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SM is a poster child EFT: SMEFT
degrees of freedom are: Q, uc, de¢, L, e¢, H, gauge fields
symmetry is: Lorentz ® SU(3)cesSU(2)we U(1)Y

write down all operators, lowest mass dimension terms
dominate in the IR

[ = /Zci 0;(Q,u¢,d, L, e, H, F,W,G)

low-dimension operators are easy, but quickly gets more
complicated



higher dimension operators are complicated because there
are more fields = number ways to contract indices grows
rapidly. Also IBP and EOM redundancies

dim <4: Standard Model

dim 5: 1 operator (neutrino mass) [Weinberg '79]

. . [Buchmuller, Wyler '86,
dim 6: 63 terms (neglecting flavor) Grzadkowski et al '10]
dim 7: 20 terms [Lehman ’14]

dim 8+*: as of Oct. 2015, no complete set known
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Specifically:

know number and form (field content) of SMEFT
operators to arbitrary mass dimension, correctly
incorporating EOM and IBP redundancies

How? Using an algebraic technique known as
Hilbert series

Focus on SMEFT, but technigue applies to other EFTs



subset of dim-8:

(dld,) (el e)FL (ubuo)(ele)FE 2(dbd)(ubue)FE (dbd,) (Lt L)FE
(whue) (LT L)FE (ele)(LTL)FE (ele)( @ Q)FY  (dQ)(el LT)FE
(deQ)(el LNVFR  2(LTL)(QTQ)FF  2(dld.)(QTQ)F 2 (ulu.)(QtQ)F:
3 (e. L)(u. Q)FF 3 (ued,) Q* FL (dld ) (LY LYWL (ele) (Lt LYWE
(ele) @ QW (ulu) (L L)WL (LT L)*wE (el LT (d. QW 0
(ec D)(dEQHWE 2 (dld.)(Q ) 2 (ubu)(QT QW 3 (LT L)(QFQwW? 112 af O(D )
2(QTQ*WE  3(e.L)(uc QW™ 3 (ucd.) Q2WE (di)? d2 G"
(ub)? w2 GE (d*d )(el e.) GF (uhue)(ebe) GE - 4(dld)(ul ue) GE
(Q'Q)(elec) GT <d* d)(LTL)GE (wlu)(LTD)GY 2(QTQ)(LT L) Gt
4 (d! dc><@ Q)GY 4 (uluc)(Q *Q) 2(Q"?Q*G" (de Q) (el LT) GE
(deQ)(el LY G 3(ecL)(u. Q)G 6 (de uc) Q* G*
(didc)(LHec) D(eiec)(LH€c> (L L)(LHGC) 3D< d )(QHd )
3D< Lee)(QHd,) 6D(LTL)QHd,) 6D(QTQ)(LHe.) (Q'Q)(QH d)
3D (dlu)(LH'e,) 6D (dld.)(QH u,) (ei e)(QHu,) 6D (LT L)(QH u,)
6D(QTQYQH w.) 3Duiu)(LHe.) 6D wiu)QHd.) 3D (ulbu)(QH'u.)

181 at O(D)



This talk:

Motivation for D > 6 and existing work

Basics of Hilbert series: no derivatives

Derivatives & conformal picture: Henning

Formal aspects of Hilbert Series: Melia



Why D > 62

precision: LHC, HL-LHC, etc. will soon test SM to
unprecedented precision = sensitivity to effects from even

higher dimension
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precision: LHC, HL-LHC, etc. will soon test SM to
unprecedented precision = sensitivity to effects from even

higher dimension
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more specifically

e dim-8 vs. dim-6 @ NLO



more specifically

e dim-8 vs. dim-6 @ NLO

e dim-8 ~O(é

naively always small compared to (SM x dim-6) ~ &)

) same order as |dim-6|?

A2
however, when helicity structure of SM = helicity
structure of dim-6, no interference

[1607.05236 Azatov et al]

As||h(AT)]][R(AFY))
VVVV 4,2
VV oo

V'V
Vo
Yy | 2,0 2,0
Yrpoo
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O
O

see talk by Riva
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new effects: lower dim. operators have accidenta
symmetries (i.e. baryon #, lepton #). Higher dim. operators
are the first place violation of these symmetries occurs




Why D > 62

new effects: lower dim. operators have accidenta
symmetries (i.e. baryon #, lepton #). Higher dim. o

oerators

are the first place violation of these symmetries occurs

Can be studied systematically, i.e.1604.05772 Kobach

AB — AL
from hypercharge > even for d = even
conservation & Lorentz
lwvariance AB — AL 54d for d = odd

2



How? Basic ingredient

A generating function that generates all possible products
of its arguments

EX:

1

1— 21— —(1+z+22+22 - VA+y+>+y>+--+)

generates all xn ym



How? Basic ingredient

A generating function that generates all possible products
of its arguments

EX:

1
(1 —2z)(1—y)

=(l+a+2*+2° - YA+y+y’+y>+--)

generates all xn ym

We'd like something similar, but forming (group theoretic)
products of Q, uc, d¢, ec, L, F, W, G. And we’d like to count the
number of times a particular product appears (i.e. 2 QTQLTL)



How? Basic ingredient

A generating function that generates all possible products
of its arguments

for us: Plethystic exponential
1
PE[¢] = exp (Z . > qﬁfx’;l)
r=1 ) \
‘/ character of field

“Lields” n the theory — here Just under symmetry
complex #, mod <= T groups



How? Basic ingredient

A generating function that generates all possible products
of its arguments

for us: Plethystic exponential
1
PE|¢] = exp (Z =D qﬁ?x;})
r=1 ) .
/ character of field

“Lields” n the theory — here Just under symmetry

complex #, mod <= T 4,‘" ~ groups

el
LN



Character?

if under G ¢; — D{;(Q)% . Character Xr = tT(D{;)

Ex: SU(2)
1/2
1)

X1/2 — tr(Dzlj/Q) — 6—29/2 _I_ 629/2 | O = (292)1/2

doubletirrep; D.!” = exp(10 7,)

defining /2 =, tr(D;;
2



Character?

funder G ¢; — D/(9)¢; , character xr = tr(D;j)

Ex: SU(2)

triplet imep:  D;; = exp(i6* J,)

1
X1 = 2° 3 1

Generally: Xr(2:)
function of j complex variables, j = rank of group

(1 for U(1), SU(2), 2 for SU(3), etc.)



Character?

funder G ¢; — D/(9)¢; , character xr = tr(D;j)

Ex: U(1), charge Q, xo = u¥

Ex: SU(3) triplet, x3 = w1 - |

Generally: Xr(2:)
function of j complex variables, j = rank of group

(1 for U(1), SU(2), 2 for SU(3), etc.)



Okay...

lets stick with one complex field ¢ charged as a doublet
under an SU(2)

PE|¢ —exp(z z)+ " X¢( ))
expanded out, will give all possible products of ¢ and ¢,
.e.

O )+ c1(z et ea(2)97 (97 9)7 +

\ \ /

each term weighted with z-dependent coefficient



Okay...

lets stick with one complex field ¢ charged as a doublet

under an SU(2)

PE[¢ —exp(i% (" + ) (2 ;))

22

(z = 0)(z —¢*)(2¢ — 1)(29* — 1)

| o

= @422+ 5)00" + (2 422+ o670
1 2 3

8 | B 6 ] 4 | 2

‘|‘(Z |Z8 -2 2 IZ6 -3z |Z4 |4Z i



Key concept: Peter-Weyl theorem

characters of compact Lie groups torm an orthonormal
basis set for functions of the | complex variables

Haar measure: / d,LL XM(Z”L) X}kV(ZZ) — 5MN

volume of group \G/

therefore we can expand any function of z as a linear
combination of xr(z)

f(Z) _ Z AW Z-—[MO{QPQVIO(QWL
R
and can project out any Awm using orthonormality

A = / au(2) £(2) Xt (2)



Key concept: Peter-Weyl theorem

characters of compact Lie groups torm an orthonormal
basis set for functions of the | complex variables

Haar measure: / d,LL XM(Z”L) X}kV(ZZ) — 5MN

volume of group \G/

In particular:
[ duz) 1)1 = A4

projects out the singlet = group invariant
part of 1(z)



exactly like Fourier series:

f(0) = i Ap e’

n=—oo

= Ay + Z A,, cos(nf) + Z B,, sin(n#)

project out individual coefficient

L7 a0 5(0) = 4

21 J_ .



exactly like Fourier series:

f(0) = i Ap e’

n=—oo

= Ay + Z A,, cos(nf) + Z B,, sin(n#)

project out individual coefficient

L7 a0 5(0) = 4

21 J_ .

in fact: set x = e de/(2m) = dx/(2m i X)

Fourier series = character orthonormality for U(1)



putting pieces together

1.)  PE[¢]|(z) = exp (Z oY (z))

all products of ¢,p"

2.) integration: /dMSU(z) PE|¢](z) 1

projects out only the invariant (i.e. singlet)
pleces in Pkt

L+ (¢%¢) + (¢7¢)* + (¢7¢)° +

coefficient = number of

tvariants at that order



putting pieces together

O

1) PR =exp (3 167G + ()

-

1 2 1 :
/dMSU(Q) =-— ¢ dz (= ) 00

271 Z

2.) integration: /dMSU(z) PE|¢](z) 1

projects out only the invariant (i.e. singlet)
pleces in Pkt

L+ (670) + (6°0)° + (60)° + -

coefficient = number of

tvariants at that order



: : .
putting pieces together . ==+

O

1) PE[¢)(2) = exp (Z %(WX@(Z) + Cbﬁxz(z))
2 *
/d:uSU(Q) = $d = 00

271 Z

2.) integration: /dMSU(z) PE|¢](z) 1

1 dz(1—z2)( 2
27 ¢ |E=9)z=07)(z¢—1(zo" — 1)
1

T 1— 6%



: : .
putting pieces together . ==+

O

1) PR =exp (3 167G + ()

-

1 2 1 :
/dMSU(Q) =-— ¢ dz (= ) 00

271 Z

2.) integration: /dMSU(z) PE|¢](z) 1

projects out only the invariant (i.e. singlet)
pleces in Pkt

L+ (670) + (6°0)° + (60)° + -

coefficient = number of

tvariants at that order



Getting more general:

multiple groups: character = product of characters under
iIndividual groups

Xo(2) = 11 xa,0(2:)
G

iIntegrate over volume
of all groups
J P /d,u% /Hd,ug
G

multiple fields: add each field into PE, accompanied by
character



Getting more general:
fermions: anti-commuting, non-trivial Lorentz properties

PE for all fermionic fields [Hanany '14]

PEF || = exp { Z 0™ (v X(Zz))r}

r=1

-. total PE = PE[®;]x PE[W;]

Lorentz group: SO(3,1) =2 SU(2)r @ SU(2)r
just two more symmetry groups
use LH fermions only for simplicity: Q, u¢, dc¢, etc ~ (0, 1/2)
Qf, ute, dte, etc ~ (1/2, 0)



Field strengths:

X;W = X, T1X,, in (1,0) or (0,1) irrep.

put the pieces together:

HOSM— /Hd:uGzPE[H F—I_ W+ G_I_—l—CC]

/ PEF[Q,u®,d° L,e° + c.c]

SU(2), x SUR2)R] x SU3)e x SUR2)w x U(1)y

generates all invariants (with one flavor of QUDLE) with no
derivatives



example: QQQL operators, Nf = 3
PEF(3Q(0,1/2;3,2,1/6) +3L(0,1/2;1,2,—1/2)]

X, y for SU(2)r x SU(2)L; (w1, w2) for SU(3), z for SU(2)w, u for U(1)y

PEF[SQ(?J+1)(Z+1)(?U1 2 : )u1/6

Yy < w1 Wwo

1 1
i D)o e
Y &

/ d,uLorentz (33, y) d:uSU(S) (wla w2)d,uSU(2) (Z)d,LLU(l) (U) PEFBQ? SL]

1 +570LQ% + 4818 L2 Q% + 162774 L3 Q° + - --



A first step towards derivatives:

oy ~ (1/2, 1/2) of Lorentz group... add it in to PE like other fields
PE[d, 0.d] will contain all products of ¢, o,



A first step towards derivatives:

oy ~ (1/2, 1/2) of Lorentz group... add it in to PE like other fields
PE[d, 0.d] will contain all products of ¢, o,

repeat for higher derivatives? even at 02 there are two
possibilities:

8{,u,v}¢7 ¢
(1,1), (0,0)




A first step towards derivatives:
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repeat for higher derivatives? even at 02 there are two
possibilities:
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EOM.. so omit from
(]‘7 ]‘)7 (07 O) PE
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A first step towards derivatives:

oy ~ (1/2, 1/2) of Lorentz group... add it in to PE like other fields
PE[d, 0.d] will contain all products of ¢, o,

repeat for higher derivatives? even at 02 there are two
possibilities:

6’{M,V}qb, X EGO{(;\U/\@S ma(uf::_;(oy
. SO OIT from
(]‘7 1)7 ( 9 ) PE

from where? still doesn’t account for IBP redundancy
— see next talks!



Now what?

Useful subsets of operators, formats?

HS output

3D(dld.)(LHe,)  D(ele.)(LHe,)

3D (ele)(QHd,) 6D (LTL)(QHA,)

3D (dlu)(LH'e,) 6D (dld.)(QH u,)
)

6D (QTQ)QHu.) 3D (ulu.)(LHe.)

translation ~done for bosonic dim-8
(FeynRules UFO too)

normal human output

(H'H)*(D,H'D,H)
6ry (H'H)(H''H)(D,H't'D,H)

t L pR
(DpH' Dy H) BP(HBV)P

L,A ~R,B
dap (DyH' D,H) G Gy

L.Ivx-R,J
015 (DuH' D, H) W 0 W)

€IJK (DMHTTI D,/H) WPIE;;]WV];L;K

(D,H' D, H)BL BL +h.c.

Sap (D HY D, H) GEAGEP + he.
517 (D HY D, HYW "W’ + h.c.
ersx (D HIT D, HYW W0+ e,
51y (D HYT! D,H)BL Wos” + hc.

L,J
01y (DuH'T'D,H)BY W, + h.c.



conclusions:

given symmetry

roup G, . |
fieldi ®i pq,i X;LR Hilbert sertes

# and form of all
invariant (Lorentz &
gauge) operators,

e generates all possible combinations of operators, uses
character orthonormality to pick out invariants

e derivatives tricky, but issues recently overcome:
see next two talks for details!

lots of interesting directions to explore!



conclusions:

given symmetry

roup G, . |
fieldi ®i pq,i X;LR Hilbert sertes

# and form of all
invariant (Lorentz &
gauge) operators,

e generates all possible combinations of operators, uses
character orthonormality to pick out invariants

e derivatives tricky, but issues recently overcome:
see hext two talks for details!

lots of interesting directions to explore!

P Thank You!
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