Neutrino Astronomy / Astro-physics teresa.montaruli@unige.ch

We covered:

- Measured CR spectrum
- Candidate Galactic and extra-galactic sources from energy balance between energy density of sources and injected in CRs
- Non-thermal spectra (power laws): Fermi mechanisms.

$$
\gamma \sim \frac{P_{e s c}}{\xi}=\frac{1}{\xi} \times \frac{T_{c y c l e}}{\tau_{e s c}} \quad E_{k}=E_{0}(1+\xi)^{k} \quad \Delta E=\xi E
$$

2 features:

1) The higher the energy of a particle (E_{0}) the slowest the acceleration process (the smaller is ξ)
2) $\mathrm{E}_{\max }$ will depend on the maximum number of cycles $\mathrm{k}_{\max }=\mathrm{T}_{\text {shock }} / \mathrm{T}_{\text {cycle }}: E_{\max }=k_{\max } \xi \Delta E$

A shock wave looses its accelerating efficiency when the ejected mass = mass of the swept up in ISM or $\rho_{\text {SN }}=\rho_{\text {ISM }}{ }^{\sim} 1 \mathrm{p} / \mathrm{cm}^{3}=>\mathrm{E}_{\max } \sim \mathrm{Ze} \beta \mathrm{Z} \sim \mathrm{Z} \times 300 \mathrm{TeV}$

Then the Sedov phase (adiabatic shock deceleration) starts

Neutrino Astronomy / Astro-physics

Today

- hadronic/leptonic processes
- Neutrino beam dumps: pp and p-gamma hadronic processes
- Flux of neutrinos and gammas from source injection proton spectrum
- Effective areas

MWL spectral emission distribution RXJ 1713.7-3946

$$
\mathrm{P}_{\mathrm{sync}} / \mathrm{P}_{\mathrm{IC}}=\mathrm{U}_{\mathrm{mag}} / U_{\mathrm{rad}}
$$

in the Thompson regime

In leptonic processes: the synchrotron luminosity is proportional to the \mathbf{B}-field strength and Lorentz factor of electrons radiating. Inverse Compton: in the rest frame of an electron the photon energy is boosted by γ_{e} and after scattering, transforming in the lab again, the photon energy is boosted by $\gamma^{2}{ }^{2}$. The IC luminosity is also proportional to the energy density of seed photons which can be the synchrotron photons.
Synchrotron cooling is faster than IC if B>3uG.
In hadronic processes, photons are produced via $\Pi^{0} \rightarrow \mathrm{\gamma} \gamma$.

Crab Nebula multiwavelength spectrum
Aharonian et al. 2004

FERMI OBSERVATIONS OF RXJ I7I3.7-3946

Aharonian et al., Nature, 432, 75 (2004) ; Aharonian et al., A\&A, 464, 235 (2007)

`The dominance of leptonic processes in explaining the gamma-ray emission does not mean that no protons are accelerated in this SNR, but that the ambient density is too low to produce a significant hadronic gamma-ray signal.' (arXiv:1103.5727).

SNR maybe efficient accelerators during short periods when the shock speed is high and they transit from the free expansion (ejecta dominated phase) to the Sedov phase (adiabatic deceleration).
Eg. Bell \& Lucek, 2001

EVIDENCE FOR PION DECAY?

Fermi identified various candidates for pionic gammas but yet did not verify that what we yet do not have a convincing model on CR acceleration

Ackermann et al. (Fermi Collaboration), Science, 339, 807 (2013)

Recent news: the First PeVatron from Galactic Centre with 10 yrs of HESS data

Nature 531 (2016) 476 (https://inspirehep.net/record/1434943)

Efficient diffusive shock acceleration should give a concave spectrum (due to feedback on the shock by cosmic ray pressure)

(Voelk et al, A\&A396:649,2002)

but the synchrotron radio spectrum of this young SNR is a convex power-law \ldots well-fitted by log-normal spectrum expected from $2^{\text {nd }}$ order Fermi acceleration by MHD turbulence behind the shock wave (Cowsik \& Sarkar, MNRAS:207:745,1984)

Evolution of gamma-ray properties with age

Gamma-ray properties evolve with SNR age and when the shock acceleration is very efficient photons may be not visible

We need more source statistics! CTA

Ahlers, Mertsch \& Sarkar,PRD80:123017,2009

The general model for neutrino - gamma -CR sources

ν and γ beam dumps

Hadronuclear (e.g. star burst galaxies and galaxy clusters)

$$
\mathrm{pp} \rightarrow\left\{\begin{array}{l}
\pi^{0} \rightarrow \mathrm{y} \mathrm{Y} \\
\pi^{+} \rightarrow \mu^{+} v_{\mu} \rightarrow \mathrm{e}^{+} v_{e} v_{\mu} \bar{v}_{\mu} \\
\pi^{-} \rightarrow \mu^{-} \bar{v}_{\mu} \rightarrow \mathrm{e}^{-} \bar{v}_{\mathrm{e}} \bar{v}_{\mu} v_{\mu}
\end{array}\right.
$$

Photohadronic (e.g. gamma-ray bursts, active galactic nuclei)

$$
\text { py } \rightarrow \Delta^{+} \rightarrow\left\{\begin{array}{l}
\left.p \pi^{0} \rightarrow \text { p } \gamma \gamma\right) \\
n \pi^{+} \rightarrow n \mu^{+} v_{\mu} \rightarrow \\
\text { n } n+v_{e} \bar{v}_{\mu} v_{\mu}
\end{array}\right.
$$

pp and p-gamma processes

In astrophysical environments, the density of photons is typically much larger than that of protons, unless there are residual masses from explosions (SNRs) or an accelerator with a molecular clouds and large rate of star formation (starbursts). Hence, even if the cross section for pp interaction is about 2 orders of magnitude larger than that of $p \gamma$, this last may dominate.

Reminder: Reaction thresholds

$$
\mathrm{m}_{\mathrm{p},} \mathrm{p}_{\mathrm{p}} \quad \mathrm{~m}_{\mathrm{t}}, \mathrm{p}_{\mathrm{t}}
$$

$$
\mathrm{s}=\mathrm{E}_{\mathrm{cm}}^{2} \quad \mathrm{c}=1
$$

$$
\begin{aligned}
& t+p \rightarrow M_{1}+M_{2}+\ldots M_{n} \\
& \sqrt{s}=\sum_{\text {th }} M_{f}=\sqrt{E_{\text {tot }}^{2}-\left|\mathbf{p}_{\text {tot }}\right|^{2}}
\end{aligned}
$$

The threshold of a reaction corresponds to the energy to produce all final states at rest.
Remember also that from the invariance of total 4-momentum squared in the CM and Lab frame:

$$
\sqrt{s}=\sqrt{\left(E_{p}+E_{t}\right)^{2}-\left(\overrightarrow{p_{p}}+\overrightarrow{p_{t}}\right)^{2}}=\sqrt{m_{p}^{2}+m_{t}^{2}+2 E_{p} E_{t}\left(1-\beta_{p} \beta_{t} \cos \theta\right)}
$$

At threshold and in the lab frame (the p rest-frame):
$\sqrt{s_{t h}}=\sqrt{m_{p}^{2}+m_{t}^{2}+2 E_{p} m_{t}}=\sum_{f} M_{f} \quad m_{p}^{2}+m_{t}^{2}+2\left(E_{k, p}+m_{p}\right) m_{t}=\left(\sum_{f} M_{f}\right)^{2}$

$$
E_{k, p}=\frac{\left(\sum_{f} M_{f}\right)^{2}-\left(m_{p}+m_{t}\right)^{2}}{2 m_{p}}
$$

P-gamma

Direct photo-production of pions:

$$
\begin{aligned}
& \text { eg. } \quad p+\gamma \rightarrow p+\pi^{0} \\
& \sqrt{s_{t h}}=m_{p}+m_{\pi}=1.08 \mathrm{GeV}
\end{aligned}
$$

Energy of the photon in the lab:

$$
\epsilon=\frac{m_{\pi}\left(m_{\pi}+2 m_{p}\right)}{2 m_{p}} \sim 150 \mathrm{MeV}
$$

For delta-resonance $\Delta(1232)$ it is larger:

$$
\epsilon=\frac{m_{\Delta}^{2}-m_{p}^{2}}{2 m_{p}} \sim 340 \mathrm{MeV}
$$

If the proton is at rest $\left(E_{p}=m_{p}\right), \epsilon=340 \mathrm{MeV}$ in the lab
Hence in the $C M: E_{p}^{\prime}=\gamma_{p} m_{p}$ and the photon energy is : $\epsilon^{\prime}=\gamma_{p} \frac{m_{\Delta}^{2}-m_{p}^{2}}{2 m_{p}}=\gamma_{p}^{2} \frac{m_{\Delta}^{2}-m_{p}^{2}}{2 E_{p}^{\prime}}$
Hence the accelerated proton must have a threshold energy in the CM frame of:

$$
E_{p}^{\prime}=\gamma_{p}^{2} \frac{m_{\Delta}^{2}-m_{p}^{2}}{2 \epsilon^{\prime}} \sim \gamma_{p}^{2} \times 300 G e V \times\left(\frac{1 \mathrm{MeV}}{\epsilon^{\prime}}\right)
$$

p-p
In the lab

$E_{p, t h}=\frac{\left(2 m_{p}+m_{\pi}\right)^{2}-2 m_{p}^{2}}{2 m_{p}} \sim 1.23 \mathrm{GeV}$
In the $\mathrm{CM}: \quad \mathrm{E}_{\mathrm{p}, \mathrm{th}}=\mathrm{Y} \times 1.23 \mathrm{GeV} \mathrm{a}$

The end of the CR spectrum: GZK cut-off

$\gamma+p \rightarrow \Delta^{+} \rightarrow p+\pi^{0}$
$\gamma+p \rightarrow \Delta^{+} \rightarrow n+\pi^{+}$
$3 \mathrm{k}_{\mathrm{B}}$ T effective energy for Planck spectrum of CMB

$$
\begin{gathered}
\epsilon^{\prime}=3 k_{B} T=4 \times 2.73 \times 8.62 \times 10^{-5} \mathrm{eV} \\
\epsilon=\frac{m_{\Delta}^{2}-m_{p}^{2}}{2 m_{p}} \sim 340 \mathrm{MeV} \\
\gamma_{p}=\frac{\epsilon^{\prime}}{\epsilon}=2 \cdot 10^{11}
\end{gathered}
$$

\Rightarrow Hence the threshold energy of the proton in the CM is $E_{p}^{\prime} \sim \gamma_{p} m_{p}=2 \cdot 10^{20} \mathrm{eV}$

Integrating over Planck
spectrum $E_{\text {p.th }} \sim 5 \cdot 10^{19} \mathrm{eV}$

Assumption on average energy fractions

$$
\begin{gathered}
x_{v}=\frac{E_{v}}{E_{p}}=\frac{1}{4}\left\langle x_{F_{\vee}}\right\rangle=\frac{1}{20} \\
x_{\gamma}=\frac{E_{\gamma}}{E_{p}}=\frac{1}{2}\left\langle x_{F}\right\rangle=\frac{1}{10} \\
d E_{\nu, \gamma}=x_{\nu, \gamma} d E_{p}
\end{gathered}
$$

Kelner \& Aharonian
http://arxiv.org/pdf/astro-ph/0606058.pdf
https://inspirehep.net/record/718405

Figure 7: Energy spectra of gamma-rays described by Eq.(58) for three energies of incident protons: 0.1 TeV (curve 1), 100 TeV (curve 2) and 1000 TeV (curve 3). The dashed curve corresponds to the Hillas parameterization of the spectra obtained for proton energies of several tens of TeV .

Figure 9: Energy spectra of all muonic neutrinos described by Eq.(62) and (66) for three energies of incident protons: 0.1 TeV (curve 1), 100 TeV (curve 2) and 1000 TeV (curve 3).

Two Body Decay Kinematics

Each neutrino takes about $1 / 4$ of the pion energy (on average) In the Lab (pion at rest)
"Neutrino massless" means $E_{\nu}=p_{\nu}$. Therefore the energy and momentum conservation yield

$$
\begin{align*}
m_{\pi} & =\sqrt{p_{\mu}^{2}+m_{\mu}^{2}}+E_{\nu}, \tag{23}\\
0 & =\mathbf{p}_{\mu}+\mathbf{p}_{\nu} . \tag{24}
\end{align*}
$$

Through Equation (24), $p_{\mu}^{2}=E_{\nu}^{2}$. Isolating the root square in Equation (23) and squaring gives

$$
\begin{aligned}
& \left(m_{\pi}-E_{\nu}\right)^{2}=E_{\nu}^{2}+m_{\mu}^{2} \\
\Rightarrow & m_{\pi}^{2}+\text { }_{\nu}^{\alpha}-2 m_{\pi} E_{\nu}=\text { F }_{\nu}^{\ell}+m_{\mu}^{2},
\end{aligned}
$$

therefore, with $m_{\pi}=139.6 \mathrm{MeV}$ and $m_{\mu}=105.7 \mathrm{MeV}$,

$$
\begin{equation*}
\Rightarrow E_{\nu}=p_{\nu}=p_{\mu}=\frac{m_{\pi}^{2}-m_{\mu}^{2}}{2 m_{\pi}}=29.7839183 \simeq 29.8 \mathrm{MeV} \text { (in natural units). } \tag{25}
\end{equation*}
$$

Three Body Decay Kinematics

In the LAB and for $E_{\pi} \gg m_{\pi}$
(mass of electrons/neutrinos neglected)

$$
E_{\nu, \max }=\frac{1}{m_{\pi}}\left(E_{\pi} E_{\nu}^{0}+p_{\pi} p_{\nu}^{0}\right) \approx \lambda E_{\pi},
$$

where

$$
\lambda=1-m_{\mu}^{2} / m_{\pi}^{2}=0.427 .
$$

Figure 4: Energy distributions of the secondary products (photons, electrons, muonic and electronic neutrinos) of decays of monoenergetic ultrarelativistic neutral and charged pions. All distributions are normalized, $\int_{0}^{1} d w=1$.

p-gamma

On average $1 / 3$ of the p energy goes into pions $p+\gamma \rightarrow \Delta^{+} \rightarrow p+\pi^{0}$

$$
2 / 3
$$

$$
p+\gamma \rightarrow \Delta^{+} \rightarrow n+\pi^{+} \quad 1 / 3
$$

$\pi^{0} \rightarrow \gamma+\gamma$
$1 / 2$ of pion energy goes into $+\quad$ each photon
branching ratios

	$\mathrm{p} \pi^{+}$	$\mathrm{p} \pi^{0}$	$\mathrm{p} \pi^{-}$	$n \pi^{+}$	$n \pi^{0}$	$n \pi^{-}$
Δ^{++}	1					
Δ^{+}		$2 / 3$		$1 / 3$		
Δ^{0}			$1 / 3$		$2 / 3$	
Δ^{-}						1

$\pi^{+} \rightarrow \mu^{+}+\nu_{\mu} \rightarrow\left(e^{+} \nu_{e} \bar{\nu}_{\mu}\right)+\nu_{\mu}$ On average $1 / 4$ of the pion energy goes into each neutrino
Assuming : $\frac{d N_{p}}{d E_{p}} \propto E_{p}^{-2} \quad \Rightarrow \frac{d N_{p}}{d E_{p}} \propto E_{p}^{-2}=E_{\nu}^{-2} x_{\nu}^{2} \quad$ and
Since: $\frac{E_{\nu}}{E_{p}}=x_{\nu} \sim \frac{1}{20} \Rightarrow d E_{p}=x_{\nu}^{-1} d E_{\nu}$
multiplicity and BR

$$
\begin{aligned}
& \frac{d N_{\gamma}}{d E_{\gamma}} \downarrow \\
& \downarrow
\end{aligned} \frac{\downarrow}{3} E_{\gamma}^{-2} \frac{1}{x_{\gamma}} \frac{d N_{p}}{d E_{p}}=2 \times \frac{2}{3} E_{\gamma}^{-2} x_{\gamma}=2 \times \frac{2}{3} \frac{1}{10} E_{\gamma}^{-2} \quad\left[\quad \frac{d N_{\nu}}{d E}=\frac{1}{4} \frac{d N_{\gamma}}{d E}\right.
$$

Multiplicities

multiplicities from SOPHIA MC

Figure 5: The ratio of the number of leptons to photons of same energy for power-law distributions of pions with spectral index α. It is assumed that π^{0}, π^{+}and π^{-}have identical distributions.

Kelner \& Aharonian

 https://inspirehep.net/record/718405
Galactic SNR and pp

In Galactic SN shocks CRs interact with the H in the Galactic disk (pp interactions, lower threshold than p-gamma)
$p+p \rightarrow \pi^{+}: \pi^{-}: \pi^{0} \quad E_{p, t h}=\frac{\left(2 m_{p}+m_{\pi}\right)^{2}-2 m_{p}^{2}}{2 m_{p}} \sim 1.23 \mathrm{GeV}$
if all muons decay and for $\mathrm{E}^{-2} \mathrm{P}$ spectrum:
Assume always:

$$
\begin{array}{ll}
2 \text { pions } \times 1 / 3 \text { of energy to each pion } & x_{v}=\frac{E_{v}}{E_{p}}=\frac{1}{4}<x_{F}>=\frac{1}{20} \\
\frac{d N_{\nu}}{d E} \sim 2 \times \frac{2}{3} \times \frac{1}{20} & x_{\gamma}=\frac{E_{\gamma}}{E_{p}}=\frac{1}{2}<x_{F}>=\frac{1}{10}
\end{array}
$$

$$
\frac{d N_{\gamma}}{d E} \sim 2 \times \frac{1}{3} \times \frac{1}{10}
$$

Ignoring oscillations there is a factor of about I between the gamma and neutrino flux.
For a full calculation see: http://arxiv.org/pdf/astro-ph/0606058for pp

Gamma-neutrino connection at source (before oscillations)

$$
\frac{d N_{\nu}}{d E}=\frac{d N_{\gamma}}{d E} \text { for } \mathrm{p}-\mathrm{p}
$$

$$
\frac{d N_{\nu}}{d E}=\frac{1}{4} \frac{d N_{\gamma}}{d E} \text { for } \mathrm{p}-\gamma
$$

What happens during propagation of messengers to us?

Oscillations in 3 families

oscillation probability in 3 families (E. Lisi's lectures)

$$
\begin{aligned}
& P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sum_{i}\left|U_{\alpha, i}\right|^{2}\left|U_{\beta, i}\right|^{2}+2 \sum_{i<j} U_{\alpha, i} U_{\beta, i} U_{\alpha, j} U_{\beta, j} \cos \left(\frac{\Delta \mathrm{~m}_{i j}^{2} L}{2 \mathrm{E}}\right) . \\
& \text { solar } \mathrm{U}_{\mathrm{e} 1}, \mathrm{U}_{e 2} \leftrightarrow \theta_{12} \mathrm{CHOOZ} \mathrm{U}_{\mathrm{e}} \leftrightarrow \theta_{13} \\
& \quad U=\left(\left.\begin{array}{ll|}
\hline U_{e 1} & U_{e 2} \\
U_{e 3} \\
U_{\mu 1} & U_{\mu 2}
\end{array} \right\rvert\, \begin{array}{ccc}
U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{13} s_{23} e^{i \delta} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{i \delta} & c_{13} s_{23} \\
s_{12} s_{23}-c_{12} s_{13} c_{23} e^{i \delta} & -c_{12} s_{23}-s_{12} s_{13} c_{23} e^{i \delta} & c_{13} c_{23}
\end{array}\right)
\end{aligned}
$$

atmospheric $\mathrm{U}_{\mathrm{e} 3} \leftrightarrow \theta_{13} \mathrm{U}_{\mu 3}, \mathrm{U}_{\tau 3} \leftrightarrow \theta_{23}$
MINSP matrix

Parameter	best-fit $(\pm 1 \sigma)$	3σ	
$\Delta m_{21}^{2}\left[10^{-5} \mathrm{eV}^{2}\right]$	$7.54_{-0.22}^{+0.26}$	$6.99-8.18$	
$\left\|\Delta m^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right]$	$2.43 \pm 0.06(2.38 \pm 0.06)$	$2.23-2.61(2.19-2$	
$\sin ^{2} \theta_{12}$	0.308 ± 0.017	$0.259-0.359$	
$\sin ^{2} \theta_{23}, \Delta m^{2}>0$	$0.437_{-0.023}^{+0.033}$	$0.374-0.628$	
$\sin ^{2} \theta_{23}, \Delta m^{2}<0$	$0.455_{-0.033}^{+0.031}$,	$0.380-0.641$	
$\sin ^{2} \theta_{13}, \Delta m^{2}>0$	$0.0234_{-0.0019}^{+0.0020}$	$0.0176-0.0295$	
$\sin ^{2} \theta_{13}, \Delta m^{2}<0$	$0.0240_{-0.0022}^{+0.0019}$	$0.0178-0.0298$	

Astrophysical neutrino oscillations

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sum_{i}\left|U_{\alpha, i}\right|^{2}\left|U_{\beta, i}\right|^{2}+2 \sum_{i<j} U_{\alpha, i} U_{\beta, i} U_{\alpha, j} U_{\beta, j} \cos \left(\frac{\Delta \mathrm{~m}_{i j}^{2} L}{2 \mathrm{E}}\right)
$$

We can express the phase in astro units:

$$
\varphi \sim 3 \cdot 10^{8}\left(\frac{\Delta m^{2}}{8 \cdot 10^{-5} \mathrm{eV}^{2}}\right)\left(\frac{D}{1 \mathrm{kpc}}\right)\left(\frac{10 \mathrm{TeV}}{E_{\nu}}\right)
$$

For astrophysical source at kpc-distances emitting vs of 10 TeV : $\operatorname{COS} \varphi$ averages to zero since the extension of sources is about 1 pc and their distance is of the order of 1 kpc so the baseline is known with precision $1 / 1000$ not $1 / 10^{8}$ hence we use the incoherent term

$$
\begin{aligned}
& P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sum_{i}\left|U_{\alpha, i}\right|^{2}\left|U_{\beta, i}\right|^{2} \\
& P\left(v_{e} \rightarrow v_{e}\right)=\sum_{i}\left|U_{e i}\right|^{2}\left|U_{e i}\right|^{2}=\left|U_{e \mid}\right|^{4}+\left|U_{e 2}\right|^{4}+\left|U_{e 3}\right|^{4}=0.82^{4}+0.57^{4}+0=0.56
\end{aligned}
$$

From source to Farth

At source:

$$
\nu_{e}: \nu_{\mu}: \nu_{\tau} \sim 1: 2: 0
$$

pion-muon decay

$v_{\alpha} \backslash v_{\beta}$	v_{e}	v_{μ}	v_{τ}
v_{e}	60%	20%	20%
v_{μ}	20%	40%	40%
v_{τ}	20%	40%	40%

At Earth:

$$
\nu_{e}: \nu_{\mu}: \nu_{\tau} \sim 1: 1: 1
$$

Maybe not true if muons cannot decay (Kashti \& Waxman, PRL 95 (2005) 181101)
60% of v_{e} survive and $2 \times 20 \%$ come from $2 \times v_{\mu}=100 \%$ $2 x 40 \%=80 \%$ of $2 x v_{\mu}$ survive and 20% come from $v_{e}=100 \%$ 20% of v_{T} come from v_{e} and $2 \times 40 \%$ from $v_{\mu}=100 \%$

Neutrino events in a neutrino telescope

CC Muon Neutrino

Neutral Gurrent /Electron Neutrino

$\nu_{\mathrm{e}}+N \rightarrow \mathrm{e}+X$
$\nu_{\mathrm{x}}+N \rightarrow \nu_{\mathrm{x}}+X$
cascade (data)
$\approx \pm 15 \%$ deposited energy resolution
$\approx 10^{\circ}$ angular resolution
(at energies 困 100 TeV)

CC Tau Neutrino

First flavor physics in a Neutrino telescope

IceCube, ApJ 2015, see also PRL2015)

Future:

Flavor ratio constrain the conditions at source e.g. magnetic fields (muon cooling), charm production, neutron dominated

Neutrino rates (exercise)

Neutrino and $\boldsymbol{\gamma}$-Ray Spectra for RX J1713.7-3946 (SNR)

Source Visibility

IACT gamma-ray telescope

otted M82 RA, Dec $=(148.97,69.6794)$ for year 2012 at lat, lon $=31.68,-110.86$
ource culminates at a Zenith angle of 70-32=38 degrees
/isible from December to May

South Pole is a special case...
Declination and zenith are complementary angles

$$
\delta=90^{\circ}-\theta \in\left[0,180^{\circ}\right]
$$

Warning! this plot applies to analyses using upgoing atmospheric neutrino dominated tracks but UHE neutrino astronomy has also to be done using down-going atmospheric muon dominated samples

The Sites and sky coverage

Concept of Neutrino Detector

Deep Inelastic Scattering (charged and neutral currents) with very large momentum transfers.

Large target mass due to small x -section

$$
\begin{array}{ll}
\nu_{\mu}+N \rightarrow \mu^{-}+X & \bar{\nu}_{\mu}+N \rightarrow \mu^{+}+X \\
\nu_{\mu}+N \rightarrow \nu_{\mu}+X & \bar{\nu}_{\mu}+N \rightarrow \bar{\nu}_{\mu}+X
\end{array}
$$

$$
\begin{aligned}
\frac{d^{2} \sigma}{d x d y}= & \frac{2 G_{F}^{2} M E_{\nu}}{\pi}\left(\frac{M_{W}^{2}}{Q^{2}+M_{W}^{2}}\right)^{2}\left[x q\left(x, Q^{2}\right)+x \bar{q}\left(x, Q^{2}\right)(1-y)^{2}\right] \\
Q^{2}= & 2 M E_{\nu} x y \quad y=\nu / E_{\nu} \quad \nu=E_{\nu}-E_{\mu} \\
q\left(x, Q^{2}\right)= & \frac{u_{v}\left(x, Q^{2}\right)+d_{v}\left(x, Q^{2}\right)}{2}+\frac{u_{s}\left(x, Q^{2}\right)+d_{s}\left(x, Q^{2}\right)}{2} \\
& +s_{s}\left(x, Q^{2}\right)+b_{s}\left(x, Q^{2}\right) \\
\bar{q}\left(x, Q^{2}\right)= & \frac{u_{s}\left(x, Q^{2}\right)+d_{s}\left(x, Q^{2}\right)}{2}+c_{s}\left(x, Q^{2}\right)+t_{s}\left(x, Q^{2}\right),
\end{aligned}
$$

At low energy, neutrino and anti-neutrino cross sections differ because the valence quark dominate

Figure 33: Simulated neutrino cross sections: higher blue curves are CC, lower red curves are NC; solid are ν, dashed are $\bar{\nu}$; green bbotted is $\bar{\nu}_{e} e^{-} \rightarrow W^{-}$

Muon/tau range and absorption/regeneration of neutrinos in the Earth
 $$
P_{\text {surv }}=e^{N_{A} \int d l \cos \theta \rho(l) \sigma_{\nu}\left(E_{\nu}\right)}
$$

$$
R=\int_{0}^{x} \frac{d x}{d E} d E=\int_{E_{0}}^{0}-\frac{d E}{a+b E}=-\frac{1}{a} \int_{E_{0}}^{0} \frac{d E}{1+b E / a}=\frac{1}{b} \ln \left(1+E_{0} / E_{c}\right)
$$

L'Abbate, TM, Sokalski, Astropart.Phys.23:57-63,2005

Tau neutrinos never absorbed but loose energy

Effective Area

Neutrino selection \& background rejection

Upgoing thoroughgoing neutrino induced muons - Earth is a filter - or vertex identification of 'starting events' (tracks and cascades)

Multi-messenger astrophysics

Reminder: Mean free path

$$
w=\text { interaction prob. }=\mathrm{w}=\mathrm{N} \sigma \mathrm{dx} \quad \begin{aligned}
& \sigma=\text { cross section } \\
& \mathrm{N}=\mathrm{n} . \text { of target particles / volume }
\end{aligned}
$$ $\mathrm{P}(\mathrm{x})=$ prob. that a particle does not interact after traveling a distance x $P(x+d x)=$ prob that a particle has no interaction between x and $x+d x=P(x+d x)=P(x)(1-w d x)$

$$
\begin{aligned}
& P(x+d x)=P(x)+\frac{d P}{d x} d x=P(x)-P(x) w d x \\
& \frac{d P}{P}=-w d x \Rightarrow P(x)=P(0) e^{-w x} \quad \begin{array}{c}
\mathrm{P}(0)=1 \text { it is sure that initially the } \\
\text { particle did not interacts }
\end{array}
\end{aligned}
$$

$$
\lambda=\frac{\int x P(x) d x}{\int P(x) d x}=\frac{1}{w}=\frac{1}{N \sigma}
$$

$$
\lambda_{I}=\lambda \rho^{\text {Medium density }}=\frac{\rho}{N_{c} \sigma}=\frac{A m_{p}}{\sigma} \quad \text { in } \mathrm{g} / \mathrm{cm}^{2}
$$

Example: interaction length of CRs in the atmosphere

$$
\lambda_{I}=\lambda \rho=\frac{\rho}{N_{c} \sigma}=\frac{A m_{p}}{\sigma} \quad \text { in } \mathrm{g} / \mathrm{cm}^{2}
$$

Total, inelastic and elastic (anti-)protons on proton cross section

For p-AIR: $14.5 * 1.67 \times 10^{-27} \mathrm{~kg} / 300 \times 10^{-27} \mathrm{~cm}^{2}=80 \mathrm{~g} / \mathrm{cm}^{2}$
For Fe-Air: $5 \mathrm{~g} / \mathrm{cm}^{2}$

The multi-messenger's horizons

Proton horizon (GZK cut-off):
$p \gamma_{2.7 K} \rightarrow \Delta^{+} \rightarrow \pi^{+} n$
$L_{\gamma}=\frac{1}{\sigma_{p-\gamma_{C M B} n_{\gamma}}} \sim \frac{1}{10^{-28} \mathrm{~cm}^{2} \times 400 \mathrm{~cm}^{-3}} \sim 10 \mathrm{Mpc}$
The neutrino horizon is comparable to t observable universe!

$$
\begin{gathered}
\bar{\nu} \nu_{1.95 K} \rightarrow Z \rightarrow X \\
E_{\text {res }}=\frac{M_{Z}^{2}}{2 m_{\nu}} \cong 4 \times 10^{21}\left(\frac{1 \mathrm{eV}}{m_{\nu}}\right) \mathrm{eV} \\
L_{\nu}=\frac{1}{\sigma_{\text {res }} \times n}=\frac{1}{5 \times 10^{31} \mathrm{~cm}^{2} \times 112 \mathrm{~cm}^{-3}} \approx 6 G
\end{gathered}
$$

The proton horizon

$$
r_{\phi \pi}\left(E_{20}\right) \cong \frac{13.7 \exp \left[4 / E_{20}\right]}{\left[1+4 / E_{20}\right]} \mathrm{Mpc}
$$

Figure 1. Mean-free paths for energy loss of UHECR protons in different model EBLs are shown by the solid curves, with photopair (dotted) and photopion (dashed) components shown separately. "CMB only" refers to total energy losses with CMB photons only, using eq. (4) for the energy-loss rate of protons due to photopion production. Inset: Measurements of the EBL at optical and infrared frequencies, including phenomenological fits to low-redshift EBL in terms of a superposition of modified blackbodies. A Hubble constant of 72 $\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$ is used throughout.

What about

 neutrons? for a neutron of $E=10^{9}$ $\mathrm{GeV}=10^{6} \mathrm{TeV}$ $I_{\text {decay }}=\gamma_{c \tau}=$ $\mathrm{E} / \mathrm{mc}^{2} \mathrm{xc} \times 886 \mathrm{~s}=$ $10^{9} \mathrm{GeV} / \mathrm{IGeV} \times$ $3 \times 10^{8} \mathrm{~m} / \mathrm{s} \times 886 \mathrm{~s}=$ $2.66 \times 10^{20} \mathrm{mx}$ $3.24 \times 10^{-20} \mathrm{kpc} / \mathrm{m}$ $=8.6 \mathrm{kpc}$
CR Composition

Deflection of CRs in B-field

$$
\begin{aligned}
& m v^{2} / r=p v / r=Z e v B / c \\
& r=p c / Z e B \\
& r(c m)=\frac{1}{300} \frac{E(e V)}{Z B(G)}
\end{aligned}
$$

$$
\left(10^{12} \mathrm{eV}\right)=10^{15} \mathrm{~cm}=3 \times 10^{-4} \mathrm{pc}
$$

$$
\boldsymbol{r}=\left(10^{15} \mathrm{eV}\right)=10^{18} \mathrm{~cm}=3 \times 10^{-1} \mathrm{pc}
$$

$$
\left(10^{18} \mathrm{eV}\right)=10^{21} \mathrm{~cm}=300 \mathrm{pc}
$$

Deflection of CRs in B-field

FIG. 2: The mean deflection angle of protons for the fixed observed energy E_{f} over the distance r. The numbers at the curves indicate the energies which proton had at the distance r from the observer.

