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Introduction



Why do we need predictions for the ν cross-section?

ν astronomy

I want to measure flux Jν

I event rate R ∼ Jν σν

I even considering the attenuation: R/Jν ∝ σ0.45
ν

ν oscillations

I measure mass hierarchy

I CP violation

particle physics

I want to measure cross-section σν

I test standard model at c.m. energies up to ∼ 103 TeV:
gluon saturation, colour glass condensate, black holes?



The neutrino cross–section at low energies
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Quasi–elastic scattering

S. Zeller, JLAB Workshop, May 2015 

ν Quasi-Elastic Scattering 
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Why important? 

•  important for ν oscillation experiments 

   - typically gives largest contribution to  
     the signal samples in many osc exps 
      (largest contribution to the σν at ~ 1 GeV)  

W+ 
n 

µ� 

examples: 

   νµ  → νe   (νe appearance) 

   νµ  → νµ   (νµ disappearance) 

for free nucleon scattering, produces 
 a single lepton & a single nucleon, but 
 nuclear effects complicate this picture: 
this is not the final state should always 
expect to observe on a nuclear target! 

(heavily studied in 1970’s and 80’s,  
one of the 1st ν interactions measured) 

-  two-body reaction, so in principle, can 
  determine Eν solely from lepton kinematics 

supposedly simple 2–body process

I amplitude can be cast in terms of structure functions

I structure functions (partly) known from e–scattering

I dipole–ansatz for remaining structure function

But . . .

I scattering data on Deuterium old and in disagreement

I data on heavier nuclei (e.g. MiniBooNE) also not in agreement
with simple picture

⇒ nuclear effects important

I different effect for ν and ν̄ ⇒ need to be understood for
CP–violation searches

S. Zeller, JLAB Workshop, May 2015



Resonance production

I γ from νµ can be mis–reconstructed
as lepton: confusion νµ ↔ νe

I absorption of π inside nucleus
→ background to CCQE process

I nuclear effects important: transport
and interaction of final state particles
through nucleus

S. Zeller, JLAB Workshop, May 2015 

•  before they leave the nucleus, pions and nucleons can rescatter … 

    - picture can be quite different from 
      what happens at the primary vertex 

    - typically described by a transport model 
     

23 

•  we have to worry about these effects 
   (need to model initial ν interaction & f.s. particle propagation) 

•  is a subject that needs more attention for ν’s 
Mosel, arXiv:1108.1692  

!  see talks by  
    Ankowski, Huber 

Again, Nuclear Effects Are Important 

S. Zeller, JLAB Workshop, May 2015



Warm–up: Neutrino–lepton cross–section



Feynman diagrams
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Kinematics
Mandelstam variables

s = (k + p)2 = (k ′ + p′)2 ; t = (k − k ′)2 = (p − p′)2 ; u = (k − p′)2 = (p − k ′)2

inelasticity

y =
2p · q
2p · k =

u

s
+ 1 = 1− cos2 θ

2

momentum exchange
Q2 = −q2 = −(k − k ′)2 = s y



Amplitude

Feynman amplitude:

M = jµ Γµν jν

=

(
−i gW√

2
ū(k ′)
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2
γµ(1− γ5)u(k)

)(
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W )

q2 −M2
W

)

×
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2
ū(p′)
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2
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)
and for Q2 = −q2 � M2

W

→ GF√
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ū(p′)
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Cross–section

Squaring, averaging over initial and summing over final spin states:∑
spins

|M|2 ∝ LµνneutrinoL
electron
µν

with leptonic tensors

Lµνneutrino = 2(k ′µkν + k ′νkµ − (k ′ · k)gµν − iεαβµνk ′αkβ)

Lelectron
µν = 2(p′µpν + p′νpµ − (p′ · p)gµν − iεαβµνp

′αpβ)

The differential cross–section for νe scattering:

dσ

dΩ
=
|M|2
64π2s

,

⇒ dσ

dy
=

G2
F

π
s .



Antineutrino–lepton cross–section

νe scattering

e−

νe e−

νe

k k′

p′p

dσ

dy
=

G2
F

π
s .

ν̄e scattering

e−

νe

e−

νe k k′

p′p

dσ

dy
=

G2
F

π
(1− y)2s .



Helicity determines angular dependence

I can work out cross–section from helicity and rotation of spins dJ
Jz J′z

(θ)

I neutrinos and the electrons they interact with are always left–handed, i.e. spin
opposite to momentum

I antineutrinos are right–handed

e−

e−

θ
⇒

⇒

ν̄e

ν̄e⇒

⇒

I neutrino and electron have same spins

I overall spin Jz = 1

I amplitude for scattering by θ given by
d1

11(θ) = 1
2

(1 + cos θ) = (1− y)

I cross–section ∝ (1− y)2

e−

νe

νe

e−

θ
⇒⇒

⇒

⇒

I neutrino and electron have opposite
spins

I overall spin Jz = 0

I amplitude for scattering by θ given by
d0

00(θ) = 1

I cross–section ∝ 1



Quark parton model and Deep Inelastic Scattering (DIS)



This is how I learned about DIS. . .



DIS



DIS

four Lorentz invariants:

I centre of mass energy
√
s

s = (p + k)2

I momentum transfer
Q2 = −q2 = −(k − k ′)2

I Bjorken scaling variable
x = Q2/(2p · q)

I inelasticity
y = p · q/(p · k)



Hadronic tensor

The hadron is strongly coupled thus in principle, one cannot compute cross–section
perturbatively.

Ansatz: ∑
spins

|M|2 ∝ LµνneutrinoWµν

with hadronic tensor:

Wµν = −W1g
µν +

W2

m2
pµpν − iεµναβpαqβ

W3

2m2

+ qµqν
W4

m2
+ (pµqν + qµpν)

W5

m2
+ i (pµqν − qµpν)

W6

2m2

The structure functions Wi are real functions of x ,Q2.

Due to symmetry (µ↔ ν) and current conservation, not all Wi contribute and
recasting F2 = νW2/m2, F3 = νW3/m2, FL = F2 − 2xW1 (where ν = p · q) one finds

d2σ

dxdQ2
=

G2
FM

4
W

4π(Q2 + M2
W )2x

[
Y+F2(x ,Q2) + y2FL(x ,Q2)± Y−F3(x ,Q2)

]
with

Y± = (1± (1− y)2) .

The upper (lower) sign is for neutrinos (antineutrinos).



Proton content

1

3. Structure functions and quark distributions

Elastic electron-parton scattering:
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Image credit: Ulrich Uwer



Quark parton model

I Consider scattering of neutrinos off point–like spin– 1
2

partons

I quarks and anti–quarks have the same weak currents as, e.g. electrons

⇒ cross–sections for quark and antiquark scattering:

dσ

dQ2
=

G2
FM

4
W

π(Q2 + M2
W )2

and
dσ

dQ2
=

G2
FM

4
W

π(Q2 + M2
W )2

(1− y)2

I probability that struck (anti)quark has momentum fraction x : q(x), q̄(x)
Parton Density Functions (PDFs)

I in the quark parton model, we incoherently sum over the probabilities

d2σ

dxdQ2
=

G2
FM

4
W

π(Q2 + M2
W )2

∑
i

[
xqi (x) + (1− y)2xq̄i (x)

]
I so we can identify

F2(x ,Q2) = 2
∑
i

x(qi (x) + q̄i (x)) ,

FL(x ,Q2) = 0 ,

xF3(x ,Q2) = 2
∑
i

x(qi (x)− q̄i (x))



Quark parton model

confinement vs. perturbativity

I consider proton–W/Z scattering

I at high Q2 and in the center–of–mass frame, the proton has almost infinite
longitudinal momentum and no transverse momentum

⇒ the interactions of the partons inside the proton are time–dilated

I for high Q2, the interaction time is very short

⇒ the W/Z ’sees’ free partons

Bjorken scaling

I structure functions depend on x only, not on Q2

I observed at intermediate x

I but violations for small and large x



Bjorken scaling

Courtesy PDG



Improved quark parton model and DGLAP evolution



Improved quark parton model

g

g

I gluonic radiative corrections and gluon
boson fusion

I renormalisation of parton densities

⇒ q(x)→ q(x ,Q2), i.e. violation of
Bjorken scaling

I origin of scale–violation:∫ p2
t (max)

κ2

dp2
t

p2
t

→ ln

(
Q2

κ2

)
+ . . .

I Q2–dependence can however be
computed perturbatively: DGLAP
evolution



DGLAP evolution

∂

∂ lnQ2

(
qi (x ,Q

2)
g(x ,Q2)

)
=
αs(Q2)

2π

∑
j

∫ 1

x

dξ

ξ

×
(

Pqi qj (
x
ξ
, αs(Q2)) Pqi g ( x

ξ
, αs(Q2))

Pgqj (
x
ξ
, αs(Q2)) Pgg ( x

ξ
, αs(Q2))

)(
qj (ξ,Q

2)
g(ξ,Q2)

)

I ’splitting functions’ Pqi qj (z, αs) give the probabilities for qi → qj (z)g(1− z).

I similar for Pqg (z, αs), Pgq(z, αs) and Pgg (z, αs)

I calculated perturbatively

76 QeD improved parton model 

(z) q 
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Fig. 4.4 The DGLAP splitting functions. 

The splitting functions are summarised graphically in Fig. 4.4. The lead-
ing order expressions for Pqq and Pqg are given in Eqs (4.7) and (4.16) 
respectively. From the figure it is clear that Pgq(z) = Pqq (l - z), which 
gives 

(4.19) 

Pgg requires a bit more calculation but follows ultimately from the form of 
the 3-g1uon vertex and is 

[
l- Z Z ] Pgg(z) = 6 -z- + 1 _ Z + z (1 - z) . ( 4.20) 

Since the QeD Lagrangian conserves fermion number and flavour , the fol-
lowing sum rules must be obeyed by the renormalized parton densities at 
least to 0(05 ): 

(4.21 ) 

where Vi = 2, 1, 0, . .. for the u , d , s, ... flavours in the proton. Overall 
momentum conservation gives 

(4.22) 

where = I:i (qi + iii) and the sum runs over all active flavours . Because 
these equations are independent of Q2 , the following constraints apply to 
the splitting functions 

fa1 dz Pqq( z ) 

fa1 dz z [Pqq( z ) + Pgq(z) ] 

0, 

0, 

( 4.23) 

( 4.24) 



DGLAP evolution

structure functions

I not simply sum of PDF’s:

F2 =
∑
i

∫ 1

x

dξ

ξ

[
xqi (ξ,Q

2)Cq

(
x

ξ
, αs

)
+ xg(ξ,Q2)Cg

(
x

ξ
, αs

)]
I coefficient functions Cq ,Cg can also be calculated perturbatively

I similarly for FL and xF3



PDF fitting: idea

problem

I ideally, would like to calculate PDFs from first principles

I however, interactions of partons are soft (Q2 . Λ2
QCD)

→ non-perturbative regime

I lattice?

DGLAP evolution

I however, can calculate the evolution of PDFs in the perturbative regime
(Q2 � Λ2

QCD)

I assume parametric form at input scale and evolve to other scale



PDF fitting: procedure

I chose parametrisation at input scale Q2
0 , e.g.

xg = xλg (1− x)ηgPg (x)

xS = xλS (1− x)ηSPS (x)

. . .

where S is a convenient linear combination of quark PDFs

I evolve to scale of measurement: Q2
0 → Q2

I calculate F2, FL and xF3 functions and (differential) cross sections

I determine parameters λi , ηi , Pi (x) by fitting to data



Neutrino cross–sections from latest HERA data



How accurately can we predict the ν cross-section?

CTW: Connolly et al.,
arXiv:1102.0691

CSS: Cooper-Sarkar
and Sarkar,
JHEP 01 (2008) 075
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Does the uncertainty really blow up to O(1)?



How well do we know the proton?

high–energy neutrino cross–sections
are probing high Q2 and low x

I energy–momentum conservation

Q2 = s x y

I for y ∼ 1, x = Q2/s

I nucleon at rest:

s ' 2mNEν

I from propagator:

Q2 ∼ M2
W ,M

2
Z

I with M2
W ,M

2
Z ≈ 104 GeV2:

x = 5 · 10−3

(
Eν

1 PeV

)−1

19. Structure functions 11

Figure 19.3: Kinematic domains in x and Q2 probed by fixed-target and collider
experiments. Some of the final states accessible at the LHC are indicated in
the appropriate regions, where y is the rapidity. The incoming partons have
x1,2 = (M/14 TeV)e±y with Q = M where M is the mass of the state shown in
blue in the figure. For example, exclusive J/ψ production at high |y| at the LHC
may probe the gluon PDF down to x ∼ 10−5.

sections) calculated with the full mQ dependence, with the all-order resummation of
contributions via DGLAP evolution in which the heavy quarks are treated as massless.
The ABM analysis uses a FFNS where only the three light (massless) quarks enter the
evolution, while the heavy quarks enter the partonic cross sections with their full mQ

dependence; transition matrix elements are computed, following [53], which provide the
boundary conditions between nf and nf +1 PDFs. The GM-VFNS and FFNS approaches

yield different results: in particular αs(M
2
Z) and a large-x gluon PDF at large Q2 are

both significantly smaller in the FFNS. It has been argued [36,37,60] that the difference

August 21, 2014 13:18

Courtesy PDG



PDF errors

experimental uncertainties

I many experimental errors correlated

I correlation matrix diagonalised

→ linearly independent eigenvectors = variations of best-fit PDF

I can add errors from eigenvectors in quadrature

model/parameter uncertainities

I some parameters/model assumptions get fixed before fit

I vary these parameters within c.l. interval

→ variations of best-fit PDF

αs uncertainties

I αs determines how quickly PDFs rise at low x

→ possibly large effect



PDF errors
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PDF errors
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A detailed comparison

Cooper-Sarkar, Mertsch, Sarkar. JHEP08 (2011) 042; arXiv:1106.3723 [astro-ph.HE]

I use only up-to-date PDFs:
I HERAPDF1.5 X
I CT10 X
I MSTW2008 7 (does not include combined HERA data)

I work consistently at NLO

I use only publicly available tools (e.g. LHAPDF)
I highlight different contributions to uncertainty within DGLAP:

I experimental
I parameters
I model



The kinematic range
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Pitfalls

event generators, e.g. PYTHIA

I are for the most part LO

I using NLO PDFs: inconsistent 7

LHAPDF

I PDFs provided on a limited grid of points (x ,Q2)

I going beyond this grid: PDFs “freeze” 7
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Pitfalls

event generators, e.g. PYTHIA

I are for the most part LO

I using NLO PDFs: inconsistent 7

LHAPDF

I PDFs provided on a limited grid of points (x ,Q2)

I going beyond this grid: PDFs “freeze” 7

gluon parametrisation

I some groups choose a general parametrisation

I gluon PDF can go negative: meaning?



Example: MSTW2008 gluon momentum distribution
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Example: MSTW2008 gluon momentum distribution
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Could the gluon become negative?

at NLO, the gluon could become negative

however longitudinal structure function FL must stay positive
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With MSTW2008, FL does go negative!



Could the gluon become negative?

at NLO, the gluon could become negative

however longitudinal structure function FL must stay positive
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Total ν CC cross-section (HERAPDF1.5)
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ν CC cross-section uncertainty (HERAPDF1.5)
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ν CC cross-section uncertainty (HERAPDF1.5)
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ν CC cross-section uncertainty (HERAPDF1.5)
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Total ν CC cross-section (CT10)
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ν CC cross-section uncertainty (CT10)
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member 52 of CT10
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ν CC cross-section (excluding rogue members)
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ν CC cross-section uncertainty (excluding rogue members)
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Using these results . . .

event generators

I cross–sections implemented in event generators used, e.g. by IceCube:
ANIS and NuGen

I currently working with GENIE developpers

total cross–sections
tables available in paper and online:
http://www-pnp.physics.ox.ac.uk/∼cooper/neutrino/

DISPred code

I need differential distributions?

I want to generate look–up tables?

⇒ run the code yourself:
http://dispred.hepforge.org/

I requirements:
I ROOT
I Gnu Scientific Library (GSL)
I PDF sets: LHAPDF

http://www-pnp.physics.ox.ac.uk/~cooper/neutrino/
http://dispred.hepforge.org/


gluon at low x

ln 1/x resummation

I DGLAP contains terms ∼ (αs ln x0/x)n

I at low x this becomes larger than 1

→ need to resumm ln 1/x terms

Froissart bound

I DGLAP predicts xg ∝ x−δ at low x

→ σ ∝ sδ at large s

I however, unitarity demands s, σ ∝ (ln s/s0)2 at most



non–linear effects

I DGLAP eqns. are linear

I however, in DGLAP gluon and sea quark density large at small x

→ gluon saturation? gluon recombination?

→ would tame the rise of σ

example
colour glass condensate



non–linear effects

I DGLAP eqns. are linear

I however, in DGLAP gluon and sea quark density large at small x

→ gluon saturation? gluon recombination?

→ would tame the rise of σ

example
colour glass condensate



non–linear effects

‘Phase diagram’ of QCD

modified from CERN courrier



Summary

I ν e scattering

I DIS and the quark parton model: Bjorken scaling

I improved quark parton model: DGLAP evolution

I cross-sections central values for
I HERAPDF1.5
I CT10
I MSTW2008

agree very well

I for HERAPDF1.5 and CT10 (under moderate assumptions)
uncertainty is . 10 %, even at Eν ∼ 1020 GeV

I many pitfalls. . . e.g tabulated PDFs in LHAPDF “freeze” below some x value etc.
→ Don’t try to do this at home!

I Any measured deviation from these cross-sections would signal the need for new
physics!
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