Some Possible sources of IceCube TeV-PeV neutrino events

Luis Salvador Miranda Palacios¹

Adviser: Dr. Sarira Sahu¹

¹Instituto de Ciencias Nucleares (ICN), UNAM, México.

5 August 2016

NBIA PhD School

Neutrino Underground and in the Heavens II

Salvador Miranda (ICN,UNAM)

Neutrino Underground and in the Heavens II

Index

2 Abstract

- Introduction
- Photohadronic Model
- 5 Results
- 6 Conclusions

Bibliography

Abstract

We show that 12 high energy blazars and the position of FR-I galaxy Centaurus A coincide within the error circle of ten IceCube events. We propose that photohadronic interactions of the the Fermi accelerated high energy protons with the synchrotron/SSC background photons in the nuclear region of these high energy blazars are probably responsible for some of the observed IceCube events.

< 同 ト < 三 ト < 三 ト

Introduction

- In November 2012 the IceCube Collaboration announced the detection of two shower like events slightly above 1 PeV taken during May 2010-May 2012 [M. G. Aartsen et al, Phys. Rev. Lett. 111, 021103 (2013)]
- A follow-up analysis published in November 2013 revealed additional 26 events in the energy range ~30 to 250 TeV, in total 21 are shower like and 7 muon track events [M. G. Aartsen et al. Science 342, no. 6161, 1242856 (2013)]
- The third year (2012-2013) revealed additionally nine events, of which two are track events and the rest are shower events. The 35 is the most energetic one so far observed (2004⁺²³⁶₋₂₆₂ TeV) [M. G. Aartsen et al. Phys. Rev. Lett. 113, 101101 (2014)].

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

• These events have flavors, directions and energies inconsistent with those expected from the atmospheric muon and neutrino background.

Figure 1: 37 IceCube events in EC

Salvador Miranda (ICN,UNAM)

Neutrino Underground and in the Heavens II

Photohadronic Model

- One group of AGN include HBL and FRI-galaxies viewed at different angles respect to the jet axis.[J. K. Becker, Phys. Rept. 458, 173 (2008)]
- The AGNs are efficient accelerators of particles through shock or diffusive Fermi acceleration processes and the photohadronic processes are proposed to explain multi-TeV emissions.
- Protons can reach ultra high energy and produce pion production via:

$$p\gamma \longrightarrow \triangle^+ \longrightarrow \begin{cases} p\pi^0 & \text{fracción 2/3} \\ n\pi^+ & \text{fracción 1/3} \end{cases}$$
 (1)

A B F A B F

Spectral Energy Distribution

Figure 2: SED

Salvador Miranda (ICN,UNAM)

Neutrino Underground and in the Heavens II

5 August 2016 7 / 18

-

• I > • = • •

- We propose that the multi-TeV flaring in a blazar occurs within a compact inner region ($R'_f < R'_b$) that overcomes the problem of photon density low, taking $\tau_{p\gamma} \sim 1$
- The observed seed photon and proton energies are correlated via the kinematical condition by the equation:

$$E_{\rho}\epsilon_{\gamma} = 0.32 \frac{\Gamma \delta}{(1+z)^2} GeV^2$$
⁽²⁾

• The individual neutrino is $E_{\nu} = E_{p}/20$. This gives:

$$E_{\nu}\epsilon_{\gamma} = 0.016 \frac{\Gamma\delta}{(1+z)^2} GeV^2$$
(3)

Figure 3: Internal Jet

Salvador Miranda (ICN,UNAM) Neutrino Underground and in the Heavens II 5 August 2016 9 / 18

イロト イヨト イヨト イヨト

12

Results

 We found coincidence of 12 HBLs and Cen A within the error circles of ten IceCube events, taken from the online catalog TeVCaT [http://tevcat.uchicago.edu/]

- We neglect events 25 and 34 , estimate the radius of the inner blob $R_s < R'_f < R'_b$ and an optical depth of $\tau_{p\gamma} \sim 0.01$ and $n'_{\gamma,f} \sim 2x10R'_{f,15}cm^{-3}$.
- For all neutrino flavors α we assume [R. Moharana and S. Razzaque, JCAP 1508 (2015) no.08, 014]:

$$J_{\nu_{\alpha}}(E_{\nu}) = A_{\nu_{\alpha}} \left(\frac{E_{\nu}}{100 \,\text{TeV}}\right)^{-\kappa} \tag{4}$$

and the neutrino flux:

$$F_{\nu} = \sum_{\alpha} \int_{E_{\nu_1}(1+z)}^{E_{\nu_2}(1+z)} dE_{\nu} E_{\nu} J_{\nu_{\alpha}}(E_{\nu})$$
(5)

Using 988 days data, limits from 25 TeV to 2.2 PeV.

(6)

Object	ID	$\frac{E_{\nu}}{T_{0}V}$	$\frac{\epsilon \gamma}{k \alpha V}$	$R'_{f,15}$	$R'_{h \ 15}$	n' 10	F_{ν_1-9}	$\delta \chi^2$
$(Dec,RA);z,\delta$		161	NC V	7,15	0,15	-,,,,,	-, -	
RGBJ0152+017[1]	1	47.6	179.	0.9	1.5	2.2	2.41	0.24
(1.77,28.14);0.08,25								
H2356-309[2]	7	34.3	111.	0.5	3.4	4.0	2.38	0.66
(-30.62,358.79); 0.165, 18	10	97.2	39.					0.47
	21	30.2	125.					0.29
SHBLJ001355.9 [3]	21	30.2	45.	1.0	35.	2.0	2.41	0.13
(-18.89,3.46);0.095,10								
KUV00311-1938	21	30.2	-	-	-	-	-	0.05
(-19.35,8.39);-,-								
Mrk421 [4]	9	63.2	46.	3.0	7.0	0.7	2.43	0.61
(38.19,166.01); 0.031, 14								
1ES1011+496 [5]	9	63.2	69.	5.0	10.	0.4	2.36	0.94
(49.43,153.77);0.212,20								
PKS2005-489 [6]	12	104.	31.	5.0	400.	0.4	2.42	0.33
(-48.83,302.36);0.071,15	15	57.5	53.					0.25
PG1553+113 [7]	17	200.	50.	3.0	10.	0.7	2.29	0.59
(11.19,238.94);0.4,35								
Mrk180 [8]	31	42.5	34.	5.0	20.	0.4	2.43	0.18
(70.16,174.11);0.045,10								
1ES0502+675 [9]	31	42.5	35.	5.0	10.	0.4	2.31	0.66
(67.62,76.98);0.341,13								
RGBJ0710+591 [10]	31	42.5	267.	5.0	20.	0.4	2.39	0.77
(59.15,107.61);0.125,30								
1ES1312-423 [11]	35	2004.	0.32	5.0	240.	0.4	2.40	0.85
(-42.6,198.75);0.105,7.								
Cen A (FR-I) [12]	35	2004.	0.056	0.6	3.0	3.3	2.45	0.73
(-43.01,201.36);.00183,1								

Salvador Miranda (ICN,UNAM)

Neutrino Underground and in the Heavens II

5 August 2016 12/18

★ロト ★週 ト ★注 ト ★注 ト 一注

The mean free paths for the TeV-PeV photons satisfy α_{γγ} >> R'_f so there will be negligible attenuation in the inner region.

Results

• We made a statistical analysis to look for the correlation between the IceCube events and the 42 TeV emitting HBL and Cen A from the TeVCat. We use the quantity $\delta\chi_i^2 = min(\gamma_{ij}^2/\delta\gamma_i^2)$ [R. Moharana and S. Razzaque, JCAP 1508 (2015) no.08, 014].

Salvador Miranda (ICN,UNAM)

Neutrino Underground and in the Heavens II

- Two statistics with the ICeCube events $\leq 40^{\circ}$ and $\leq 20^{\circ}$ respectively.
- But we there is no significant correlation between IceCube events and the 42 events in the TeV Catalog.

Conclusions

- We found coincidence of 12 HBLs and one FR-I galaxy Cen A position within the error circles of ten iceCube events.
- We propose the photohadronic model interpretation for some of the IceCube events and their chances.
- From the statistical analysis we found no significant correlation between the Icecube events and the TeVCat sample.
- Years of data taking are necessary to confirm or refute then positional correlations of the HBIs/AGN with the IceCube events.
- Work published in: S. Sahu and L. S. Miranda, Eur. Phys. J. C 75, no. 6, 273 (2015).

Salvador Miranda (ICN,UNAM)

3

イロト イポト イヨト イヨト

Bibliography

Bibliography I

- [1] F. Aharonian [HESS Collaboration], Astron. Astrophys. 481, L103 (2008).
- [2] F. Aharonian et al. [H.E.S.S. Collaboration], Astron. Astrophys. 455, 461 (2006).
- [3] A. Abramowski et al. [HESS Collaboration], Astron. Astrophys. 554, A72 (2013).
- [4] M. Blazejowski, G. Blaylock, I. H. Bond, S. M. Bradbury, J. H. Buckley, D. A. Carter-Lewis, O. Celik and P. Cogan *et al.*, Astrophys. J. 630, 130 (2005).
- [5] J. Albert et al. [MAGIC Collaboration], Astrophys. J. 667, L21 (2007).
- [6] A. Abramowski et al. [H.E.S.S. Collaboration], Astron. Astrophys. 533, A110 (2011).
- [7] J. Aleksic et al. [MAGIC Collaboration], Astrophys. J. 748, 46 (2012).
- [8] L. Costamante and G. Ghisellini, Astron. Astrophys. 384, 56 (2002) [astro-ph/0112201].
- [9] K. Katarzynski, Astron. Astrophys. 537, A47 (2012) [arXiv:1110.5993 [astro-ph.CO]].
- [10] V. A. Acciari, E. Aliu, T. Arlen, T. Aune, M. Bautista, M. Beilicke, W. Benbow and M. Bottcher *et al.*, Astrophys. J. 715, L49 (2010) [arXiv:1005.0041 [astro-ph.HE]].
- [11] A. Abramowski et al. [HESS Collaboration], arXiv:1306.3186 [astro-ph.HE].
- [12] S. Sahu, B. Zhang and N. Fraija, Phys. Rev. D 85, 043012 (2012).
- [13] R. U. Abbasi et al. [Telescope Array Collaboration], Astrophys. J. 790, L21 (2014).

3

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

THE GROUP:

Salvador Miranda (ICN,UNAM) Neutrino Underground and in the Heavens II

5 August 2016 17 / 18

∃ ► 4 Ξ

< **1** → <

Salvador Miranda (ICN,UNAM) Neutrino Underground and in the Heavens II

5 August 2016 18 / 18

- Tel - 1