u†
c

u
c

)(QH† u
c

)

Then, at O(H2):

2D (d†
c

d
c

)(H†H)FL 2D (e†
c

e
c

)(H†H)FL 2D (d†
c

d
c

)(H†H)GL 4D (L† L)(H†H)FL

4D (Q†Q)(H†H)FL 4D (Q†Q)(H†H)GL D (d†
c

u
c

)(H†)2 FL D (d†
c

u
c

)(H†)2 FR

D (d†
c

u
c

)(H†)2GL D (d†
c

u
c

)(H†)2GR 2D (u†
c

u
c

)(H†H)FL 2D (u†
c

u
c

)(H†H)GL

2D (d†
c

d
c

)(H†H)WL 2D (e†
c

e
c

)(H†H)WL 6D (L† L)(H†H)WL 6D (Q†Q)(H†H)WL

2D (u†
c

u
c

)(H†H)WL D (d†
c

u
c

)(H†)2WL D (d†
c

u
c

)(H†)2WR

The last set of baryon number respecting, single derivative terms have O(H4):

D (d†
c

d
c

)(H†H)2 D (e†
c

e
c

)(H†H)2 D (u†
c

u
c

)(H†H)2

4D (L† L)(H†H)2 4D (Q†Q)(H†H)2 D (d†
c

u
c

)(H†)3H

Lastly, there are the BNV operators with a single derivative

3D (d†
c

Q2 L)H† D (e†
c

Q3)H† 2D (d2
c

u
c

L†)H

3D (d
c

e
c

Q† u
c

)H D ((Q†)2 L† u
c

)H† 2D ((L†)2 u
c

d
c

)H†

2D (Q† u2
c

e
c

)H†

Without flavor indices, this gives 181 operators at O(D).

– 14 –

HS output

Useful subsets of operators, formats?

2D2(H†H)3 (H†H)2(DµH†DµH)

�IJ (H†H)(H†⌧ IH)(DµH†⌧JDµH)

D2(H†H BLBR) (DµH†D⌫H)BL
⇢(µB

R
⌫)⇢

D2(H†H GLGR) �AB (DµH†D⌫H)GL,A
⇢(µG

R,B
⌫)⇢

2D2(H†HWLWR) �IJ (DµH†D⌫H)WL,I
⇢(µW

R,J
⌫)⇢

✏IJK (DµH†⌧ I D⌫H)WL,J
⇢(µ WR,K

⌫)⇢

D2(H†H (BL)2) + h.c. (DµH†DµH)BL
⇢�B

L
⇢� + h.c.

D2(H†H (GL)2) + h.c. �AB (DµH†DµH)GL,A
⇢� GL,B

⇢� + h.c.

2D2(H†H (WL)2) + h.c. �IJ (DµH†DµH)WL,I
⇢� WL,J

⇢� + h.c.

✏IJK (DµH†⌧ ID⌫H)WL,J
⇢{µW

L,K
⌫}⇢ + h.c.

2D2(H†H BLWL) + h.c. �IJ (DµH†⌧ I DµH)BL
⇢�W

L,J
⇢� + h.c.

�IJ (DµH†⌧ ID⌫H)BL
⇢{µW

L,J
⌫}⇢ + h.c.

D2(H†H BRWL) + h.c. �IJ (DµH†⌧ I D⌫H)BR
⇢(µW

L,J
⌫)⇢ + h.c.

D2((H†H)2BL) + h.c. (H†H)(DµH†D⌫H)BL
µ⌫ + h.c.

2D2((H†H)2WL) + h.c. �IJ (H†H)(DµH†⌧ ID⌫H)WL,J
µ⌫ + h.c.

�IJ (H†⌧ IH)(DµH†D⌫H)WL,J
µ⌫ + h.c.

Table 2. The explicit forms of the 16 bosonic dimension-8 operators containing at least one Higgs
field and two derivatives. Curly brackets indicate antisymmetrization of the enclosed indices, and
parentheses indicate symmetrization. At dimension-8 and no fermions there are no bosonic terms
with an odd number of derivatives. These 16 operators have 2 ⇥ 10 + 6 = 26 independent real
coe�cients.

3D4(H†H)2 (D2
(µ⌫)H

†⌧ ID2
(µ⌫)H)(H† ⌧J H) �IJ

(D2
(µ⌫)H ⌧ ID2

(µ⌫)H)(H† ⌧J H†) �IJ

(D2
(µ⌫)H

† ⌧ ID2
(µ⌫)H

†)(H ⌧J H) �IJ

Table 3. The explicit forms of the three bosonic dimension-8 operators containing at least one Higgs
field and four derivatives. Parentheses around Lorentz indices indicate symmetrization. These three
operators have 3 independent real coe�cients. Do we need the ⌧ ’s here?

– 5 –

…

translation ~done for bosonic dim-8 
(FeynRules UFO too)

normal human output

…



conclusions:

given symmetry 
group G,  

fields φi, ψi, XiL,R

# and form of all 
invariant (Lorentz & 
gauge) operators, 

• generates all possible combinations of operators, uses                
            character orthonormality to pick out invariants 

• derivatives tricky, but issues recently overcome:  
               see next two talks for details!

lots of interesting directions to explore!



conclusions:

given symmetry 
group G,  

fields φi, ψi, XiL,R

# and form of all 
invariant (Lorentz & 
gauge) operators, 

• generates all possible combinations of operators, uses                
            character orthonormality to pick out invariants 

• derivatives tricky, but issues recently overcome:  
               see next two talks for details!

lots of interesting directions to explore!

Thank You!


