Neutrino Oscillations w/ PINGU

D. Jason Koskinen University of Copenhagen Niels Bohr Institute

VILLUM FONDEN *Felipe Pedreros, IceCube/NSF NBIA PhD School: Neutrinos Underground and in the Heavens II August, 2016

Neutrino Oscillations w/ PINGU, IceCube/DeepCore and other stuff too

D. Jason Koskinen University of Copenhagen Niels Bohr Institute

VILLUM FONDEN *Felipe Pedreros, IceCube/NSF NBIA PhD School: Neutrinos Underground and in the Heavens II August, 2016

Atmospheric Neutrino Oscillation

Atmospheric Neutrino Oscillation

Atmospheric Neutrino Oscillation

• Osc. probabilities $P(v_{\mu} \rightarrow v_{\mu})$ at earth diameter baselines produce 1st oscillation maximum/minimum at ~25 GeV

Charged particles traveling through water/ice produce Cherenkov radiation

Advanced Test Reactor Idaho National Laboratory

Photo-Multiplier Tubes

Photomultiplier tubes (PMTs)

Microanalysis Research Facility

IceCube/DeepCore

IceCube Hot Water Drill Animation

IceCube Hot Water Drill Animation

Track topology (e.g. induced by muon neutrino)

Good pointing

IceCube: lower bound on energy for through-going events DeepCore: well contained and provide good energy via muon track length

Track topology (e.g. induced by muon neutrino)

Good pointing

IceCube: lower bound on energy for through-going events DeepCore: well contained and provide good energy via muon track length

Cascade topology

(e.g. induced by electron neutrino)

Good energy resolution IceCube: some pointing DeepCore: poor pointing, more difficult to ID and reconstruct

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens II

Track topology (e.g. induced by muon neutrino)

Good pointing

IceCube: lower bound on energy for through-going events DeepCore: well contained and provide good energy via muon track length

Cascade topology (e.g. induced by electron neutrino)

Good energy resolution IceCube: some pointing DeepCore: poor pointing, more difficult to ID and reconstruct

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens II

IceCube/DeepCore

- DeepCore
 - Increased sensitivity at energies less than 100-200 GeV
 - 8 special strings plus 12 closest IceCube-standard strings
 - Denser DOM and string spacing
 - Deepest and clearest Ice
 - Higher efficiency photon sensors
 - Lower trigger threshold
- IceCube is not only a high energy neutrino detector, but also a cosmic ray muon veto for any inner detectors

Oscillation w/ DeepCore

• IceCube + DeepCore collects > 100k isotropic neutrinos *at trigger level*, tens of thousands have undergone oscillation. Even single percent final analysis efficiency contains 1,000s of atm. v events/year

Oscillation w/ DeepCore

• IceCube + DeepCore collects > 100k isotropic neutrinos *at trigger level*, tens of thousands have undergone oscillation. Even single percent final analysis efficiency contains 1,000s of atm. v events/year

Current Results

12

Measuring Parameters

$$\begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix}$$

underlying nature of weak mixing

 $C_{12} = \cos \theta_{12} \qquad S_{12} = \sin \theta_{12}$

Three angles and one Charge-Parity phase

What Is Being Measured?

*NOW2014

Unitarity

• Minimal assumption direct experimental constraints for PMNS unitarity can be improved upon

Unitarity

 Minimal assumption direct experimental constraints for PMNS unitarity can be improved upon

Unitarity

• Minimal assumption direct experimental constraints for PMNS unitarity can be improved upon

Experimental Approach

• IceCube-DeepCore will collect the largest sample of oscillated ν_τ ever

Signal

Background

IceCube
DeepCore

Experimental Approach

• IceCube-DeepCore will collect the largest sample of oscillated ν_{τ} ever

Signal

- ν -cascade at $\mathcal{O}(25)$ GeV

IceCube DeepCore

Background

Experimental Approach

• IceCube-DeepCore will collect the largest sample of oscillated ν_τ ever

Event Rate for v_{τ} Appearance

- Expected rate is low compared to background
 - Kinematic suppression to the v_τ cross-section versus $v_{e,\mu}$
 - τ -lepton decays quickly w/ final state neutrino resulting in missing energy

17

18

Fundamental Mixing Today

Quarks (CKM)

Neutrino (PMNS)

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$\begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix}$$

Fundamental Mixing Today

Quarks (CKM)

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Neutrino (PMNS)

$$\begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix}$$

Currently Assumes Unitarity

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens II

`Current' Experimental Landscape

Accelerator Based

l eV	I KeV	10 MeV	100 MeV	I GeV	10 GeV	100 GeV	l TeV	10 TeV	10 PeV

Non-Accelerator Based

*Boxes provide sense of scale for physics sensitive regions
Accelerator Based

. I								
eV I KeV	10 MeV	100 MeV	I GeV	10 GeV	100 GeV	l TeV	10 TeV	10 PeV
GERDA								
EXO								
KamLAND-Zen								
Maiorana								

Non-Accelerator Based

Accelerator Based

Non-Accelerator Based

• A big detector with sensitivity at O(1) GeV energy is in the range of measuring the neutrino hierarchy/ordering

- A big detector with sensitivity at O(1) GeV energy is in the range of measuring the neutrino hierarchy/ordering
- Ok, fine. But, why would anyone?

- A big detector with sensitivity at O(1) GeV energy is in the range of measuring the neutrino hierarchy/ordering
- Ok, fine. But, why would anyone?
 - Besides, of course, fundamental physics is fundamental

André de Gouvêa

10 ¹²₌

• Why is the neutrino mass ordering (hierarchy) relevant?

TeV

Geometry Optimization

PINGU Simulated Event (Old)

- 9.28 GeV Neutrino, 4.9 GeV muon,
 4.5 GeV cascade
- Older PINGU geometry w/ ~1/3 the number of DOMs/string, but illustrative of the potential

PINGU Simulated Event (Old)

- 9.28 GeV Neutrino, 4.9 GeV muon,
 4.5 GeV cascade
- Older PINGU geometry w/ ~1/3 the number of DOMs/string, but illustrative of the potential

PINGU Simulated Event (Old)

PINGU Technology Options

- Conventional 10" single PMT DOM
- Possibility for using multi-PMT DOM (mDOM)
 - 3" PMTs providing almost 4π angular coverage
 - Up to factor 2 increase in photon collection vs. 10" PMT

IceCube Digital Optical Module (DOM)

*L. Classen, ICRC 2015 (proc.)

 $P(v_{\mu} \rightarrow v_{\mu})$ with Travel Through the Earth - 10 GeV, 179°

 $P(v_u \rightarrow v_u)$ with Travel Through the Earth - 10 GeV, 179

 $P(v_{\mu} \rightarrow v_{\mu})$ with Travel Through the Earth - 10 GeV, 179

• Inverted/Normal ordering has up to 20% different in oscillation probability for specific energies and zenith angles (baselines)

Neutrino Ordering w/ No Magnet

• Neutrinos will see either enhancement or suppression of oscillation probability, but anti-neutrinos will experience an opposite sign modulation of the exact same magnitude

Neutrino Ordering w/ No Magnet

 PINGU has no magnet to separate neutrino from anti-neutrinos, but there is a cross-section and flux difference between neutrinos and anti-neutrinos

Oscillation Pattern

• Even before including detector effects and reconstruction smearing, the event rate histograms are quite similar

Neutrino Mass Hierarchy by Eye

PINGU NMO Sensitivities

- Brazilian flag sensitivities for the NMO analysis
- Sensitivity is mostly insensitive to the value of δ_{cp} , which is in contrast to other beambased experiments

Statistics - A slight aside

Hierarchy Distinguishability Metric

Use method outlined in Akhmedov, Razzaque, Smirnov - arXiv:1205.7071

$$S_{tot} = \sqrt{\sum_{ij} \frac{(N_{ij}^{IH} - N_{ij}^{NH})^2}{N_{ij}^{NH}}}$$
 $i = \cos(zenith)$
 $j = energy$
 $V^{eff} = effective volume$

 $N_{i,j}^{NH} = P(\nu_{\mu})_{i,j}^{NH} * \Phi(\nu_{\mu})_{i,j} * \sigma(\nu_{\mu})_{j} * V_{i,j}^{eff} + P^{NH}(\overline{\nu_{\mu}})_{ij} * \Phi(\overline{\nu_{\mu}})_{i,j} * \sigma(\overline{\nu_{\mu}})_{j} * V_{i,j}^{eff}$

 Essentially bin, sum, and subtract one hierarchy from the other. It works because:

$$\begin{aligned} Probability &: P(\nu_{\mu})^{IH} + P(\overline{\nu_{\mu}})^{IH} \neq P(\nu_{\mu})^{NH} + P(\overline{\nu_{\mu}})^{NH} \\ Flux &: \Phi(\nu_{\mu}) > \Phi(\overline{\nu_{\mu}}) \\ Cross-Section &: \sigma(\nu_{\mu}) > \sigma(\overline{\nu_{\mu}}) \end{aligned}$$

How Long?

- Neutrinos
 IceCube-DeepCore
 PINGU
- The effect of all of the caveats needs to be determined

- Apply no conditions
- Apply 20 hit "reconstructability" cut
- Apply detector resolution
- Apply resolutions
 and 20 hit cut

*arXiv:1210.3651

- Since this is a "discussion"...
- The Akhmedov et. al. method may be optimistic
 - Uses a chi-squared like statistic, but the discrete aspect of the neutrino hierarchy fails regularity condition of Wilks's theorem
- Alternative possibility is a MC method*
 - Create many sets smearing the reconstructed angle and/or energy for a specific hierarchy
 - Compare likelihood of smeared set(s) to a normal hierarchy template and an inverted hierarchy template

Time to Distinguishing

- Neutrinos
 IceCube-DeepCore
 PINGU
- The statistical power of PINGU makes systematics a critical factor sooner rather than later for hierarchy
 - PINGU specific angular reco, energy reco, ice modeling...
 - Neutrino field at large MC neutrino generators, cross-sections, atmospheric neutrino flux...

Differentiation Between Inverted/ Normal

• Use a likelihood ratio with many simulated trials

Back to our regularly scheduled physics
PINGU Octant

- Number of years to exclude the wrong θ_{23} octant
 - Compare goodness-of-fit between best-fit over the entire range and best-fit where the search is restricted to opposite octant
 - IO less sensitive because MSW effect is in the anti-v channel

*DJK, Neutrino 2016

PINGU Octant

- Number of years to exclude the wrong θ_{23} octant
 - Compare goodness-of-fit between best-fit over the entire range and best-fit where the search is restricted to opposite octant
 - IO less sensitive because MSW effect is in the anti-v channel

*DJK, Neutrino 2016

PINGU Octant

- Number of years to exclude the wrong θ_{23} octant
 - Compare goodness-of-fit between best-fit over the entire range and best-fit where the search is restricted to opposite octant
 - IO less sensitive because MSW effect is in the anti-v channel

v_{τ} Appearance in PINGU

- Similarity to a DeepCore measurement
 - Direct measure of $|U_{\tau 3}|^2$
 - Energy and zenith angle excess in cascade channel
- PINGU analysis currently uses same initial
 Boosted Decision Tree as NMO, but secondary selection for `cascades'

Conclusion

- IceCube/DeepCore is producing results using high-purity track-like events and working towards improved and new results with multiyear datasets which will allow for the most sensitive probes of v_{τ} -appearance, which is a direct test of neutrino mixing unitarity
- Moving further into precision neutrino physics, e.g. δ_{cp} , requires extended precision measurements of PMNS unitarity
- PINGU can resolve the Neutrino Mass Ordering at 3σ in 3-4 years and greatly enhances the reach of IceCube/DeepCore physics portfolio (v_{τ} appearance, octant, precision θ_{23} , ...)

Backup

Sterile Neutrinos

- Sterile neutrino signatures extend in energy beyond the conventional reactor and accelerator searches
- At $\Delta m^2 \simeq 1 \text{ eV}^2$ there is a matter induced resonance at \overline{v} energies of $\mathcal{O}(1)$ TeV for 3+N models, or v for N+3

Sterile Search Approach

- Two separate diffuse v_{μ} event selections of 1-year livetime (IC59 and IC86-1) were used to search for a sterile signal [deployment map in backup]
- The pronounced sterile feature for \overline{v} is smeared out by:
 - Reconstruction uncertainty
 - The v-induced muons are uncontained
 - Signal is combination of $v + \overline{v}$

No Sterile Signature

- Primary result is IC86 "rate+shape", complemented by IC59 and IC86 "shape only"
 Accepted to PRL
- "rate+shape" is a posteriori inclusion of a 40% prior on the atm. v flux normalization
 - From rapid oscillations, results at ∆m² ≥ 5 eV² with an unphysical flux normalization are highly degenerate with a no-sterile result
 - The loose prior constrains the flux normalization to be physical and breaks degeneracy between many high Δm^2 results

IceCube Sterile v Result

D. Jason Koskinen - IceCube/DeepCore/PINGU - Neutrino 2016