1 FCNC in the lepton sector

1. Consider the SM leptons with the dimension six operator:

$$\mathcal{L} = -\frac{\lambda'}{\Lambda^2} H^{\dagger} H \bar{L} H e \tag{1}$$

Derive the condition to generate FCNC Higgs couplings after EWSB.

- 2. Show why one spurion of the leptonic flavor group, $SU(3)^2$, is not enough to generate lepton flavor-changing couplings.
- 3. Find the predictions of models with Natural Flavor Conservation (NFC) for $\mu_{\tau^+\tau^-}$, $X_{\mu^+\mu^-}$ and $X_{\tau\mu}$.
- 4. Estimate the ratio $(|Y_{e\mu}^{h}|^{2}+|Y_{\mu e}^{h}|^{2})/(|Y_{\mu \tau}^{h}|^{2}+|Y_{\tau \mu}^{h}|^{2})$ in the FN framework. The upper bound on BR $(\mu \rightarrow e\gamma)$ requires $\sqrt{|Y_{e\mu}^{h}|^{2}+|Y_{\mu e}^{h}|^{2}} \leq 1.2 \times 10^{-6}$. Estimate the corresponding upper bound on BR $(h \rightarrow \tau \mu)$ in the FN framework

2 VLQ mixing with SM fermions

In class we derived the effective operators generated by integrating out heavy vector-like B, B^c quarks.

- 1. The number of different VLQ representations that can couple to the SM quarks is rather small. Find these representations.
- 2. Another way to analyse a model of VLQ is to study the mixing of the new fields with SM quarks. Consider $D \sim (3,2)_{1/6}$ and $D^c \sim (\bar{3},\bar{2})_{-1/6}$, and write the most general renormalizable Lagrangian terms which involve D, D^c and SM fields. How many physical parameters are in the model?

- 3. In the following we assume that D, D^c couples only to third generation quarks. After EWSB D and D^c mix with the SM fields. Find θ_L and θ_R in terms of the Lagrangian parameters. Direct searches for D, D^c dictate that $M_D \gg v$ should hold. Write the leading terms for the mixing angles in v/M_D expansion.
- 4. Are there any FCNC in the model? Base your answer on symmetry arguments.
- 5. Find the Higgs and gauge bosons couplings to quarks. What are the modifications with respect to the SM predictions?
- 6. Consider the CKM 3×3 matrix for the light quarks. Is it still Unitary?
- 7. Discuss the experimental constraints on the model (no explicit calculation is required). Estimate the resulting limit on $M_D/|\lambda_3|$.