Lost in an EFT? Tom Melia, UC Berkeley

You are here!

The path to the pagoda

You are here!

Current LHC ...no obvious exploration.. signposts so far

What can we understand about the maze in general?

All-order Hilbert series as "S-matrix scintillas"

Orientation: EFT of a real scalar field

Connection to scattering amplitudes

EFT of a real scalar field

Fourier transform

$$\phi(x) = \int d^d p \, \widetilde{\phi}(p) \, e^{i \, p^\mu x_\mu}$$

General operator takes the form

$$\phi^n \partial_{\mu_1} \dots \partial_{\mu_k} \sim \int d^d p_1 \dots d^d p_n \,\widetilde{\phi}_1(p_1) \dots \widetilde{\phi}_n(p_n) F^{(n,k)}(p_1, \dots, p_n) \exp\left(i \sum_{i=1}^n p_i^\mu x_\mu\right)$$

Here, $F^{(n,k)}$ is a degree k polynomial in n momenta

Has to be Lorentz invariant and permutation invariant

$$\phi^n \partial_{\mu_1} \dots \partial_{\mu_k} \sim \int d^d p_1 \dots d^d p_n \,\widetilde{\phi}_1(p_1) \dots \widetilde{\phi}_n(p_n) F^{(n,k)}(p_1, \dots, p_n) \exp\left(i \sum_{i=1}^n p_i^\mu x_\mu\right)$$

Has to be Lorentz invariant and permutation invariant

$$\mathcal{O}_1 \sim \mathcal{O}_2 + \partial^2 \phi \mathcal{O}_3 \implies F_1(\{p_i\}) \sim F_2(\{p_i\}) + p_i^2 F_3(\{p_i\}),$$

$$\mathcal{O}_1 \sim \mathcal{O}_2 + \mathrm{d}\mathcal{O}_3 \implies F_1(\{p_i\}) \sim F_2(\{p_i\}) + \left(\sum_i p_i^{\mu}\right) F_3(\{p_i\})$$

Further EOM and IBP conditions on F

$$\phi^n \partial_{\mu_1} \dots \partial_{\mu_k} \sim \int d^d p_1 \dots d^d p_n \,\widetilde{\phi}_1(p_1) \dots \widetilde{\phi}_n(p_n) F^{(n,k)}(p_1, \dots, p_n) \exp\left(i \sum_{i=1}^n p_i^\mu x_\mu\right)$$

Has to be Lorentz invariant and permutation invariant

$$\mathcal{O}_1 \sim \mathcal{O}_2 + \partial^2 \phi \mathcal{O}_3 \implies F_1(\{p_i\}) \sim F_2(\{p_i\}) + p_i^2 F_3(\{p_i\}),$$

$$\mathcal{O}_1 \sim \mathcal{O}_2 + \mathrm{d}\mathcal{O}_3 \implies F_1(\{p_i\}) \sim F_2(\{p_i\}) + \left(\sum_i p_i^{\mu}\right) F_3(\{p_i\})$$

Further EOM and IBP conditions on F

On-shell and momentum conservation

$$A_n(p_1,\ldots,p_n) = \sum_k \sum_\alpha c_\alpha F_\alpha^{(n,k)}(p_1,\ldots,p_n) + \ldots$$

'Finding independent operators' is equiv. to writing down general amplitude (contact terms)

Four point amplitude

Mandelstam

$$s_{ij} = p_i^{\mu} p_{j\mu}$$

$$s_{ii} = p_i^2 = 0 \quad \text{EOM}$$

Four point amplitude

Mandelstam

$$s_{ij} = p_i^{\mu} p_{j\mu}$$

$$s_{ii} = p_i^2 = 0$$
 EOM

$$\widetilde{F} = \sum_{a_1,\dots,a_6} c_{a_1\dots a_6} s_{12}^{a_1} \dots s_{34}^{a_6}$$

Eliminate momentum '4' using IBP

$$\{s_{12}, s_{13}, s_{23}\} \equiv \{s, t, u\}$$

Four point amplitude

Mandelstam

$$s_{ij} = p_i^{\mu} p_{j\mu}$$

$$s_{ii} = p_i^2 = 0 \quad \text{EOM}$$

 $\mathbb{R}[s, t, u]$ still need to enforce S4 invariance $\mathbb{R}[s, t, u]^{S_3} = \mathbb{R}[e_1, e_2, e_3]$

$$e_1 \equiv s + t + u$$
 $e_2 \equiv st + su + tu$ $e_3 \equiv stu$

 $e_1 = s + t + u = 0 \qquad (\mathsf{IBP})$

 $\mathbb{R}[e_2, e_3]$

$$A_4(p_1, p_2, p_3, p_4) = \sum_{a,b} c_{a,b} (st + su + tu)^a (stu)^b + \dots$$

Generating function $\frac{1}{(1 - (st + su + tu))(1 - stu)}$

$$A_4(p_1, p_2, p_3, p_4) = \sum_{a,b} c_{a,b} (st + su + tu)^a (stu)^b + \dots$$

Generating function $\frac{1}{(1 - (st + su + tu))(1 - stu)}$

 $= (1 + (st + su + tu) + (st + su + tu)^{2} + \dots)(1 + stu + (stu)^{2} + \dots)$

$$A_4(p_1, p_2, p_3, p_4) = \sum_{a,b} c_{a,b} (st + su + tu)^a (stu)^b + \dots$$

Generating function(Simpler)
$$1$$
 1 $(1 - (st + su + tu))(1 - stu)$ $(1 - k^4)(1 - k^6)$

$$A_4(p_1, p_2, p_3, p_4) = \sum_{a,b} c_{a,b} (st + su + tu)^a (stu)^b + \dots$$

Generating function (Simpler)

$$\frac{1}{(1 - (st + su + tu))(1 - stu)}$$
 $\frac{1}{(1 - k^4)(1 - k^6)}$
 $= 1 + k^4 + k^6 + k^8 + k^{10} + 2k^{12} + k^{14} + 2k^{16} + 2k^{18} + 2k^{20} + \dots$
e.g. 2 independent operators with 12 derivs.

$$A_4(p_1, p_2, p_3, p_4) = \sum_{a,b} c_{a,b} (st + su + tu)^a (stu)^b + \dots$$

Generating function

$$\frac{1}{(1 - (st + su + tu))(1 - stu)}$$
Generates
independent terms
Generates
independent terms

(Simpler) 1 $(1-k^4)(1-k^6)$ Generates # of dependent terms

$$A_4(p_1, p_2, p_3, p_4) = \sum_{a,b} c_{a,b} (st + su + tu)^a (stu)^b + \dots$$

Generating function (Simpler)

$$\frac{1}{(1 - (st + su + tu))(1 - stu)}$$
Hilbert series $H(\phi, k)\Big|_{\mathcal{O}(\phi^4)}$

$$H(\phi, t)|_{\phi^4} = \phi^4 \frac{1}{(1 - t^4)(1 - t^6)}$$

1 A

n=4

$$H(\phi, t)|_{\phi^4} = \phi^4 \frac{1}{(1 - t^4)(1 - t^6)}$$

$$H(\phi,t)|_{\phi^5} = \phi^5 \frac{t^{28} + t^{22} + t^{16} + t^{14} + t^{12} + t^8 - t^6 + t^4 - t^2 + t^4}{(1-t^2)(1-t^6)(1-t^8)(1-t^{10})(1-t^{12})}$$

r = 6

 $D = (1-t^2) (1-t^4) (1-t^6)^2 (1-t^8)^2 (1-t^{10}) (1-t^{12})$

- $$\begin{split} N_{SO(4)} &= t^{40} + t^{38} + 2t^{36} + 2t^{34} + 9t^{32} + 10t^{30} + 17t^{28} + 12t^{26} + 19t^{24} + 10t^{22} + 12t^{20} \\ &+ 7t^{18} + 7t^{16} + 5t^{14} + 3t^{12} + 2t^{10} + t^8 t^2 + 1 \end{split}$$
- $N_{O(4)} = t^{38} + 2t^{34} + 4t^{32} + 7t^{30} + 9t^{28} + 6t^{26} + 10t^{24} + 3t^{22} + 5t^{20} + 3t^{18} + 3t^{16} + 2t^{14} + 3t^{12} + t^{10} + t^8 t^2 + 1$

r = 7

 $D = (1-t^2) (1-t^4) (1-t^6)^2 (1-t^8)^2 (1-t^{10}) (1-t^{12}) (1-t^{14}) (1-t^{20}) (1-t^{24})$

$$\begin{split} N_{SO(4)} &= 3t^{92} + 10t^{90} + 31t^{88} + 65t^{86} + 123t^{84} + 223t^{82} + 387t^{80} + 584t^{78} + 902t^{76} + 1257t^{74} \\ &+ 1736t^{72} + 2255t^{70} + 2892t^{68} + 3482t^{66} + 4226t^{64} + 4785t^{62} + 5440t^{60} + 5885t^{58} \\ &+ 6344t^{56} + 6482t^{54} + 6678t^{52} + 6471t^{50} + 6343t^{48} + 5864t^{46} + 5433t^{44} + 4747t^{42} \\ &+ 4214t^{40} + 3447t^{38} + 2889t^{36} + 2228t^{34} + 1745t^{32} + 1246t^{30} + 915t^{28} + 579t^{26} \\ &+ 396t^{24} + 225t^{22} + 132t^{20} + 67t^{18} + 40t^{16} + 15t^{14} + 9t^{12} + 4t^{10} + t^8 - t^2 + 1 \end{split}$$

 $N_{O(4)} = 2t^{92} + 5t^{90} + 16t^{88} + 32t^{86} + 61t^{84} + 111t^{82} + 192t^{80} + 290t^{78} + 450t^{76} + 623t^{74} + 869t^{72} + 1126t^{70} + 1446t^{68} + 1743t^{66} + 2114t^{64} + 2393t^{62} + 2725t^{60} + 2946t^{58} + 3176t^{56} + 3248t^{54} + 3341t^{52} + 3240t^{50} + 3171t^{48} + 2935t^{46} + 2712t^{44} + 2375t^{42} + 2103t^{40} + 1719t^{38} + 1440t^{36} + 1110t^{34} + 867t^{32} + 622t^{30} + 456t^{28} + 286t^{26} + 199t^{24} + 111t^{22} + 68t^{20} + 35t^{18} + 23t^{16} + 8t^{14} + 7t^{12} + 3t^{10} + t^8 - t^2 + 1$

r = 8

 $N_{SO(4)}$

 $D = (1-t^2) (1-t^4)^2 (1-t^6)^2 (1-t^8)^2 (1-t^{10}) (1-t^{12}) (1-t^{14}) (1-t^{16}) (1-t^{20}) (1-t^{24}) (1-t^{30})$

$$\begin{split} N_{SO(4)} &= 2t^{140} + 10t^{138} + 36t^{136} + 111t^{134} + 271t^{132} + 669t^{130} + 1407t^{128} + 2795t^{126} + 5230t^{124} \\ &+ 9232t^{122} + 15449t^{120} + 24891t^{118} + 38348t^{116} + 57041t^{114} + 82132t^{112} + 114575t^{110} \\ &+ 155450t^{108} + 205584t^{106} + 265155t^{104} + 334161t^{102} + 412525t^{100} + 498510t^{98} + 591155t^{96} \\ &+ 688016t^{94} + 786655t^{92} + 883876t^{90} + 977349t^{88} + 1062559t^{86} + 1137707t^{84} + 1199160t^{82} \\ &+ 1244896t^{80} + 1272653t^{78} + 1282305t^{76} + 1272005t^{74} + 1243654t^{72} + 1197349t^{70} \\ &+ 1135523t^{68} + 1060045t^{66} + 974725t^{64} + 881151t^{62} + 784165t^{60} + 685657t^{58} + 589292t^{56} \\ &+ 496902t^{54} + 411517t^{52} + 333452t^{50} + 265063t^{48} + 205662t^{46} + 156048t^{44} + 115222t^{42} \\ &+ 83089t^{40} + 57902t^{38} + 39348t^{36} + 25693t^{34} + 16282t^{32} + 9828t^{30} + 5766t^{28} + 3145t^{26} \\ &+ 1694t^{24} + 828t^{22} + 394t^{20} + 167t^{18} + 75t^{16} + 24t^{14} + 11t^{12} + 5t^{10} + 2t^{8} + t^{6} - t^{4} - t^{2} + 1 \end{bmatrix}$$

 $\begin{array}{l} + 1135523t^{68} + 1060045t^{66} + 974725t^{64} + 881151t^{62} + 784165t^{60} + 685657t^{58} + 589292t^{56} \\ + 496902t^{54} + 411517t^{52} + 333452t^{50} + 265063t^{48} + 205662t^{46} + 156048t^{44} + 115222t^{42} \\ + 83089t^{40} + 57902t^{38} + 39348t^{36} + 25693t^{34} + 16282t^{32} + 9828t^{30} + 5766t^{28} + 3145t^{26} \\ + 1694t^{24} + 828t^{22} + 394t^{20} + 167t^{18} + 75t^{16} + 24t^{14} + 11t^{12} + 5t^{10} + 2t^8 + t^6 - t^4 - t^2 + 1 \end{array}$

 $+9t^{12} + 4t^{10} + 2t^8 + t^6 - t^4 - t^2 + 1$

$$H(\phi_1, \phi_2, \phi_3, t) = \frac{1 - t\phi_1\phi_2\phi_3}{(1 - \phi_1)(1 - \phi_2)(1 - \phi_3)(1 - t\phi_1\phi_2)(1 - t\phi_1\phi_3)(1 - t\phi_2\phi_3)}$$

Information/structure not seen at any perturbative order

This object contains *physics* — counts number of independent 'measurements'

Some dreaming...

 $H_{\rm SM} = *** \text{All order result}???***$

How best to interpret the information?

Can it provide hints to possible paths?

are there any deep underlying patterns?

are there any deep underlying patterns?

Connection with scattering amplitudes

Structure already in 1D

...makes us excited!