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Fourier transform

General operator takes the form

In the next section we will give an interpretation of the denominator in the above expression
in terms of kinematic invariants. For now, let us make two other comments. First, in the
expansion above we can begin to read off what operators are contributing to the operator
basis. For example, the �4, �4t4, and �4t6 terms correspond to the representative operators
�4, [(@µ�)

2
]

2, and (@{µ@⌫}�)

2
(@��)

2, respectively. Second, the above result can differ in
spacetime dimensions different from four; in particular, it is the same for d � 4, but different
in d = 2 and 3 where we get 1/(1 � t4) and (1 + t9)/[(1 � t4)(1 � t6)], respectively . There
are two reasons for this, one being the ability to use the epsilon tensor to contract Lorentz
indices on operators of the form �4@k in d = 2, 3,19 the other being finite rank conditions
which can appear in the O(�n

) contribution to H when n > d. These two reasons become
especially clear in the momentum space picture developed in the next section.

4 The real scalar field and scattering amplitudes

In this section, we further analyze the EFT of a real scalar field and present all-order in t

results for Hilbert series, as in the example calculation above, pushing to higher fixed powers
of fields (i.e. n > 4). We also present results which are all-order in � for fixed t. Before
embarking upon this, however, we will clarify the connection to scattering amplitudes, in
particular through a detailed study of the kinematic structure underlying the operator basis.
The result is a concrete correspondence between independent operators and independent
contact contributions to tree-level amplitudes. The Hilbert series we subsequently present
enumerate these independent contributions.

4.1 Polynomial ring in momenta

As a starting point, we make a connection to our previous study of scalar EFTs in (0+1)
dimensions, where we understood the structure of operator bases in terms of a polynomial
ring of momenta [3]. In this picture, EOM and IBP relations are accounted for by quoti-
enting the ring of momentum by an ideal that consists on-shell conditions (for EOM) and
momentum conservation (for IBP). Here we generalize the picture to d-dimensions. While
this is straightforward, we will see that understanding the polynomial ring is considerably
more complicated than in the (0+1) dimensional case. We refer the reader unfamiliar with
commutative algebra to [3] for a primer that is relevant to our current application.

We pass to Fourier space, writing

�(x) =

Z
ddp e�(p) ei p

µx
µ , (4.1)

such that an operator with n powers of � fields and k derivatives takes the general form

�n@µ1 . . . @µ
k

⇠
Z

ddp1 . . . ddpn e�1(p1) . . . e�n(pn)F (n,k)
(p1, . . . , pn) exp

 
i

nX
i=1

pµi xµ

!
,(4.2)

where F (n,k) is a degree k polynomial in n momenta {pµi }, i = 1 . . . n, whose form depends
on how the derivatives act in the operator. In considering only Lorentz scalar operators,

19If we impose parity, the d = 3 case is the same as the d � 4 case.
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Further EOM and IBP conditions on F
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we are concerned with polynomials invariant under an SO(d) symmetry acting on the
Lorentz indices of the {pµi }. Furthermore, the symmetry of the integral leads us to consider
symmetric polynomials in the indices 1 . . . n, i.e. polynomials invariant under Sn, where
Sn acts by permutations of the n momenta. There is then a one-to-one correspondence
between Lorentz invariant operators and such polynomials. In summary, we are interested
in the polynomial ring,

R = R[pµ1 , . . . , pµn]

SO(d)nS
n , (4.3)

where the superscript means we are imposing invariance under SO(d) n Sn.
We now wish to study the effects of EOM and IBP on this polynomial ring. The EOM

@2� = 0 translates to p2i = 0 and the vanishing of total derivatives @µ(. . .) = 0, or IBP, is
the statement of momentum conservation,

P
i pi

µ
= 0. These define equivalence relations

O1 ⇠ O2 + @2� O3 =) F1({pi}) ⇠ F2({pi}) + p2iF3({pi}) , (4.4)

O1 ⇠ O2 + dO3 =) F1({pi}) ⇠ F2({pi}) +

 X
i

pµi

!
F3({pi}) . (4.5)

Such polynomial relations between elements of a ring are embodied in an ideal of the ring.
The equivalence class of polynomials under these two redundancies lie in the quotient ring

R[pµ1 , . . . , pµn]/hpµ1 + . . . + pµn, p21, . . . , p
2
ni
�SO(d)nS

n

, (4.6)

where h. . .i is the standard notation for an ideal.
A further equivalence, on top of EOM and IBP, has to be imposed: in d dimensions

only d momenta can be linearly independent. In terms of Lorentz invariants pi · pj , the
linear dependence can be expressed through constructing the Gram matrix,

G =

0BBBB@
p1 · p1 p1 · p2 . . . p1 · pn
p2 · p1 p2 · p2 . . . p2 · pn

...
... . . . ...

pn · p1 pn · p2 . . . pn · pn

1CCCCA , (4.7)

and requiring that this matrix can be at most rank d. This can be achieved simply by
requiring that any (d + 1) ⇥ (d + 1) sub-matrix has vanishing determinant. Equivalently,
one can require that all principle sub-matrices20 of size (d+1)⇥(d+1), (d+2)⇥(d+2), . . .,
n ⇥ n have vanishing determinant. Let {�} stand for the set of Gram conditions; taking
these relations into account, the final module is

R[pµ1 , . . . , pµn]/hpµ1 + . . . + pµn, p21, . . . , p
2
n, {�}i

�SO(d)nS
n

. (4.8)

20Principle sub-matrices are those obtained through symmetric deletion of columns and rows, e.g. if the
ith row is deleted, so is the ith column, and so on.
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On-shell and momentum conservation
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Figure 2. Contact interaction contributions to the n-point scattering amplitude from Feynman
diagrams associated with the operators O(n,k)

↵ .

Information about generating elements for the above polynomial ring can provide useful
input to algorithms for constructing basis polynomials (i.e. constructing operator bases);
using only generating polynomials greatly reduces the size of the initial general polyno-
mial in the method outlined above. Furthermore, the information contained in the Hilbert
series—see Tables 1, 2 below—is valuable in practical calculations; the number of indepen-
dent operators at a given n and k is further useful input to algorithmic approaches. The
all-order Hilbert series for fixed n can be viewed as a half-step towards the full construction
(and not simply enumeration) of general operator bases.

4.3 Scattering amplitudes in the EFT of a real scalar field

The association of a polynomial equation in the momenta of the particles with a given
operator is exactly what one obtains when deriving the Feynman rule in momentum space
for an operator. That is, an operator O(n,k)

↵ involving n powers of � and k derivatives
gives rise to a momentum space Feynman rule F (n,k)

↵ and an associated Feynman diagram
consisting of a degree n vertex of the � legs. The evaluation of Feynman diagrams is one
useful way of obtaining scattering amplitudes in an EFT;22 thus, the above ring picture,
and the polynomials F (n,k)

↵ are very closely connected with the scattering amplitudes in the
theory.

Let us consider the Feynman diagram expansion of an n-point tree-level amplitude in
the EFT of a real scalar field. The operators O(n,k)

↵ contribute in a particularly simple
way, via a contact interaction, as depicted in Fig. 2. Further contributions from Feynman
diagrams which involve one or more propagators (non-contact terms) are not shown—these
are the + . . . contributions in Fig. 2. Note that the operators O(n,k)

↵ do not contribute
to these diagrams; the propagator(s) connect vertices coming from operators with fewer
powers of � (i.e. of lower n).

More explicitly, we can write the general n point, tree-level amplitude in the EFT of a
real scalar field, An, as

An(p1, . . . , pn) =

X
k

X
↵

c↵ F (n,k)
↵ (p1, . . . , pn) + . . . , (4.17)

where there is a sum over all k, and where the sum over ↵ runs over all independent
polynomials F (n,k)

↵ in the basis. The c↵ are identified as the Wilson coefficients of the
22See Refs. [25, 26] for recent developments in the use of on-shell recursion relations for amplitudes in

EFTs.
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kinematic case: s14 = s23, s24 = s13 and s34 = s12 as a result of the four-point kinematics,
i.e.

p1 + p2 = �p3 � p4 =) (p1 + p2)
2

= (p3 + p4)
2

=) s12 = s34 . (4.12)

That is, there are three independent Mandelstam invariants when considering momentum
conservation: {s12, s13, s23} ⌘ {s, t, u}, and we consider the ring R[s, t, u]. We are interested
in polynomials that are invariant under S4, and so we can look for generators, or basis
elements, for such a ring. Again, as a consequence of the simple four-point kinematics, we
note that permutations in S3 of the three Mandelstam variables {s, t, u} lift to permutations
in S4 acting on the momentum indices. That is, to construct a polynomial invariant under
S4 acting on the indices, we construct a polynomials invariant under S3 permutations of
s, t, u. Such a ring is freely generated by the symmetric polynomials, e1 ⌘ s + t + u,
e2 ⌘ st + su + tu, and e3 ⌘ stu. Finally we wish to understand the consequences of the
ideal due to IBP; here we have hs + t + u, . . .i, where only the IBP contribution to the
ideal is shown. We see that quotienting by this ideal is trivial—IBP simply removes the
generator s+ t+u, so that the ring is freely generated by the polynomials st+ su+ tu, and
stu.

In d � 3, there are no Gram conditions to add to the ideal—the momenta p1, p2 and p3
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Eliminate momentum 
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still need to enforce S4 invariance

R[s, t, u]S3 = R[e1, e2, e3]

e1 = s+ t+ u = 0

R[e2, e3]

(IBP)



Generating function

A4 =
X

k,↵

O4,k
↵ + . . .

A4(p1, p2, p3, p4) =
X

a,b

ca,b(st+ su+ tu)a(stu)b + . . .

1

(1� (st+ su+ tu))(1� stu)



Generating function
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↵ + . . .

A4(p1, p2, p3, p4) =
X

a,b

ca,b(st+ su+ tu)a(stu)b + . . .

1

(1� (st+ su+ tu))(1� stu)

= (1 + (st+ su+ tu) + (st+ su+ tu)2 + . . .)(1 + stu+ (stu)2 + . . .)
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(Simpler)
1

(1� k4)(1� k6)
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A4(p1, p2, p3, p4) =
X
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1

(1� (st+ su+ tu))(1� stu)

(Simpler)

= 1 + k4 + k6 + k8 + k10 + 2k12 + k14 + 2k16 + 2k18 + 2k20 + . . .

1

(1� k4)(1� k6)

e.g. 2 independent operators with 12 derivs..
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Hilbert series H(�, k)

����
O(�4)



n=3 n=4

n=…

n=5

L =
X

n,k

cn,k�
n@k



Operator Basis



Hilbert series over operator basis

H(�, k)|O(�4)

H(�, k)|O(�5)

H(�, k)
H(�, k)|O(�n)



Hilbert series over operator basis

H(�, k)|O(�4)

H(�, k)|O(�5)

H(�, k)
H(�, k)|O(�n)

A4 =
X

k,↵

+ . . .

A5 =
X

k,↵

+ . . .

.

An =
X

k,↵



The maze of the real scalar
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The maze of the real scalar

H(�, t)|�4 = �4 1

(1� t4)(1� t6)



The maze of the real scalar

H(�, t)|�4 = �4 1

(1� t4)(1� t6)
n=4



The maze of the real scalar

n=4
H(�, t)|�5 = �5 t

28 + t22 + t16 + t14 + t12 + t8 � t6 + t4 � t2 + 1

(1� t2)(1� t6)(1� t8)(1� t10)(1� t12)

n=5



The maze of the real scalar

n=4

n=5

r = 6

D =

�
1 � t2

� �
1 � t4

� �
1 � t6

�2 �
1 � t8

�2 �
1 � t10

� �
1 � t12

�
NSO(4) = t40 + t38 + 2t36 + 2t34 + 9t32 + 10t30 + 17t28 + 12t26 + 19t24 + 10t22 + 12t20

+ 7t18 + 7t16 + 5t14 + 3t12 + 2t10 + t8 � t2 + 1

NO(4) = t38 + 2t34 + 4t32 + 7t30 + 9t28 + 6t26 + 10t24 + 3t22 + 5t20 + 3t18 + 3t16 + 2t14

+ 3t12 + t10 + t8 � t2 + 1

r = 7

D =

�
1 � t2

� �
1 � t4

� �
1 � t6

�2 �
1 � t8

�2 �
1 � t10

� �
1 � t12

� �
1 � t14

� �
1 � t20

� �
1 � t24

�
NSO(4) = 3t92 + 10t90 + 31t88 + 65t86 + 123t84 + 223t82 + 387t80 + 584t78 + 902t76 + 1257t74

+ 1736t72 + 2255t70 + 2892t68 + 3482t66 + 4226t64 + 4785t62 + 5440t60 + 5885t58

+ 6344t56 + 6482t54 + 6678t52 + 6471t50 + 6343t48 + 5864t46 + 5433t44 + 4747t42

+ 4214t40 + 3447t38 + 2889t36 + 2228t34 + 1745t32 + 1246t30 + 915t28 + 579t26

+ 396t24 + 225t22 + 132t20 + 67t18 + 40t16 + 15t14 + 9t12 + 4t10 + t8 � t2 + 1

NO(4) = 2t92 + 5t90 + 16t88 + 32t86 + 61t84 + 111t82 + 192t80 + 290t78 + 450t76 + 623t74 + 869t72

+ 1126t70 + 1446t68 + 1743t66 + 2114t64 + 2393t62 + 2725t60 + 2946t58 + 3176t56 + 3248t54

+ 3341t52 + 3240t50 + 3171t48 + 2935t46 + 2712t44 + 2375t42 + 2103t40 + 1719t38 + 1440t36

+ 1110t34 + 867t32 + 622t30 + 456t28 + 286t26 + 199t24 + 111t22 + 68t20 + 35t18 + 23t16

+ 8t14 + 7t12 + 3t10 + t8 � t2 + 1

r = 8

D =

�
1 � t2

� �
1 � t4

�2 �
1 � t6

�2 �
1 � t8

�2 �
1 � t10

� �
1 � t12

� �
1 � t14

� �
1 � t16

� �
1 � t20

� �
1 � t24

� �
1 � t30

�
NSO(4) = 2t140 + 10t138 + 36t136 + 111t134 + 271t132 + 669t130 + 1407t128 + 2795t126 + 5230t124

+ 9232t122 + 15449t120 + 24891t118 + 38348t116 + 57041t114 + 82132t112 + 114575t110

+ 155450t108 + 205584t106 + 265155t104 + 334161t102 + 412525t100 + 498510t98 + 591155t96

+ 688016t94 + 786655t92 + 883876t90 + 977349t88 + 1062559t86 + 1137707t84 + 1199160t82

+1244896t80 + 1272653t78 + 1282305t76 + 1272005t74 + 1243654t72 + 1197349t70

+ 1135523t68 + 1060045t66 + 974725t64 + 881151t62 + 784165t60 + 685657t58 + 589292t56

+ 496902t54 + 411517t52 + 333452t50 + 265063t48 + 205662t46 + 156048t44 + 115222t42

+ 83089t40 + 57902t38 + 39348t36 + 25693t34 + 16282t32 + 9828t30 + 5766t28 + 3145t26

+ 1694t24 + 828t22 + 394t20 + 167t18 + 75t16 + 24t14 + 11t12 + 5t10 + 2t8 + t6 � t4 � t2 + 1

NSO(4) = 2t140 + 5t138 + 17t136 + 55t134 + 136t132 + 333t130 + 704t128 + 1396t126 + 2613t124 + 4624t122

+ 7727t120 + 12449t118 + 19185t116 + 28527t114 + 41075t112 + 57305t110 + 77725t108 + 102791t106

+ 132582t104 + 167073t102 + 206252t100 + 249244t98 + 295553t96 + 343975t94 + 393313t92

+ 441911t90 + 488647t88 + 531262t86 + 568832t84 + 599572t82 + 622455t80 + 636334t78

+ 641159t76 + 636026t74 + 621863t72 + 598709t70 + 567793t68 + 530057t66 + 487388t64

+ 440609t62 + 392120t60 + 342830t58 + 294647t56 + 248455t54 + 205749t52 + 166713t50

+ 132516t48 + 102798t46 + 77994t44 + 57599t42 + 41517t40 + 28929t38 + 19665t36 + 12832t34

+ 8135t32 + 4921t30 + 2881t28 + 1578t26 + 858t24 + 419t22 + 205t20 + 91t18 + 41t16 + 14t14

+ 9t12 + 4t10 + 2t8 + t6 � t4 � t2 + 1

Table 3. Hilbert series of the form N/D at fixed order �r, and at all-order in the power of
derivatives, counted by tk. Results are for both SO(4) and O(4) spacetime groups; see also eq. (4.20).

F Hilbert series for real scalar field

In this appendix we give supplementary (semi) all-order results for Hilbert series in a four
dimensional EFT of a real scalar field. The Hilbert series tabulated in Tab. 3 enumerate all

– 70 –

n=6

n=7

n=8

…



H(�1,�2, t) =
1

(1� �1)(1� �2)(1� t�1�2)

in one dimension

The maze of multiple flavors of real scalars
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1

(1� �1)(1� �2)(1� t�1�2)

in one dimension

H(�1,�2,�3, t) =
1� t�1�2�3

(1� �1)(1� �2)(1� �3)(1� t�1�2)(1� t�1�3)(1� t�2�3)

The maze of multiple flavors of real scalars



H(�1,�2, t) =
1

(1� �1)(1� �2)(1� t�1�2)

in one dimension

H(�1,�2,�3, t) =
1� t�1�2�3

(1� �1)(1� �2)(1� �3)(1� t�1�2)(1� t�1�3)(1� t�2�3)

preceding statement. We do not, however, have a simple understanding of the tuaub → 1

limit in the EFT picture.

It is highly non-trivial that the residue of uaub → 1 gives HN−1,EOM. The polynomial

in the numerator of HN is quite involved—see eqs. (4.8) and (3.12)—and reflects non-trivial

relations amongst the generators of the operator basis. In fact, the consistency conditions

implied by the pole information completely determines the numerator of HN .12 Before our

understanding of the connection to SL(2,C), we obtained the residues of HN from the sum

formula in eq. (3.10). Analysis of the residues ua → 1 and, in particular, tuaub → 1 allowed

us to compute the Hilbert series up to N = 7. We note that extracting the residues from

the sum in eq. (3.10) is manageable, although performing the full sum by brute force is

quite difficult for N > 3.

Starting with the Hilbert series for N flavors we can obtain the Hilbert series with N−k

flavors by setting ūN−k+1 = · · · = ūN = 0. That we can pass to fewer flavors is not too

surprising; what’s more interesting is that we can also go the opposite direction! In other

words, we can compose HN from Hilbert series with fewer flavors. This recursion relation

can be seen as follows. The HN,EOM satisfy a trivial recursion relation: HN+1,EOM =

HN,EOM · H1,EOM. Since HN,EOM appears in the integrand of eq. (4.6), this induces a

recursion relation on HN . This recursion is easily proved and takes the form

HN+1 (ū0, ū1, · · · , ūN+1) =

∮

|x|=1

dx

2πi

1

x
HN (ū0, · · · , ūN−1, x)H2

(

x−1, ūN , ūN+1
)

. (5.5)

More generally, HN+1 ∼
∮

dx
x HkHk′ for any k, k′ such that k + k′ = N + 2 and k, k′ ≥ 2.

We can give a graphical description of this composition rule as follows. The basic

building block is H2(ū0, ū1, ū2), to which we associate a trivalent vertex:

u0

u1u2

Each leg is associated to a weight ui with the direction of the arrow indicating whether the

weight is taken with a postive power (incoming, u+1
i ) or a negative power (outgoing, u−1

i ).

Higher HN are formed by connecting the graphs in such a way that internal lines have the

same weight with arrow direction preserved, and then integrating over the weights of the

internal lines. For example we can compose two H2 to get H3,

u1

u0

u2

u3

x x−1
→

u1

u0

u2

u3

12We thank Bernd Sturmfels and Yeping Zhang for correspondence over our initial conjecture on this
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Figure 3. Hilbert series can be composed to build up HN for larger numbers of flavors.

which reads H3(ū0, ū1, ū2, ū3) =
∮

dx
2πi

1
xH2(ū0, ū1, x)H2(x−1, ū2, ū3) and defines a new,

quartic vertex for H3. A more elaborate graph is shown in Fig. 3. It is quite clear that all

such tree graphs describe the various possible composition formulas for HN .

6 Discussion

In this work we have sketched a framework for studying operator bases in quantum field

theories and applied this to one-dimensional field theories with scalar degrees of freedom.

Our discussion thus far has been fairly mathematical and our one-dimensional application

seems rather distant from QFTs of phenomenological and/or theoretical interest. In light

of this, it seems prudent to understand what physics lies in our results and what lessons we

can extract as we look towards extensions to higher dimensions and more involved QFTs.

Although we motivated our study of independent operators through the context of

effective field theory, our analysis more generally can be understood as classifying the space

of local operators subject to some (physically motivated) constraints. Accounting for the

equations of motion identifies operators which are equivalent when inserted into correlation

functions. The operator-state correspondence suggests a physical meaning to this set for a

CFT, although no clear interpretation is immediate for infrared trivial theories. Including

integration by parts further restricts to operators of zero momentum, i.e. those operators

which can contribute to scattering processes. As we review and discuss our results, this

picture provides an intuitive understanding for the appearance of mathematical similarities

to scattering amplitudes and CFTs—particularly, the role of kinematic equations in our

analysis, the representation theoretic description of operators, as well as recursion and

composition formulas in the Hilbert series.

In Sec. 2, we showed how the language of commutative algebra provides a systematic

way to study operator bases wherein independent operators are understood as elements of

a quotient ring. Kinematic equations play an essential role in this framework: momentum

conservation and the equations of motion define the equivalence relations governing the

quotient space. While each kinematic constraint is separately easy to understand, they

have more subtle consequences when considered together. The language of rings and ideals

provides a well-defined and systematic way to study the non-trivial relations among these

constraints.

The basic details of this framework straightforwardly generalizes to d dimensions, al-

though explicit computations will differ. Details of this generalization will be discussed
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Flavour recursion

The maze of multiple flavors of real scalars



H(�1,�2,�3, t) =
1� t�1�2�3

(1� �1)(1� �2)(1� �3)(1� t�1�2)(1� t�1�3)(1� t�2�3)

Information/structure not seen at any 
perturbative order

This object contains physics — counts 
number of independent ‘measurements’

The maze of multiple flavors of real scalars



Some dreaming…

HSM = ***All order result???***

How best to interpret the information?

Can it provide hints to possible paths?



are there any deep underlying patterns?



are there any deep underlying patterns?

Connection with scattering amplitudes

Structure already in 1D

…makes us excited!


