Measuring the Leptonic CP Phase in Neutrino Oscillations with Non-Unitary Mixing

Pedro S. Pasquini1,2

1-5 August 2016

NBIA PhD School: Neutrinos Underground & in the Heavens II

1Universidade Estadual de Campinas (Unicamp) - Brazil
2Instituto de Fisica Corpuscular (IFIC) - Spain
Fact5:

Fact5: Neutrinos have Mass

Fact: Neutrinos have Mass

And they Oscillate!

Two basis! Mass and Flavor

http://lbne.fnal.gov/

And they Oscillate!
And they Oscillate!

There are two basis:

http://lbne.fnal.gov/
Two basis! Mass and Flavor

And they Oscillate!

There are two basis:

Interaction (flavor) basis

$$\nu_\alpha, \alpha = e, \mu, \tau, 4, 5...N$$

http://lbne.fnal.gov/
Two basis! Mass and Flavor

And they Oscillate!

There are two basis:

Interaction (flavor) basis

\(\nu_\alpha, \ \alpha = e, \mu, \tau, 4, 5...N \)

Mass Basis

\(\nu_i, \ i = 1, 2, 3, ...N \)

http://lbne.fnal.gov/
Two basis! Mass and Flavor

And they Oscillate!

There are two basis:

Interaction (flavor) basis

\[\nu_{\alpha}, \quad \alpha = e, \mu, \tau, 4, 5...N \]

Mass Basis

\[\nu_i, \quad i = 1, 2, 3, ...N \]

http://lbne.fnal.gov/
Two basis! Mass and Flavor

And they Oscillate!

There are two basis:

\[\nu_\alpha = U_{\alpha i} \nu_i \]
Two basis! Mass and Flavor

And they Oscillate!

There are two basis:

\[\nu_\alpha = U_{\alpha i} \nu_i \]

http://lbne.fnal.gov/
U mixing is unitary. But parts of it not!

$U_{\alpha i}$

$\alpha = e, \mu, \tau, 4, 5...N$ \quad i = 1, 2, 3...N
U mixing is unitary. But parts of it not!

$$\alpha = e, \mu, \tau, 4, 5...N, \quad i = 1, 2, 3...N$$
U mixing is unitary. But parts of it not!

$\alpha = e, \mu, \tau, 4, 5...N, \ i = 1, 2, 3...N$

But,
U mixing is unitary. But parts of it not!

If $N > 3$ and $M_h \gg E_{\text{exp}}$

U mixing is unitary. But parts of it not!

If $N > 3$ and $M_h \gg E_{\text{exp}}$

$$U^{N \times N} = \begin{pmatrix} N & W \\ V & T \end{pmatrix}$$

U mixing is unitary. But parts of it not!

If $N > 3$ and $M_h >> E_{\text{exp}}$

$$U^{N \times N} = \begin{pmatrix} N & W \\ V & T \end{pmatrix}$$

If $N > 3$ and $M_h \gg E_{\text{exp}}$

$$U^{N \times N} = \begin{pmatrix} N & W \\ V & T \end{pmatrix}$$

U mixing is unitary. But parts of it not!

If $N > 3$ and $M_h >> E_{\text{exp}}$

$$U^{N \times N} = \begin{pmatrix} N & W \\ V & T \end{pmatrix}$$

Unitary

Non-Unitary

Acessible through Oscillation

Fear Not: only more 6 parameters needed!

It can be shown that 2:

$$N = \begin{pmatrix}
\alpha_{11} & 0 & 0 \\
\alpha_{21} & \alpha_{22} & 0 \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{pmatrix}.U_{PMNS}$$

Fear Not: only more 6 parameters needed!

It can be shown that\(^2\):

\[
N = \begin{pmatrix}
\alpha_{11} & 0 & 0 \\
\alpha_{21} & \alpha_{22} & 0 \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{pmatrix} \cdot U_{\text{PMNS}}
\]

Fear Not: only more 6 parameters needed!

It can be shown that:\(^2\):

\[
N = \begin{pmatrix}
\alpha_{11} & 0 & 0 \\
\alpha_{21} & \alpha_{22} & 0 \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{pmatrix} \cdot U_{PMNS}
\]

Total: 6 more parameters.

It can be shown that\(^2\):

\[
N = \begin{pmatrix}
\alpha_{11} & 0 & 0 \\
\alpha_{21} & \alpha_{22} & 0 \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{pmatrix} \cdot U_{\text{PMNS}}
\]

Total: 6 more parameters. 3 of them are real.
It can be shown that2

\[
N = \begin{pmatrix}
\alpha_{11} & 0 & 0 \\
\alpha_{21} & \alpha_{22} & 0 \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{pmatrix} \cdot U_{\text{PMNS}}
\]

Total: 6 more parameters. 3 of them are real.

Only 3 (α_{11}, α_{22} and α_{21}) are accessible through $\nu_{e(\mu)} \rightarrow \nu_{\mu(e)}$

In unitary: Probability add to 1

Neutrino Source

Unitary Propagation:

Neutrino Detector
In non-unitary: Probability Don’t add to 1

Unitary Propagation:

Non-Unitary Propagation:
Non-unitary basis is not Orthogonal!

Unitary

\[
\begin{align*}
\hat{x} & \quad \hat{y} \\
\hat{y} & \quad \hat{z} \\
\nu_e & \quad \nu_\mu \\
\nu_\tau &
\end{align*}
\]
Non-unitary basis is not Orthogonal!

Non-Unitary

\[\hat{x}, \hat{y}, \hat{z} \]

\[\nu_e, \nu_\mu, \nu_\tau \]
Non-unitary basis is not Orthogonal!

The three neutrino basis is not orthogonal!
This means that you can have 0-distance ‘oscillation’ (transition):

\[\text{F. Ge, P. Pasquini, et. al., ARXIV:1605.01670} \]
This means that you can have 0-distance ‘oscillation’ (transition):

$$\langle \nu_\alpha(0) | \nu_\beta(0) \rangle \neq 0$$

3 F. Ge, P. Pasquini, et. al., ARXIV:1605.01670
This means that you can have 0-distance ‘oscillation’ (transition):

\[\langle \nu_\alpha(0) | \nu_\beta(0) \rangle \neq 0\]

In fact, the \(\nu_\mu \rightarrow \nu_e\) transition probability changes to\(^3\),

\(^3\) F. Ge, P. Pasquini, et. al., ARXIV:1605.01670
New Phenomenon: 0-Distance and CP-phase

This means that you can have 0-distance ‘oscillation’ (transition):

\[\langle \nu_\alpha(0) | \nu_\beta(0) \rangle \neq 0 \]

In fact, the \(\nu_\mu \rightarrow \nu_e \) transition probability changes to\(^3\),

\[
P_{\mu e}^{NU} = \alpha_{11}^2 \left(\alpha_{22}^2 P_{\mu e} + 2\alpha_{22} \text{Re}(\alpha_{21}^* S_{ee} S_{e\mu}^*) + |\alpha_{21}|^2 P_{ee} \right)
\]

\(^3\) F. Ge, P. Pasquini, et. al., ARXIV:1605.01670
New Phenomenon: 0-Distance and CP-phase

This means that you can have 0-distance ‘oscillation’ (transition):

\[\langle \nu_\alpha(0) | \nu_\beta(0) \rangle \neq 0 \]

In fact, the \(\nu_\mu \rightarrow \nu_e \) transition probability changes to\(^3\),

\[
P_{\mu e}^{NU} = \alpha_{11}^2 \left[\alpha_{22}^2 P_{\mu e} + 2\alpha_{22} \text{Re}(\alpha_{21}^* S_{ee} S_{e\mu}^*) + |\alpha_{21}|^2 P_{ee} \right]
\]

\[
(S_{\alpha\beta} = \langle \nu_\alpha^{\text{unitary}}(L) | \nu_\beta^{\text{unitary}}(L) \rangle)
\]

\(^3\) F. Ge, P. Pasquini, et. al., ARXIV:1605.01670
This means that you can have 0-distance ‘oscillation’ (transition):

$$\langle \nu_\alpha(0) | \nu_\beta(0) \rangle \neq 0$$

In fact, the $\nu_\mu \rightarrow \nu_e$ transition probability changes to3,

$$P_{\mu e}^{NU} = \alpha_{11}^2 \left[\alpha_{22}^2 P_{\mu e} + 2 \alpha_{22} \text{Re}(\alpha_{21}^* S_{ee} S_{e\mu}^*) + |\alpha_{21}|^2 P_{ee} \right] \rightarrow \text{Survival Prob.}$$

$$P_{ee}(0) = 1$$

3 F. Ge, P. Pasquini, et. al., ARXIV:1605.01670
New Phenomenon: 0-Distance and CP-phase

This means that you can have 0-distance ‘oscillation’ (transition):

\[\langle \nu_\alpha(0) | \nu_\beta(0) \rangle \neq 0 \]

In fact, the \(\nu_\mu \rightarrow \nu_e \) transition probability changes to\(^3\),

\[
P_{\mu e}^{NU} = \alpha_{11}^2 \left[\alpha_{22}^2 P_{\mu e} + 2\alpha_{22} \text{Re}(\alpha_{21}^* S_{ee} S_{e\mu}^*) + |\alpha_{21}|^2 P_{ee} \right]
\]

Survival Prob. \(P_{ee}(0) = 1 \)

Complex parameter with a **new** CP phase (\(\phi \))!

\(^3\) F. Ge, P. Pasquini, et. al., ARXIV:1605.01670
Why do we care?

4 Miranda, O. G., et. al., ARXIV:1604.05690

Why do we care?

Non-unitary can lead to CP-phase ambiguity4!

4 Miranda, O. G., et. al., ARXIV:1604.05690

Why do we care?

Non-unitary can lead to CP-phase ambiguity4!

That’s because $|\alpha_{21}|$ can be as large as$^2 \sim 3\%$

4 Miranda, O. G., et. al., ARXIV:1604.05690

We can see that by two plots:

From: \(^3\) F. Ge, P. Pasquini, et. al., ARXIV:1605.01670
We can see that by two plots:

\[P_{\mu e} \text{ for differents } \delta_{CP} \text{ and } \phi. \]

From: F. Ge, P. Pasquini, et. al., ARXIV:1605.01670
We can see that by two plots:

\[P_{\mu e} \text{ for differents } \delta_{CP} \text{ and } \phi. \]

The ration \(R \) between the contributions of \(\delta_{CP} \) and \(\phi \) to \(P_{\mu e} \)

From: ³ F. Ge, P. Pasquini, et. al., ARXIV:1605.01670
\(\phi \) can mimic \(\delta_{CP} \)

We can see that by two plots:

\[\begin{align*}
P_{\mu e} & : \delta_{CP} = 0 \text{ and } \alpha_{21} = 0, \quad \delta_{CP} = 3\pi/2 \text{ and } \alpha_{21} = 0, \quad \delta_{CP} = 0 \text{ and } \alpha_{21} = 0.02 \\
R_{a} & : \alpha = 2.5\% \text{ and } R: \ c_{\phi} \text{ and } s_{\phi} \text{ and } c_{\phi+\delta} \text{ and } s_{\phi+\delta} \text{ contributions.}
\end{align*} \]

From: ³ F. Ge, P. Pasquini, et. al., ARXIV:1605.01670
T2(H)K experiment is awesome!

What about in Experimental Setup?

From:
Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
What about in Experimental Setup?

one of T2K and T2HK goal is to measure δ_{CP}

From: 5 Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
What about in Experimental Setup?

one of T2K and T2HK goal is to measure δ_{CP}

The experiment consists of neutrinos flux from pion decay at Tokay

From: 5 Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
Neutrinos from Pion Decay

Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
Another really nice technic is used:

protons

Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
Another really nice technic5 is used:

\begin{itemize}
\item protons
\item Graphite
\end{itemize}

\footnote{Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)}
Another really nice technic5 is used:

\textbf{Graphite}

\begin{align*}
\pi &\sim 94\% \\
K &\sim 6\%
\end{align*}

5 Abe, K. and others, PTEP \textbf{2015}, no. 4, 043C01 (2015)
T2(H)K experiment is awesome!

From: 5 Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
The detector:

From: 5 Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
The detector:

Super(Hyper)-K: a Huge water cherenkov detector at Kamioka

From: 5 Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
The detector:

Super(Hyper)-K: a Huge water cherenkov detector at Kamioka

Size: 50 kton (560 kton) and Base Line: 295 km

From: 5 Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
T2(H)K experiment is awesome!

From: Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
T2K and T2HK says they can measure the δ_{CP}:

From: 5 Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
T2K and T2HK cannot measure δ_{CP}

T2K and T2HK says they can measure the δ_{CP}:

From: 5 Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
T2K and T2HK says they can measure the δ_{CP}:

Or can they?

From: 5 Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
T2K and T2HK says they can measure the δ_{CP}:

Or can they?

We performed the analysis on T2K and T2HK considering non-unitary:

From: 5 Abe, K. and others, PTEP 2015, no. 4, 043C01 (2015)
T2K and T2HK cannot measure δ_{CP}

The effect of including non-unitarity at T2K [$\delta_{trueCP} = -90^\circ$, NH]

- Unitary
- Non-Unitary
- Non-Unitary + Prior

The effect of including non-unitarity at T2HK [$\delta_{trueCP} = -90^\circ$, NH]

- Unitary
- Non-Unitary
- Non-Unitary + Prior

From: F. Ge, P. Pasquini, et. al., ARXIV:1605.01670
Should we give up on T2(H)K δ_{CP}?

From: 6 J. Evslin at. al., JHEP 02, 137 (2016)
Should we give up on T2(H)K δ_{CP}?

Not yet!

From: 6 J. Evslin et al., JHEP 02, 137 (2016)
Should we give up on T2(H)K δ_{CP}?

Not yet!

There is a proposal6 to join the T2K ν-flux ($E \sim 600$ MeV)

From: 6 J. Evslin at. al., JHEP 02, 137 (2016)
Should we give up on T2(H)K δ_{CP}?

Not yet!

There is a proposal6 to join the T2K ν-flux ($E \sim 600$ MeV)

With a μ Decay At Rest neutrino flux at J-Park ($E \sim 50$ MeV)

From: 6 J. Evslin at. al., JHEP 02, 137 (2016)
Should we give up on T2(H)K δ_{CP}?

Not yet!

There is a proposal6 to join the T2K ν-flux ($E \sim 600$ MeV)

With a μ Decay At Rest neutrino flux at J-Park ($E \sim 50$ MeV)

Running both at the same time at Kamiokande!

From: 6 J. Evslin at. al., JHEP 02, 137 (2016)
Should we give up on T2(H)K δ_{CP}?

Not yet!

There is a proposal6 to join the T2K ν-flux ($E \sim 600$ MeV)

With a μ Decay At Rest neutrino flux at J-Park ($E \sim 50$ MeV)

Running both at the same time at Kamiokande!

So what happens to the δ_{CP} sensibility?

From: 6 J. Evslin at. al., JHEP 02, 137 (2016)
Should we give up on T2(H)K δ_{CP}?

The effect of including non-unitarity at T2K+μSK [$\delta_{CP}^{true} = -90^\circ$, NH]

The effect of including non-unitarity at T2HK+μHK [$\delta_{CP}^{true} = -90^\circ$, NH]

From: 6 J. Evslin at. al., JHEP 02, 137 (2016)
Non-unitary can mimic δ_{CP}
Non-unitary can mimic δ_{CP}

T2K and T2HK suffer from this and loses sensibility.
Non-unitary can mimic δ_{CP}

T2K and T2HK suffer from this and loses sensibility.

It is possible to recover T2(H)K sensibility by couple it to μDAR
Using a very near detector (20 m) to probe $P_{\mu e}(0) = |\alpha_{21}|^2$
Model Dependent Couplings

\[|\alpha_{11} \alpha_{21}| \]

\[M \text{ [GeV]} \]
DUNE Sensibility?

![Graph showing event rates and resolution for DUNE and T2K experiments.]

- **DUNE (1300 km)**
 - 3 σ Resolution
 - \(L/E = 550 \)

- **T2K (12y on \(\nu_e \)) [L=295 km]**
 - Event Rate \([\text{MeV}^{-1}]\)