Wojciech Flieger

Number of light and heavy neutrinos in Seesaw type I

Institute of Physics, University of Silesia

NBIA PHD School, 1-5 August 2016
Niels Bohr Institute, Copenhagen

Seesaw mass matrix and diagonalization

Mass matrix

Block diagonalization

$\mathcal{L}^{D+M}=\frac{1}{2} \tilde{N}^{\top} \mathcal{C}^{\dagger} M \tilde{N}+$ H.c.

$$
\begin{aligned}
& M=\left(\begin{array}{cc}
0 & M_{D} \\
M_{D}^{T} & M_{R}
\end{array}\right) \\
& \lambda\left(M_{R}\right) \gg\left|M_{D}\right| \\
& W^{T} M W \simeq\left(\begin{array}{cc}
M_{\text {light }} & 0 \\
0 & M_{\text {heavy }}
\end{array}\right)
\end{aligned}
$$

$M=\left(\begin{array}{cc}0 & M_{D} \\ M_{D}^{T} & M_{R}\end{array}\right)$
$\tilde{N}=\binom{\nu_{L}}{\nu_{R}^{C}}$
two mass scales
$M_{R} \gg M_{D}$

$$
\left.\begin{array}{c}
M_{\text {light }} \simeq-M_{D}^{T} M_{R}^{-1} M_{D} \\
M_{\text {heavy }} \simeq M_{R}
\end{array}\right\} \text { Seesaw }
$$

e.g.

$$
M_{R} \sim 10^{15}[\mathrm{GeV}], \quad M_{D} \sim 10^{2}[\mathrm{GeV}] \Rightarrow M_{\text {light }} \sim 10^{-2}[\mathrm{eV}]
$$

$$
L H C[\text { wishful thinking? }] M_{R} \sim 10^{3}[\mathrm{GeV}], \quad M_{D} \sim 10^{-4}[\mathrm{GeV}] \Rightarrow M_{\text {light }} \sim 10^{-2}[\mathrm{eV}]
$$

Problems

Why $\lambda\left(M_{R}\right) \gg\left|M_{D}\right|$?

Example

$$
M_{R}=\left(\begin{array}{lll}
100 & 100 & 100 \\
100 & 100 & 100 \\
100 & 100 & 100
\end{array}\right) \Longrightarrow \text { rank one matrix } \Rightarrow \lambda(A)=(300,0,0)
$$

$$
M=\left(\begin{array}{cccccc}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 100 & 100 & 100 \\
1 & 1 & 1 & 100 & 100 & 100 \\
1 & 1 & 1 & 100 & 100 & 100
\end{array}\right) \Longrightarrow
$$

M_{R}, M_{D} rank one M has four zero eigenvalues!!!

Czakon, Gluza and Zralek [2] gave a formal proof that for $M_{R} \gg M_{D}$ we can not get a fourth light sterile

Problems

In general a full mass matrix M is complex and symmetric

Not Hermitian, not even normal!!!
Consequences:

1. A complex symmetric matrix may not even be diagonalizable

$$
A=\left(\begin{array}{cc}
2 i & 1 \\
1 & 0
\end{array}\right) \Rightarrow \begin{gathered}
A^{\dagger} \neq A, A^{\dagger} A \neq A A^{\dagger} \\
\text { algebraic multiplicity } \neq \text { geometric multiplicity } \Rightarrow \text { not diagonalizable }
\end{gathered}
$$

2. Even if it is, we have $M_{\text {heavy }} \simeq M_{R} \Rightarrow$ small differences can dramatically change eigenvalues

$$
A=\left(\begin{array}{ccc}
\mu & 1 & 0 \\
0 & \mu & 1 \\
0 & 0 & \mu
\end{array}\right), \quad E=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
\epsilon & 0 & 0
\end{array}\right) .
$$

If μ - eigenvalue of A, λ - (any) eigenvalue of $A+E$, then

$$
|\lambda-\mu|=\epsilon^{1 / 3}
$$

If $\epsilon=10^{-15}$, then $|\lambda-\mu|=10^{-5}$ - spectrum shifted by a number 10 orders larger than the parameter ϵ !

My first findings

Number of nutrinos in CP invariant case

In the CP invariant seesaw scenario with two mass scales $M_{R} \gg M_{D}$, $M_{D} \in M_{3 \times n}, M_{R} \in M_{n \times n}$ and $\lambda\left(M_{R}\right) \gg\left|m_{D}\right|$ exactly 3 light neutrinos are present.

Matrix Decomposition

$$
M=\left(\begin{array}{cc}
0 & M_{D} \\
M_{D}^{T} & M_{R}
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & M_{R}
\end{array}\right)+\left(\begin{array}{cc}
0 & M_{D} \\
M_{D}^{T} & 0
\end{array}\right) \equiv \hat{M}_{R}+\hat{M}_{D}
$$

Proof scheme

From Weyl's inequalities

$$
\begin{gathered}
\alpha_{j}+\beta_{k} \leq \gamma_{j+k-1} \quad \text { and } \quad \gamma_{n-j-k} \leq \alpha_{n-j+1}+\beta_{n-k+1} \\
\left|\lambda_{i}(M)-\lambda_{i}\left(\hat{M}_{R}\right)\right| \leq \rho\left(\hat{M}_{D}\right) \leq\left\|\hat{M}_{D}\right\|_{F}=\sqrt{\sum_{i, j} m_{i j}^{2}}, \rho\left(\hat{M}_{D}\right)=\max \left\{\left|\lambda\left(\hat{M}_{D}\right)\right|\right\}
\end{gathered}
$$

But

$$
\sqrt{\sum_{i, j} m_{i j}^{2}} \sim\left|m_{D}\right| \Rightarrow \rho\left(\hat{M}_{D}\right) \leq\left|m_{D}\right|, \quad m_{D} \in M_{D}
$$

On the other hand matrix \hat{M}_{R} has at least 3 eigenvalues equal 0 .
Thus

$$
\left|\lambda_{i}(M)-0\right| \leq \rho\left(\hat{M}_{D}\right) \quad \text { for } \lambda_{i}\left(\hat{M}_{R}\right)=0
$$

Hence, three eigenvalues of M must be smaller than $\left|m_{D}\right|$.

Conclusions

Conclusion (I): At least 3 light neutrinos exist.

Similar steps with assumption that $\lambda\left(M_{R}\right) \gg\left|m_{D}\right|$ gives Conclusion (II): Remaining masses must be heavy.

Conclusions (I) and (II) implies Conclusion (III): Heavy masses $N_{1, \ldots, n}$ are maximally shifted by $\left|m_{D}\right|$ from eigenvalues of M_{R}.
e.g.

$$
\lambda_{1}\left(M_{R}\right)=100,\left|m_{D}\right| \sim 1 \Rightarrow \lambda_{1}(M) \simeq 100 \pm 1
$$

Bibliography

[1] Rejandra Bhatia. Matrix Analysis. Springer, 1996.
[2] M. Czakon, J. Gluza, M. Zralek. Seesaw mechanism and four light neutrino states. Phys. Rev., D64: 117304, 2001

