Measuring the Leptonic CP Phase in Neutrino Oscillations with Non-Unitary Mixing

Pedro S. Pasquini^{1,2}

1-5 august 2016

NBIA PhD School: Neutrinos Underground & in the Heavens II

¹Universidade Estadual de Campinas (Unicamp) - Brazil ²Instituto de Fisica Corpuscular (IFIC) - Spain

 $Fact^5$:

⁵Phys. Rev. Lett. **81**, 1158 (1998)

⁵Phys. Rev. Lett. **81**, 1158 (1998)

And they Oscillate!

⁵Phys. Rev. Lett. **81**, 1158 (1998)

And they Oscillate!

And they Oscillate!

There are two basis:

And they Oscillate!

There are two basis:

 $\nu_{\alpha} = U_{\alpha i} \nu_i$

And they Oscillate!

There are two basis:

$$U_{lpha i}$$

If
$$N > 3$$
 and $M_h >> E_{exp}$

4 / 25

If
$$N > 3$$
 and $M_h >> E_{exp}$

$$U^{N \times N} = \left(\begin{array}{cc} N & W \\ V & T \end{array}\right)$$

If
$$N > 3$$
 and $M_h >> E_{exp}$

If N > 3 and $M_h >> E_{exp}$

If N > 3 and $M_h >> E_{exp}$

It can be shown that²:

$$N = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} .U_{\text{PMNS}}$$

5 / 25

² F. J. Escrihuela et. al., Phys. Rev. D92, 053009 (2015)

6 / 25

It can be shown that²:

$$N = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} .U_{\text{PMNS}}$$

Total: 6 more parameters.

 2 F. J. Escrihuela et. al., Phys. Rev. D92, 053009 (2015)

It can be shown that²:

Total: 6 more parameters. 3 of them are real.

² F. J. Escrihuela et. al., Phys. Rev. D92, 053009 (2015)

It can be shown that²:

$$N = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} .U_{\text{PMNS}}$$

Total: 6 more parameters. 3 of them are real.

Only 3 (α_{11}, α_{22} and α_{21}) are accessible through $\nu_{e(\mu)} \rightarrow \nu_{\mu(e)}$

² F. J. Escrihuela et. al., Phys. Rev. D92, 053009 (2015)

In unitary: Probability add to 1

In non-unitary: Probability Don't add to 1

Non-unitary basis is not Orthogonal!

Non-unitary basis is not Orthogonal!

Non-unitary basis is not Orthogonal!

This means that you can have 0-distance 'oscillation' (transition):

This means that you can have 0-distance 'oscillation' (transition):

 $\langle \nu_{\alpha}(0) | \nu_{\beta}(0) \rangle \neq 0$

9 / 25

This means that you can have 0-distance 'oscillation' (transition):

 $\langle \nu_{\alpha}(0) | \nu_{\beta}(0) \rangle \neq 0$

In fact, the $u_{\mu} \rightarrow \nu_{e}$ transition probability changes to³,

This means that you can have 0-distance 'oscillation' (transition):

 $\langle \nu_{\alpha}(0) | \nu_{\beta}(0) \rangle \neq 0$

In fact, the $u_{\mu} \rightarrow \nu_{e}$ transition probability changes to³,

$$P_{\mu e}^{NU} = \alpha_{11}^2 \left[\alpha_{22}^2 P_{\mu e} + 2\alpha_{22} \operatorname{Re}(\alpha_{21}^* S_{ee} S_{e\mu}^*) + |\alpha_{21}|^2 P_{ee} \right]$$

This means that you can have 0-distance 'oscillation' (transition):

 $\langle \nu_{\alpha}(0) | \nu_{\beta}(0) \rangle \neq 0$

In fact, the $u_{\mu} \rightarrow \nu_{e}$ transition probability changes to³,

$$P_{\mu e}^{NU} = \alpha_{11}^2 \left[\alpha_{22}^2 P_{\mu e} + 2\alpha_{22} \operatorname{Re}(\alpha_{21}^* S_{ee} S_{e\mu}^*) + |\alpha_{21}|^2 P_{ee} \right]$$

$$(S_{\alpha\beta} = \langle \nu_{\alpha}^{\text{unitary}}(L) | \nu_{\beta}^{\text{unitary}}(L) \rangle)$$

This means that you can have 0-distance 'oscillation' (transition):

 $\langle \nu_{\alpha}(0) | \nu_{\beta}(0) \rangle \neq 0$

In fact, the $u_{\mu}
ightarrow
u_{e}$ transition probability changes to³,

$$P_{\mu e}^{NU} = \alpha_{11}^2 \left[\alpha_{22}^2 P_{\mu e} + 2\alpha_{22} \operatorname{Re}(\alpha_{21}^* S_{ee} S_{e\mu}^*) + |\alpha_{21}|^2 P_{ee} \right] \xrightarrow{} Survival \operatorname{Prob.} P_{ee}(0) = 1$$

This means that you can have 0-distance 'oscillation' (transition):

 $\langle \nu_{\alpha}(0) | \nu_{\beta}(0) \rangle \neq 0$

In fact, the $u_{\mu}
ightarrow
u_{e}$ transition probability changes to³,

$$P_{\mu e}^{NU} = \alpha_{11}^2 \left[\alpha_{22}^2 P_{\mu e} + 2\alpha_{22} \operatorname{Re}(\alpha_{21}^* S_{ee} S_{e\mu}^*) + |\alpha_{21}|^2 P_{ee} \right] \xrightarrow{} Survival \operatorname{Prob.} P_{ee}(0) = 1$$

$$Complex \text{ parameter}$$
with a **new** CP phase (ϕ)!

Why do we care?

⁴ Miranda, O. G., et. al., ARXIV:1604.05690

² F. J. Escrihuela et. al., Phys. Rev. D92, 053009 (2015)

Why do we care?

Non-unitary can lead to CP-phase ambiguity⁴!

⁴ Miranda, O. G., et. al., ARXIV:1604.05690

² F. J. Escrihuela et. al., Phys. Rev. D92, 053009 (2015)

Why do we care?

Non-unitary can lead to CP-phase ambiguity⁴!

That's because $|\alpha_{21}|$ can be as large as $^2 \sim 3\%$

⁴ Miranda, O. G., et. al., ARXIV:1604.05690

 2 F. J. Escrihuela et. al., Phys. Rev. D92, 053009 (2015)

We can see that by two plots:

11 / 25

We can see that by two plots:

 $P_{\mu e}$ for differents $\delta_{\rm CP}$ and ϕ .

1 / 25

We can see that by two plots:

 $P_{\mu e}$ for differents $\delta_{\rm CP}$ and ϕ .

The ration R between the contributions of δ_{CP} and ϕ to $P_{\mu e}$

 $P_{\mu e}$: $\delta_{CP} = 0$ and $\alpha_{21} = 0$, $\delta_{CP} = 3\pi/2$ and $\alpha_{21} = 0$, $\delta_{CP} = 0$ and $\alpha_{21} = 0.02$

 R_a : $\alpha = 2.5\%$ and R: c_{ϕ} and s_{ϕ} and $c_{\phi+\delta}$ and $s_{\phi+\delta}$ contributions.

What about in Experimental Setup?

What about in Experimental Setup?

one of T2K and T2HK goal is to measure δ_{CP}

What about in Experimental Setup?

one of T2K and T2HK goal is to measure δ_{CP}

The experiment consists of neutrinos flux from pion decay at Tokay

14 / 25

From: ⁵ Abe, K. and others, PTEP **2015**, no. 4, 043C01 (2015)

7 / 25

The detector:

The detector:

Super(Hyper)-K: a Huge water cherenkov detector at Kamioka

The detector:

Super(Hyper)-K: a Huge water cherenkov detector at Kamioka

Size: 50 kton (560 kton) and Base Line: 295 km

From: ⁵ Abe, K. and others, PTEP **2015**, no. 4, 043C01 (2015)

19 / 25

T2K and T2HK says they can measure the $\delta_{\rm CP}$:

T2K and T2HK cannot measure δ_{CP}

From: ⁵ Abe, K. and others, PTEP **2015**, no. 4, 043C01 (2015)

20 / 25

T2K and T2HK says they can measure the $\delta_{\rm CP}$:

Or can they?

T2K and T2HK says they can measure the $\delta_{\rm CP}$:

Or can they?

We performed the analysis on T2K and T2HK considering non-unitary:

$\mu {\rm DAR}$ to T2K rescue

Should we give up on T2(H)K δ_{CP} ?

$\mu {\rm DAR}$ to T2K rescue

Should we give up on T2(H)K δ_{CP} ?

Not yet!

Not yet!

There is a proposal 6 to join the T2K ν -flux (E ~ 600 MeV)

Not yet!

There is a proposal⁶ to join the T2K ν -flux (E ~ 600 MeV)

With a μ Decay At Rest neutrino flux at J-Park ($E \sim 50$ MeV)

Not yet!

There is a proposal⁶ to join the T2K ν -flux (E ~ 600 MeV)

With a μ Decay At Rest neutrino flux at J-Park ($E \sim 50$ MeV)

Running both at the same time at Kamiokande!

Not yet!

There is a proposal⁶ to join the T2K ν -flux (E ~ 600 MeV)

With a μ Decay At Rest neutrino flux at J-Park ($E \sim 50$ MeV)

Running both at the same time at Kamiokande!

So what happens to the δ_{CP} sensibility?

From: ⁶ J. Evslin at. al., JHEP 02, 137 (2016)

Conclusion

Conclusion

Non-unitary can mimic δ_{CP}

Non-unitary can mimic $\delta_{\rm CP}$

T2K and T2HK sufer from this and looses sensibility.

Non-unitary can mimic $\delta_{\rm CP}$

T2K and T2HK sufer from this and looses sensibility.

It is possible to recover T2(H)K sensibility by couple it to μ DAR

Appendix

Using a very near detector (20 m) to probe $P_{\mu e}(0) = |\alpha_{21}|^2$

Model Dependent Couplings

Appendix

DUNE Sensibility?

25 / 25