

Neutrinos from Dark Matter

M. Rameez 3rd August 2016

NBIA PHD SCHOOL : NEUTRINOS UNDERGROUND AND IN THE HEAVENS

Outline

- Dark Matter
 - Evidence, Candidates
 - The WIMP Paradigm
- Dark Matter detection
- Indirect detection
 - The targets
 - The fluxes
 - DM Distributions and J factors
 - Neutrino fluxes from DM
- The instruments
- The backgrounds
- Constraints on $\langle \sigma_{ann} v \rangle$
 - Monochromatic neutrino lines
- Constraints on $\sigma_{\chi-P}$
- Complementarity
- DM interpretations of the astrophysical v flux
- The future of ν DM searches

Dark Matter

The DM candidates

Neutrinos from Dark Matter?

- Already detected
- They have mass
 - $\Sigma m_{
 m v} < 0.23 \; eV$ from the CMB
- Electrically neutral
- Not enough of them
 - $\Omega_v h^2 \sim (m_v / 93 eV) \sim 2.5 \times 10^{-3} \ll 0.12$
- Number of neutrinos in the Galactic Halo is limited:
 - Pauli's exclusion principle
- Neutrinos would make 'hot' dark matter.
 - $E_{kin} > \sim m_{\nu}$ (relativistic)
 - Incompatible with structure formation

Light neutrinos not abundant enough to be the dominant component of Dark Matter

Heavy sterile neutrinos could be DM candidates

Weakly Interacting Massive Particles

Dark Matter as a thermal relic of the Early universe.

Dark Matter Detection

Indirect Searches – The Targets

Indirect Searches : The fluxes

$\frac{d\Phi_{\nu}}{dE}(\Omega) = \frac{dN_{\nu}}{dE} \int \int_{\Omega} \frac{1}{4\pi} \frac{\rho^2}{m_{\chi}^2} dl d\Omega \frac{\langle \sigma_{ann} \nu \rangle}{2}$

Neutrino Flux at the detector, within a solid angle Ω depends on:

- The neutrino yield per annihilation $\frac{dN_{\nu}}{dE}$ (from particle physics)
- The annihilation cross section of DM, averaged over its velocity distribution $\langle \sigma_{ann} v \rangle$ (to be measured)
- The line integral of the DM density ρ^2 along the line of sight, I, - (from astrophysics)

In practice also account for neutrino oscillations over long baselines – flux predictions are made using MC codes such as WimpSim, PPPC4DMnu -

$$J = \iint \rho^2 (l, \Omega) dl d\Omega$$

For annihilating DM

$$\mathsf{D} = \iint \rho (\mathsf{l}, \Omega) \mathsf{d} \mathsf{l} \mathsf{d} \Omega$$

For decaying DM

Detector

DM distributions and J factors

Spin Dependent scattering

- Only the hydrogen in the Sun contributes significantly.
- Lower event rates in direct detection experiments
- More interesting for IceCube

Spin Independent scattering

- Heavier nuclei contribute more due to $\propto A^2$ enhancement.
- Better sensitivity using direct detection experiments such as LUX, XENON etc

Equilibrium 🛑

Capture

 $i = \frac{1}{2}C_c$

Annihilation

The secondary annihilation products can interact in the dense baryonic environment inside the Sun

Neutrinos are the only messengers that can get out

GeV neutrinos from the Sun-Smoking gun for DM

Sun opaque to neutrinos above ~1 TeV (Exercise)

Neutrino fluxes from DM

- 'Hard' channel : $\tau^+\tau^-$, W^+W^- , $\nu\bar{\nu}$
 - Produces many neutrinos at energies close to DM mass.
- 'Soft' channel: gg, $b\overline{b}$
 - Produces neutrinos at lower energies

 $\nu-nucleon$ cross sections (and hence effective areas of the detectors) also increase with energy, compounding the effect

Indirect Searches with ν - The instruments

IceCube/DeepCore	ANTARES		Super-K		Baksan
			UTP HTP Key Kamelee Objervatory, LCAR(Institute for Comic Ray Research), The University of Tokyo		Depth: 850 hg/cm ²
		E_{ν} -range (GeV)	Instrumented volume (ton)	$\overline{\Theta}$ (°) at E _v 25/100/1000 GeV	
-	IceCube	$\geq 10^*$	~1 Gton	13/3.2/1.3	
	ANTARES	$\gtrsim 10$	~20 Mton	6/3.5/1.6	
	Super-K	$\gtrsim 0.1$	~ 50 kton	1-1.4 [‡]	
	Baksan	$\gtrsim 1^{\ddagger}$	~3 kton	1.5^{\ddagger} (tracks > 7 m)	

^{*} Values are given at muon level (E_{μ}); $\overline{\Theta}$ dominated by kinematic scattering angle.

The backgrounds

Indirect Searches with ν s- Improvements in Analysis methods

A few years back

- Count number of events from the direction of the target
- Compare against off source

Better event selections improved acceptance of ~3 GeV neutrinos by factor of ~50 Now:

- Different event topology selections for different energies
- Use vetos to reject muon background better
- Energy proxies to resolve spectral features
- Use both v_{μ} and v_{e} signal events
- Unbinned methods
- Better handle on systematics.

IceCube/DeepCore:

• Veto techniques make Galactic Centre searches possible In the last ~3 years, sensitivities have improved by ~an order of magnitude in most searches

No signal yet.

M. RAMEEZ - NBIA

Constraints on $\langle \sigma_{ann} v \rangle$

Searches targeting the GC, Halo, Dwarf Spheroids or Galaxy Clusters

Can test parameter space favoured by the DM interpretation of the rise in e^+/e^- fraction as measured by PAMELA and AMS

Antares constraints are better (it can see the GC through Earth)

GC is above the horizon for IceCube

SuperK constraints go down to 1 GeV WIMP mass

Constraints on $\langle \sigma_{ann} v \rangle$

In general, constraints on $\langle \sigma_{ann} v \rangle$ from γ ray searches are more powerful than the v constraints.

A comparable number of ν and γ are produced per DM annihilation but γ -rays are much easier to detect.

 $\boldsymbol{\nu}$ searches have lower astrophysical uncertainties and foregrounds

Monochromatic Neutrino Lines

 $\chi \chi \rightarrow \nu \nu$, a neutrino line at the DM mass. However, γ -rays are also produced, through Ewk FSR 1e-22 σv [cm³/s] \int_{W}^{Y} h Fermi (e. 1e-23 Fermi (t) γ -ray constraints are still stronger 1e-24 $\alpha = e, \mu, \tau$

Monochromatic Neutrino Lines

Only ν telescopes can really identify a ν line

Constraints on $\sigma_{\chi-P}$

For spin dependent scattering, where $\sigma_{\chi-N} \propto \vec{S}_{\chi} \cdot \vec{S}_N$

Constraints from searches looking for GeV neutrinos from the Sun are the most stringent. IceCube above ~80 GeV, and SuperK below.

Constraints derived by assuming:

equilibrium Maxvellian velocity distribution local DM density of 0.3 GeV/cm³

DD experiments have more stringent constraints for Spin Independent scattering:

 $\sigma_{\chi-N} \propto A^2$

Target nuclei are large, in XENON, Argon etc.

These limits are derived assuming the interaction is isoscalar , DM interacts equally strongly with neutrons and protons.

Neutrino telescope constraints are more robust against Isospin violation than DD constraints **Phys. Rev. D 84, 031301(R)** Constraints on $\sigma_{\chi-P}$

Apart from SD and SI, velocity and momentum suppressed interactions possible at the NR limit. JCAP 1504 (2015) no.04, 052

M. RAMEEZ - NBIA

Astrophysical Uncertainties

There are uncertainties on:

• The velocity of the Sun w.r.t the halo

- The fraction of DM in a co-rotating dark disk
- The galactic escape velocity

C. Rott et al. JCAP05 (2014) 049

The uncertainties are 20% (50%) at low (high) WIMP masses.

Conservative w.r.t. the dark disk fraction.

Capture Annihilation Equilibrium in the Sun

Our limits will remain above this threshold for a long time to come Assuming $\langle \sigma_A v \rangle \sim$ natural scale.

There's a threshold σ_{SD} below which the equilibrium condition is not a valid assumption

$$t_{\odot} = 330 \left(\frac{C_{\odot}}{\mathrm{s}^{-1}}\right)^{1/2} \left(\frac{\langle \sigma_{\mathrm{A}}v \rangle}{\mathrm{cm}^{3} \mathrm{s}^{-1}}\right)^{1/2} \left(\frac{m_{\chi}}{\mathrm{10 \ GeV}}\right)^{3/4},$$

Upcoming experiments like CTA have sensitivity towards DM $\langle \sigma_A v \rangle$ below the natural scale even at high WIMP masses

Complementarity - EFTs

EFT
$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{n>4} \frac{f^{(n)}}{\Lambda^{n-4}} \mathcal{O}^{(n)}.$$

M. RAMEEZ - NBIA

Complementarity : LHC Motivated DM models - the 750 GeV Diphoton excess

A pseudoscalar, P of mass 750 GeV: IC limit 10^{-30} Scenarios IC forecast • Scattering is SD at the NR limit ---- A Direct detection 750 GeV > Ewk Scale 10^{-32} · - · C Relic density Lagrangian is $SU(2)_{l}$ invariant, P couples to B. • γ lines – Einasto Guarantees annihilation to ZZ and Zy γ lines – Burkert • 10^{-34} γ continuum (DSG) P also couples to gluons and/or quarks Expected ($\mathcal{A}_P = 1$ T cm² Run 1 constraints ٠ 10^{-36} DM χ (fermion) or ϕ (scalar) stable under Z₂ symmetry. O P 10^{-38} 3 scenarios. P couples to : 10^{-40} B, g, u, χ • • B, g, u, χ, b 10^{-42} • B, g, u, χ, t WIMP-proton scattering in the NR limit $Fermi-LAT \leftarrow \rightarrow HESS$ 10^{-44} $i(\hat{S}_N, \frac{\hat{q}}{m_N})$ for scalar DM and 10^{2} 10^{3} 10^{1} 10^{4} $(\hat{S}_{\chi}, \frac{\hat{q}}{m_N}) (\hat{S}_N, \frac{\hat{q}}{m_N})$ for fermionic DM m_{ϕ} [GeV] arXiv:1603.05592

Constraints on $\sigma_{\chi-P}$ from Earth DM searches

- Just like in the Sun, DM can be also captured in the Earth
- Capture Annihilation equilibrium unlikely Earth is too light
- Signal : Vertically upgoing ν excess.
- No off source region. Background estimation is challenging

Heavy DM decay

 $DM \rightarrow \nu + \gamma$, decaying PeV DM (Gravitino for eg)

 ν -telescopes are the most sensitive, since 100TeV-PeV γ -rays don't travel beyond ~10s of kPc

The IceCube astrophysical flux

54 events seen on an expected background of 12.6 \pm 5.1 μ and 9.0^{+8.0}_{-2.2} ν . Atmospheric only origin rejected at > 6 σ

No statistically significant clustering

Compatible excess also seen in other channels (upgoing μ) global best fit $E^{-2.52}$

Motivated by the fact that there are no events between 400 TeV and 1 PeV, and so a fit of only events below PeV produces a softer spectrum

$$M_{DM}$$
= 3.2PeV
 $au_{DM} = 2 \times 10^{27}$ s

43% of all simulations with IC fitted unbroken powerlaw have no events between 400 TeV and 1 PeV

More data required

A. Esmaili et al. JCAP 1311 (2013) 054

M. RAMEEZ - NBIA

The Future of ν searches for DM

Solar Searches

Also see HyperK and ORCA

The Future of ν searches for DM

Searches from Galactic center, halo, dwarf spheroidals, galaxy clusters etc

Neutrinos are the best at high energies: prospects for ARCA and IceCube Gen2

M. RAMEEZ - NBIA

Backups

The IceCube astrophysical flux : from PeV Dark Matter Φ decaying to Fermionic DM χ

Motivated by the fact that there are no events between 400 TeV and 1 PeV, and so a fit of only events below PeV produces a softer spectrum

43% of all simulations with IC fitted unbroken powerlaw have no events between 400 TeV and 1 PeV

M. RAMEEZ - NBIA

Complementarity

Cahill-Rowley et al. 2015, Phys. Rev. D, 91, 055011