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U mixing is unitary. But parts of it not!

If N > 3 and Mh >> Eexp

UN×N =

(
N W
V T

)

Unitary
Non-Unitary

Acessible through Oscillation1

1 J. Schechter and J. W. F. Valle, Phys. Rev.D25 774 (1982)
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Fear Not: only more 6 parameters needed!

It can be shown that2:

N =

 α11 0 0
α21 α22 0
α31 α32 α33

 .UPMNS

Total: 6 more parameters. 3 of them are real.

Only 3 (α11, α22 and α21) are acessible through νe(µ) → νµ(e)

2 F. J. Escrihuela et. al., Phys. Rev. D92, 053009 (2015)

5 / 25



In unitary: Probability add to 1
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In non-unitary: Probability Don’t add to 1
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Non-unitary basis is not Orthogonal!

x̂

ẑ

ŷ

Unitary

νe

ντ

νµ

Non-

νe

ντ
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The three neutrino basis is not orthogonal!
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New Phenomenon: 0-Distance and CP-phase

This means that you can have 0-distance ‘oscillation’ (transition):

3 F. Ge, P. Pasquini, et. al., ARXIV:1605.01670
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PNUµe = α2
11

[
α2
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This means that you can have 0-distance ‘oscillation’ (transition):

〈να(0)|νβ(0)〉 6= 0

In fact, the νµ → νe transition probability changes to3,

PNUµe = α2
11

[
α2
22Pµe + 2α22Re(α

∗
21SeeS

∗
eµ) + |α21|2Pee

]
Survival Prob.
Pee(0) = 1

Complex parameter

with a new CP phase (φ)!

3 F. Ge, P. Pasquini, et. al., ARXIV:1605.01670
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φ can mimic δCP

Why do we care?

Non-unitary can lead to CP-phase ambiguity4!

That’s because |α21| can be as large as2 ∼ 3%

2 F. J. Escrihuela et. al., Phys. Rev. D92, 053009 (2015)

4 Miranda, O. G., et. al., ARXIV:1604.05690
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φ can mimic δCP

We can see that by two plots:

Pµe for differents δCP and φ.

The ration R between the contributions of δCP and φ to Pµe
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φ can mimic δCP

We can see that by two plots:

From: 3 F. Ge, P. Pasquini, et. al., ARXIV:1605.01670

Pµe: δCP = 0 and α21 = 0, δCP = 3π/2 and α21 = 0, δCP = 0 and α21 = 0.02

Ra: α = 2.5% and R: cφ and sφ and cφ+δ and sφ+δ contributions.
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T2(H)K experiment is awesome!

What about in Experimental Setup?
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T2(H)K experiment is awesome!

What about in Experimental Setup?

one of T2K and T2HK goal is to measure δCP

The experiment consists of neutrinos flux from pion decay at Tokay

From: 5 Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
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T2(H)K experiment is awesome!

The detector:

Super(Hyper)-K: a Huge water cherenkov detector at Kamioka

Size: 50 kton (560 kton) and Base Line: 295 km

From: 5 Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
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T2K and T2HK cannot measure δCP

T2K and T2HK says they can measure the δCP :

Or can they?

We performed the analysis on T2K and T2HK considering non-unitary:

From: 5 Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
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T2K and T2HK cannot measure δCP

From: 3 F. Ge, P. Pasquini, et. al., ARXIV:1605.01670
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µDAR to T2K rescue

Should we give up on T2(H)K δCP ?

Not yet!

There is a proposal6 to join the T2K ν-flux (E ∼ 600 MeV)

With a µ Decay At Rest neutrino flux at J-Park (E ∼ 50 MeV)

Running both at the same time at Kamiokande!

So what happens to the δCP sensibility?

From: 6 J. Evslin at. al., JHEP 02, 137 (2016)
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µDAR to T2K rescue

Should we give up on T2(H)K δCP ?

From: 6 J. Evslin at. al., JHEP 02, 137 (2016)
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Conclusion

Non-unitary can mimic δCP

T2K and T2HK sufer from this and looses sensibility.

It is possible to recover T2(H)K sensibility by couple it to µDAR

22 / 25



Appendix

Using a very near detector (20 m) to probe Pµe(0) = |α21|2
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Appendix

Model Dependent Couplings
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Appendix

DUNE Sensibility?
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