
NBIA PhD School: Neutrinos underground & in the heavens
II (August 1–5, 2016). Problems

Neutrino Theory and Phenomenology

1. 3ν oscillations in vacuum-general case

Given the Hamiltonian in vacuum Hmass = diag(E1, E2, E3) ' pδij + m2
i /(2E)δij

prove that:

P (να → νβ) = δαβ−4
∑

i<j

ReJ ijαβ sin2

(
∆m2

ijx

4E

)
−2
∑

i<j

ImJ ijαβ sin

(
∆m2

ijx

4E

)
, (1)

where ∆m2
ij = m2

i −m2
j and J ijαβ = UαiU

?
βiU

?
αjUβj (Jarlskog invariant).

Hints: Since the Hamiltonian is x-independent, the evolution operator is simply
obtained by exponentiation Ŝ = exp(−iĤx). In flavor basis: Sβα =< νβ|Ŝ|να >=∑

ij UβjSjiU
?
αi =

∑
i U

?
αiUβi exp(−ım2

ix/(2E)). Flavor oscillation probability:
P (να → νβ) = |Sβα|2 = |∑i U

?
αiUβi exp−(ım2

ix)/(2E)|2.

Prove that Pαβ in vacuum for (∆m2x)/(4E) ∼ O(1) and (δm2x)/(4E) � 1 (one-
dominant mass-scale approximation) becomes:

Pαα = 1− 4|Uα3|2(1− |Uα3|2) sin

(
∆m2x

4E

)
, (2)

Pαβ = 4|Uα3|2|Uβ3|2 sin

(
∆m2x

4E

)
with α 6= β . (3)

Hints: Pαα = 1 − 4Re(J13
αα + J23

αα) sin2
(

∆m2x
4E

)
− 2Im(J13

αα + J23
αα) sin

(
∆m2x

2E

)
and

Pαβ = 4|Uα3|2|Uβ3|2 sin2
(

∆m2x
4E

)
. From here one can recover some probabilities

for the PMNS matrix within the limit of θ13 → 0, which lead to the so-called Pon-
tecorvo formulae for 2ν oscillations:

Pµτ ' sin2 2θ23 sin2

(
∆m2x

4E

)
, (4)

Pµµ ' 1− sin2 2θ23 sin2

(
∆m2x

4E

)
, (5)

and Pµe = Pee ' 0.
2. 2ν oscillations in matter with constant density

Let us consider the (ν1, ν2) states with oscillation parameters (δm2, θ12) 6= 0 and
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θ13 = 0, prove that the survival probability in matter for Ne =const. has the same
vacuum-like structure, i.e.:

P 2ν
ee = 1− sin2 2θ̃12 sin2

(
δm̃2x

4E

)
(6)

with

sin 2θ̃12 =
sin 2θ12√(

cos 2θ12 − A
δm2

)2
+ sin2 2θ12

and δm̃2 = δm2 sin 2θ12

sin 2θ̃12

(7)

with A = ±2
√

2GFNeE (+ for ν’s and − for ν̄’s).
Hints: In the 2ν limit governed by the oscillation parameters (δm2

12, θ12), the
Hamiltonian of ν propagation in matter is H̃ = Hvac + diag(V, 0) with Hvac =
1/(2E) U(θ12)diag(m2

1,m
2
2)U?(θ12). Extracting the part proportional to the trace

of the matrix and making H̃ traceless, H̃ can be diagonalized with the following
rotation H̃ = 1/(4E) U(θ̃12)diag(−δm2,+δm2)U(θ̃12)T .
The corresponding evolution operator is

S̃ = exp−ıH̃x = Ũdiag(exp(ı
δm̃2x

4E
), exp(−ıδm̃

2x

4E
))ŨT . (8)

By squaring the diagonal element of S̃, one gets the survival probability in matter

P̃ 2ν
ee = 1− sin2 2θ̃12 sin

(
δm̃2x

4E

)
. (9)

The qualitative behavior of m̃2
1,2 and θ̃12 is shown in Fig. 1.
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Figure 1: The Mykheev-Smirov-Wolfenstein (MSW) resonance occurs for A/δm2 ∼
O(1). For A/δm2 > 0, the effective parameters have a resonant behav-
ior around A/δm2 ' cos 2θ (only for ν’s). For antineutrinos A < 0 and no
resonance occurs. For A/δm2 � 1 (A/δm2 � 1) a vacuum-like (matter-
dominated) behavior is expected.
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Neutrino Cosmology

We shall need the expressions for the number density, energy density, and pressure of
relativistic species in the early Universe.

ρ(bosons) =
π2gT 4

30
and ρ(fermions) =

7π2gT 4

240
, (10)

n(bosons) =
ξ(3)gT 3

π2
and n(fermions) =

3ξ(3)gT 3

4π2
, (11)

P = ρ/3 , (12)

where ξ(3) = 1.20206... is the Riemann zeta-function. g is the number of internal de-
grees of freedom (spin states) for the species. gγ = 2, gν = gν̄ = 1, ge

−
= ge

+
= 2.

NOTE: We are using natural units where ~ = c = kB = 1.
Example: The energy density and number density of a boson species in SI or cgs units
(so that [ρ] = g/cm3 and [n] = cm−3) is

ρ =
π2g(kBT )4

30c5~3
and n =

ξ(3)g(kBT )3

π2c3~3
. (13)

1. Expansion rate in the early universe
The present density of non-relativistic matter (P = 0) in the Universe is ΩMh

2 =
ρM/ρch

2 = 0.12. The critical density is ρc = 1.88 × 10−29h2g/cm3. The present
photon temperature is 2.726 K. Use the equation of energy conservation

∂ρ

∂t
+ 3

ȧ

a
(ρ+ P ) = 0 (14)

which applies separately for matter and radiation to show that ρM ∝ a−3 and
ρR ∝ a−4.
Calculate the present value of ργ/ρM .
At which value of a did the Universe become matter dominated (ρM > ργ), as-
suming that a0 = 1?
Assume that in the early Universe at T > 1 MeV, the energy density is completely
dominated by neutrinos, photons, electrons, and positrons. There are 3 different
neutrino species (electron, muon and tau neutrinos).
Calculate H(T ) in the early Universe at T = 1 MeV (assuming that it is flat).
Show that in a radiation dominated Universe a ∝ t1/2 and H = 1/2t−1.
Assuming that a(t = 0) = 0, calculate the age of the Universe at T = 1 MeV.
Hints: See book by Dodelson and equations above. For radiation P = ρ/3, for
matter P = 0. H(1MeV) ' 0.6 s−1. Age of the Universe at T = 1 MeV: t ' 0.85 s.

2. Neutrino decoupling
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In the early Universe, neutrinos can be created and destroyed by the process

νν̄ 
 e+e− (15)

The thermally averaged cross section for this process is given by < σ|v| >=
KG2

FT
2, where K is a constant of order unity. Assume that K = 1. Use the con-

dition Γ ≡ n < σ|v| >= H to calculate the decoupling temperature of neutrinos.
Hints: Use H(1MeV) from previous exercise, Tdec ∼ 1 MeV.

3. Entropy conservation in the expanding universe
Show that in a comoving volume of the universe, the total entropy is conserved:

d

dt
(a3s) = 0 where s =

ρ+ p

T
. (16)

Hints: Use the results

dp

dT
=
ρ+ p

T
and

d

dt
(a3ρ) = −p d

dt
a3 , (17)

where the former follows from thermodynamic reasoning and the latter is obtained
when deriving the second Friedmann equation.

4. Upper bound on neutrino masses
If neutrinos are non-relativistic today (and have masses� 1 MeV), then show that
the contribution of the neutrinos to the Ω0 (present-day density parameter) is

Ω0,ν =

∑
imi

50 eV
, (18)

Hints: Since we are assuming that all three neutrino species are non relativistic,
the CνB density today is given by ρ0,ν = n0,ν

∑
imi/3 ' 200g/cm3×10−33

∑
i(mi/eV).

The critical density today is ρ0 = 1.878×10−29 h2 g/cm3 with h = H0/100 km/sMpc '
0.73. If we impose that the current matter in the universe is not all made by neu-
trinos: Ω0,ν ≤ Ω0,m ' 0.25 from which we deduce

∑
imi ≤ 13 eV, i.e., any of the

three neutrinos must have a mass mi ≤ 4 eV.
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Neutrino Astronomy

Neutrino event rate.
1. Consider one of the TeV point-like sources in http://tevcat.uchicago.edu/ that you

think could be a good candidate neutrino emitter. Describe the kind of source you
picked up and its main features.

2. Describe relevant observations and measurements by gamma-ray experiments,
for instance the spectrum and its energy range. Collect the useful documentation
on the main features of the gamma emission from the source and prepare a nice
documentation (e.g., a web page with the useful links to references).

3. Explain the reasons why the source can be a potential candidate neutrino emitter
and why you chose it. Explain what kind of mechanism could be responsible for
acceleration of cosmic rays.

4. According to the source you selected, pick up the neutrino effective area of a
neutrino telescope that could see it, if you are performing a muon neutrino point-
source analysis. Derive the neutrino event rate per year for the neutrino flux from
that source. In order to do so, assume that all energy in γ’s goes into hadronic pro-
cesses and not into electromagnetic ones. Chose the neutrino production mecha-
nism that can produce neutrinos in the source: proton-proton interaction or proton-
gamma interactions and derive the neutrino flux from the measured gamma one,
using average numbers as during the lectures and assuming that in the source
environment gamma absorption is negligible. Also consider that the differential
energy spectra are of the form dN/dE = Ap,ν,γ(E−Γ/1TeV) exp(−

√
E/ε) with ε =

cut-off energy and Γν ∼ Γγ ∼ Γp − 0.1. Assume that all efficiencies (including the
losses due to the pointing accuracy of the detector) are included un the effective
area. Necessary inputs are provided in Figs. 2–4.
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Figure 1: IceCube effective area vs neutrino energy after all cuts for point-like source searches. Ignore the
starting muon area and consider the proper declination range of your selected source.

flux from the measured gamma one, using average numbers as during the lectures and as-
suming that in the source environment gamma absorption is negligible. Also consider that
the differential energy spectra are of the form dN

dE = Ap,ν,γ
(
E−Γ/1TeV

)
exp

(
−
√

E
ε

)
with

ε =cut-off energy, namely and Γν ∼ Γγ ∼ Γp − 0.1. Assume that all efficiencies (including
the losses due to the pointing accuracy of the detector) are included un the effective area.
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Figure 2: IceCube effective area vs neutrino energy after all cuts for point-like source
searches. Ignore the starting muon area and consider the proper declination
range of your selected source.

Figure 2: ANTARES effective area for E−2 vs declination and vs neutrino energy after all cuts for point-like
source searches. For other spectra ANTARES area vs declination has quite the same shape so use
the plot on the left to calculate an eventual global reduction factor to apply to the effective area
vs energy when convolving with the spectrum depending on the declination of the source.

Figure 3: ANTARES visibility of a source for upgoing event analysis.
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Figure 3: ANTARES effective area for E−2 vs declination and vs neutrino energy after
all cuts for point-like source searches. For other spectra ANTARES area vs
declination has quite the same shape so use the plot on the left to calculate an
eventual global reduction factor to apply to the effective area vs energy when
convolving with the spectrum depending on the declination of the source.
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Figure 2: ANTARES effective area for E−2 vs declination and vs neutrino energy after all cuts for point-like
source searches. For other spectra ANTARES area vs declination has quite the same shape so use
the plot on the left to calculate an eventual global reduction factor to apply to the effective area
vs energy when convolving with the spectrum depending on the declination of the source.

Figure 3: ANTARES visibility of a source for upgoing event analysis.
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Figure 4: ANTARES visibility of a source for upgoing event analysis.
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