Determination of $|V_{ub}|$ using the Baryonic decays $\Lambda_b \rightarrow p \mu \nu$ and $\Lambda_b \rightarrow \Lambda_c \mu^- \nu_\mu$

LHCb Approval

Ulrik Egede, Patrick Owen, William Sutcliffe

Imperial College London

February 26, 2015

伺下 イヨト イヨト

1. Introduction

The $|V_{ub}|$ puzzle

LHCb Approval

 $\begin{array}{c} < \blacksquare \\ \hline \\ V_{ub} \end{array} \begin{array}{c} \hline \\ \text{from } \Lambda_b \\ \rightarrow \\ p \mu \nu \end{array}$

Why is $|V_{ub}|$ important?

- $|V_{ub}|$ is orthogonal to γ in constraining the UT.
- \bullet An inconsistency between $|V_{ub}|$ and β could signal new physics.

• Could a right handed current explain the $|V_{ub}|$ puzzle?

< <>></>

- - E + - E +

What makes $|V_{ub}|$ possible at LHCb.

- Less final state protons + excellent proton PID $(\Lambda_b \rightarrow p \mu^- \nu_\mu)$.
- Use of the corrected mass and its associated uncertainty..
- Effective control of q^2 uncertainty.
- Ability to effectively isolate our signal.
- Existing measurement for $\mathcal{B}(\Lambda_c \to pK\pi)$.

2. Strategy

Analysis strategy

The strategy is to normalise Λ_b→ pµν to Λ_b→ Λ_c(→ pKπ)µν in the high q² region.

$$\frac{\mathcal{B}(\Lambda_b \to p\mu^-\overline{\nu}_\mu)_{q^2 > 15 \text{ GeV}^2/c^4}}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu \nu)_{q^2 > 7 \text{ GeV}^2/c^4}} = \frac{\mathcal{N}(\Lambda_b \to p\mu^-\overline{\nu}_\mu)_{q^2 > 15 \text{ GeV}^2/c^4}}{\mathcal{N}(\Lambda_b \to (\Lambda_c \to pK^-\pi^+)\mu \nu)_{q^2 > 7 \text{ GeV}^2/c^4}} \\ \times \frac{\epsilon(\Lambda_b \to (\Lambda_c \to pK^-\pi^+)\mu \nu)_{q^2 > 15 \text{ GeV}^2/c^4}}{\epsilon(\Lambda_b \to p\mu^-\overline{\nu}_\mu)_{q^2 > 15 \text{ GeV}^2/c^4}} \\ \times \mathcal{B}(\Lambda_c \to pK^-\pi^+) \\ R_{exp} = R_{theory} \frac{|V_{ub}|^2}{|V_{cb}|^2}$$

- Yields N fitted using corrected mass.
- Relative efficiency obtained from simulation.

• • = • • = • =

Theory ratio

• Use the latest Lattice results for these decays to calculate:

LHCb Approval

William Sutcliffe

Datasets and preselection

- 2012 dataset, 2fb⁻¹ for $\Lambda_b \rightarrow p\mu^- \nu_\mu$ and 1fb⁻¹ for $\Lambda_b \rightarrow \Lambda_c \mu^- \nu_\mu$.
- Stripping S20r0p2 StrippingLb2pMuNuVub Module
- Tight Proton PID and momentum cuts (DLL(*p* − *K*) > 10 & DLL(*p* − *π*) > 10 & *P* > 15000 MeV/*c*).
- Trigger decisions: L0Muon & (Hlt2SingleMuon || Hlt2TopoMu2Body) + TOS on these.
- \sim 16 MC samples (filtered + unfiltered for signal and normalisation)

• • = • • = • =

Selection

- Isolation BDT removes backgrounds with additional charged tracks that could vertex with $p\mu$ candidate.
 - Applied also to normalisation channel (ignoring kaon and pion).
- Fit the corrected mass: $M_{corr} = \sqrt{p_{\mathrm{T}}^2 + M_{p\mu}^2 + p_{\mathrm{T}}}$
- Determine the corrected mass uncertainty, $\sigma_{M_{corr}}$.
- Cut at $\sigma_{M_{corr}} < 100 \, {\rm MeV}/c^2$. Link

600

q^2 Selection

- Reconstruct neutrino and hence q^2 up to a 2-fold ambiguity.
- Cut on both solutions $> q_{cut}^2$ to minimise inwards migration.

4. Normalisation fit

Normalisation fit

- Fit $pK\pi\mu$ corrected mass to determine $N(\Lambda_b \rightarrow \Lambda_c(\rightarrow pK\pi)\mu\nu)$.
- Non- Λ_c background shape and size obtained from $pK\pi$ fit.

Rate dominated by Λ_b → Λ_cμν, Λ_b → Λ^{*}_c(2595) + μν and Λ_b → Λ^{*}_c(2625) + μν.
Fit yields N(Λ_b→ Λ_cμ⁻ν_μ) = 34255 ± 571.

Data Driven Constraints

• Reconstruct a number of modes: $\Lambda_b \to (D^0 \to K\pi)p\mu^-\overline{\nu}_{\mu}$, $\Lambda_b \to (\Lambda_c \to pK^+\pi^-)\mu^-\overline{\nu}_{\mu}$ and $\Lambda_b \to (\Lambda_c \to pK^0)\mu^-\overline{\nu}_{\mu}$.

- $K/\pi \rightarrow p$ Miss ID (6 pb⁻¹ no p PID)
- Combinatorial from SS data.
- $R(\Lambda_c^*)$, $P_{pK^0\pi^0}$ and $P_{pK^0\eta}$.

LHCb Approval

William Sutcliffe

 V_{ub} from $\Lambda_b \to \rho \mu \nu$

Signal fit Model (26 parameters)

$$\Lambda_b \rightarrow p \mu^- \nu_\mu$$
:
N($\Lambda_b \rightarrow p \mu^- \nu_\mu$)

 $\begin{array}{c} \Lambda_{b} \to N^{*} \mu^{-} \nu_{\mu} \text{:} \\ R_{N(1440)} \\ R_{N(1520)} \\ R_{N(1535)} \\ R_{N(1720)} \end{array}$

 $\begin{array}{l} \Lambda_b \rightarrow \Lambda_c \mu^- \nu_\mu, \mbox{ pX neutrals:} \\ N(\Lambda_b \rightarrow (\Lambda_c \rightarrow p K^0) \mu^- \overline{\nu}_\mu), \\ R_{p K^0 \pi^0}, R_{p K^0 \eta}, P_{p K^0 \pi^0}, P_{p K^0 \eta} \\ R_{p \pi^0}, R_{p \eta}, R_{p \eta'} \\ R_{\Delta^+ \pi^0}, R_{\Delta^+ \eta}, R_{\Delta^+ \eta'} \end{array}$

$$\begin{split} &\Lambda_b \to \Lambda_c \mu^- \nu_{\mu}, \text{ pX charged:} \\ &\mathsf{N}(\Lambda_b \to (\Lambda_c \to pK^+\pi^-)\mu^-\overline{\nu}_{\mu}), \\ &R_{pK^0\pi^+\pi^-}, R_{pK^-\pi^+\pi^0}, R_{pK^{*-}\pi^+} \\ &R_{pK^-\pi^+\pi^0\pi^0}, R_{p\pi^-\pi^+}, R_{other} \end{split}$$

 $\Lambda_b \to \Lambda_c^* \mu^- \nu_\mu$: $R(\Lambda_c^*)$

$$egin{aligned} &\Lambda_b o D^0 p \mu^- \overline{
u}_\mu &: \ &N(\Lambda_b o D^0 p \mu^- \overline{
u}_\mu) \end{aligned}$$

 $K/\pi
ightarrow p$ Miss ID: N_{MID}

Combinatorial: *N_{comb}*

LHCb Approval

William Sutcliffe

 V_{ub} from $\Lambda_b \to p \mu \nu$

Signal fit

- Measure a signal yield of $N(\Lambda_b \rightarrow p \mu^- \nu_\mu) = 17687 \pm 733$
- First observation of $\Lambda_b \rightarrow p \mu^- \nu_\mu$ decays.

Relative efficiency

- Relative efficiency obtained from simulation.
- Main difference due to pion and kaon reconstruction for Λ_c .

Source	Relative efficiency & Slide	
DecProdCut	0.645	
Stripping & Trigger	8.71	
$m_{ m corr}$ error	0.228	31
Truth matching	1.04 ± 0.001	
Isolation	1.049 ± 0.014	32
PID	1.173 ± 0.002	33
Tracking corr	0.995 ± 0.03	34
Trigger corr	1.032 ± 0.032	35
Λ_b production	1.073 ± 0.005	36
Λ_c decay model	0.998 ± 0.03	37
Λ_b lifetime	1.042 ± 0.015	38
q ² migration	0.95 ± 0.004	39
Form factor corr	0.985 ± 0.01	40
Total	1.76 ± 0.10	

イロト 不得下 イヨト イヨト 二日

Systematic uncertainties

Source	Relative uncertainty (%)	Slide
$\mathcal{B}(\Lambda_c o pK\pi)$	+4.7 -5.3	arXiv:1312.7826
Trigger	± 3.2	35
Tracking	± 3.0	34
Λ_c decay model	3.0%	37
N^{*+} form factors	2.2%	41
$\Lambda_c \& \Lambda_b$ lifetimes	1.5%	38
Isolation	1.4%	32
Form factor	1.0%	40
N^{*+} widths	0.7%	42
Λ_b production	0.5%	36
q ² migration	0.4%	39
PID	0.2%	33
Truth matching	0.1%	

イロト イヨト イヨト イヨト

Measurement of the ratio of branching fractions

$$\begin{aligned} \frac{\mathcal{B}(\Lambda_b \to p\mu^- \overline{\nu}_\mu)_{q^2 > 15 \,\mathrm{GeV}^2/c^4}}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu \nu)_{q^2 > 7 \,\mathrm{GeV}^2/c^4}} = & \frac{\mathcal{N}(\Lambda_b \to p\mu^- \overline{\nu}_\mu)_{q^2 > 15 \,\mathrm{GeV}^2/c^4}}{\mathcal{N}(\Lambda_b \to (\Lambda_c \to pK^- \pi^+)\mu \nu)_{q^2 > 7 \,\mathrm{GeV}^2/c^4}} \\ & \times \frac{\epsilon(\Lambda_b \to p\mu^- \nu_\mu)}{\epsilon(\Lambda_b \to \Lambda_c \mu^- \nu_\mu)} \mathcal{B}(\Lambda_c \to pK^- \pi^+) \\ = & (1.00 \pm 0.04(stat) \pm 0.08(syst)) \times 10^{-2} \end{aligned}$$

Result	Value	Slide
$N(\Lambda_b ightarrow p \mu^- u_\mu)$	$17687 \pm 733(\textit{stat}) \pm 408(\textit{syst})$	13
$N(\Lambda_b \rightarrow \Lambda_c \mu^- \nu_\mu)$	$68510\pm1142(\textit{stat})$	4
$\epsilon(\Lambda_b \to \rho \mu^- \nu_\mu)/\epsilon(\Lambda_b \to \Lambda_c \mu^- \nu_\mu)$	$1.76\pm0.10(syst)$	15
$\mathcal{B}(\Lambda_c o pK\pi)$	$0.0684^{+4.7}_{-5.3}(syst)$	arXiv:1312.7826

イロト イヨト イヨト イヨト

Measurement of $\mathcal{B}(\Lambda_b \rightarrow p \mu^- \nu_\mu)$

• Use theory to extrapolate to a full branching fraction for $\Lambda_b \rightarrow p \mu^- \nu_{\mu}$.

$$\mathcal{B}(\Lambda_b \to p\mu^-\overline{\nu}_{\mu}) = \tau_{\Lambda_b}|V_{cb}|^2 \mathcal{F}_{theory} \frac{\mathcal{B}(\Lambda_b \to p\mu^-\overline{\nu}_{\mu})_{q^2 > 15 \,\mathrm{GeV}^2/c^4}}{\mathcal{B}(\Lambda_b \to \Lambda_c\mu^-\overline{\nu}_{\mu})_{q^2 > 7 \,\mathrm{GeV}^2/c^4}}$$

• Constraint on $\Lambda_b \rightarrow p \mu^- \nu_\mu$ as a background for the decay $B_s \rightarrow \mu \mu$.

L

Measurement of $\left| \mathrm{V}_{\mathrm{ub}} \right|$

LHCb Approval

 V_{ub} from $\Lambda_b \to p \mu \nu$

Measurement of $|V_{ub}|$

 $|V_{ub}| = (3.27 \pm 0.07(stat) \pm 0.13(syst) \pm 0.15(theory) \pm 0.06(|V_{cb}|)) \times 10^{-3}$

LHCb Approval

 V_{ub} from $\Lambda_b \to p \mu \nu$

Implications

- 6.7% uncertainty on $|V_{ub}|$ (8.8% current exclusive average).
- Value obtained is 3.7σ below the inclusive average.
- Can check the consistency of our $|V_{ub}|/|V_{cb}|$ with $\beta = 22.5 \pm \frac{0.8}{0.7}$.
- Our results appear to disfavour a right handed current.

Conclusion

- We measure the ratio of branching fractions of $\Lambda_b \rightarrow p \mu^- \nu_\mu$ and $\Lambda_b \rightarrow \Lambda_c \mu^- \nu_\mu$ at high q^2 .
- First observation of $\Lambda_b \rightarrow p \mu^- \nu_{\mu}$.
- Provide a constraint on $\mathcal{B}(\Lambda_b \rightarrow p\mu^- \nu_\mu)$ for $B_s \rightarrow \mu\mu$ analyses.
- From this we determine: $|V_{ub}| =$ (3.27 ± 0.07(*stat*) ± 0.13(*syst*) ± 0.15(*theory*) ± 0.06($|V_{cb}|$)) × 10⁻³
- Our measurement is 3.7σ below the inclusive measurement reinforcing the $|V_{ub}|$ puzzle.
- Interesting prospects for exploring the implications on the UT and right handed currents.

• • = • • = • =

Form Factor Definitions

A. New definition (helicity form factors)

This definition is as in Ref. [1].

$$\begin{split} \langle X(p')|\overline{q}\,\gamma^{\mu}\,b|\Lambda_{b}(p)\rangle &= \overline{u}_{X} \left[f_{0}\left(m_{\Lambda_{b}} - m_{X}\right) \frac{q^{\mu}}{q^{2}} \\ &+ f_{+} \frac{m_{\Lambda_{b}} + m_{X}}{s_{+}} \left(p^{\mu} + p'^{\mu} - \left(m_{\Lambda_{b}}^{2} - m_{X}^{2}\right) \frac{q^{\mu}}{q^{2}} \right) \\ &+ f_{\perp} \left(\gamma^{\mu} - \frac{2m_{X}}{s_{+}} p^{\mu} - \frac{2m_{\Lambda_{b}}}{s_{+}} p'^{\mu} \right) \right] u_{\Lambda_{b}}, \end{split}$$
(1)

$$\begin{aligned} \langle X(p') | \overline{q} \gamma^{\mu} \gamma_{5} b | \Lambda_{b}(p) \rangle &= -\overline{u}_{X} \gamma_{5} \left[g_{0} \left(m_{\Lambda_{b}} + m_{X} \right) \frac{q}{q^{2}} \right. \\ &+ g_{+} \frac{m_{\Lambda_{b}} - m_{X}}{s_{-}} \left(p^{\mu} + p'^{\mu} - \left(m_{\Lambda_{b}}^{2} - m_{X}^{2} \right) \frac{q^{\mu}}{q^{2}} \right) \\ &+ g_{\perp} \left(\gamma^{\mu} + \frac{2m_{X}}{s_{-}} p^{\mu} - \frac{2m_{\Lambda_{b}}}{s_{-}} p'^{\mu} \right) \right] u_{\Lambda_{b}}, \end{aligned}$$

$$(2)$$

where q = p - p' and

$$s_{\pm} = (m_{\Lambda b} \pm m_X)^2 - q^2.$$
(3)

 V_{ub} from $\Lambda_b \rightarrow p \mu \nu$

Form Factor Parametrisation

II. FINAL RESULTS

The form factors in the physical limit are parametrized using

$$f(q^2) = \frac{1}{1 - q^2/(m_{\text{pole}}^f)^2} [a_0^f + a_1^f z(q^2)], \qquad (15)$$

with

$$z(q^2) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}},$$
(16)

$$t_{+} = (m_{\Lambda_b} + m_X)^2$$
, (17)

$$t_0 = (m_{\Lambda b} - m_X)^2$$
, (18)

The pole masses are fixed to the exact values in Table I. Because of the constraint (14), which is at the point z = 0 for our choice of t_0 , the form factors g_{\perp} and g_{\perp} share the common parameter $a_0^{g_{\perp},g_{\perp}}$. The central values and covariances of the fit parameters are provided in data files.

Equation (15) and the corresponding parameters are referred to as the main fit. To estimate systematic uncertainties we also provide a higher-order fit (HO fit). The HO fit has the form

$$f_{\rm HO}(q^2) = \frac{1}{1 - q^2/(m_{\rm pole}^f)^2} \left[a_{0,\rm HO}^f + a_{1,\rm HO}^f \, z(q^2) + a_{2,\rm HO}^f \, z^2(q^2) \right]. \tag{19}$$

Form factor	J^P	$m_{\text{pole}}(\Lambda_b \rightarrow p)$	$m_{\text{pole}}(\Lambda_b \rightarrow \Lambda_c)$
f_+, f_\perp	1-	5.325	6.332
fo	0 ⁺	5.656	6.725
g_+, g_\perp	1+	5.706	6.768
g_0	0-	5.279	6.276

TABLE I. . Masses (in GeV) of the relevant form factor poles in the physical limit.

イロン イ団と イヨン イヨン

Differential Branching Fraction and Theory Systematics

We define

$$s_{\pm} = (m_{\Lambda_b} \pm m_X)^2 - q^2.$$
 (23)

The differential decay rate is

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{qb}|^2 \sqrt{s_+ s_-}}{768 \pi^3 m_{\Lambda_b}^3} \left(1 - \frac{m_l^2}{q^2}\right)^2 \\ \times \left\{ 4 \left(m_l^2 + 2q^2\right) \left(s_+ \left[g_{\perp}\right]^2 + s_- \left[f_{\perp}\right]^2\right) \\ + 2 \frac{m_l^2 + 2q^2}{q^2} \left(s_+ \left[(m_{\Lambda_b} - m_X) g_+\right]^2 + s_- \left[(m_{\Lambda_b} + m_X) f_+\right]^2\right) \\ + \frac{6m_l^2}{q^2} \left(s_+ \left[(m_{\Lambda_b} - m_X) f_0\right]^2 + s_- \left[(m_{\Lambda_b} + m_X) g_0\right]^2\right) \right\}.$$
(24)

3. The final result for the observable is given by

$$O \pm \underbrace{\sigma_O}_{\text{stat.}} \pm \underbrace{\max\left(|O_{HO} - O|, \sqrt{|\sigma_{O,HO}^2 - \sigma_O^2|}\right)}_{\text{syst.}}.$$
 (22)

 V_{ub} from $\Lambda_b \to p \mu \nu$

メロト 不得下 イヨト イヨト 二日

Branching Fraction Extrapolation Factor

$$\begin{split} \mathcal{B}(\Lambda_b \to p\mu^- \overline{\nu}_{\mu}) = &\tau_{\Lambda_b} \frac{\mathcal{B}(\Lambda_b \to p\mu^- \overline{\nu}_{\mu})_{q^2 > 15 \,\mathrm{GeV}^2/c^4}}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu^- \overline{\nu}_{\mu})_{q^2 > 7 \,\mathrm{GeV}^2/c^4}} |V_{cb}|^2 F_{theory} \\ = &\tau_{Lb} \mathcal{B}_{ratio} |V_{cb}|^2 \int_{7 \,\mathrm{GeV}^2/c^4}^{q'_{max}} \frac{d\Gamma(\Lambda_b \to \Lambda_c \mu^- \overline{\nu}_{\mu})}{dq^2} / |V_{cb}|^2 dq^2 \\ &(1) \\ &\frac{\int_{0 \,\mathrm{GeV}^2/c^4}^{q_{max}} \frac{d\Gamma(\Lambda_b \to p\mu^- \overline{\nu}_{\mu})}{dq^2} / |V_{ub}|^2 dq^2}{\int_{15 \,\mathrm{GeV}^2/c^4}^{q_{max}} \frac{d\Gamma(\Lambda_b \to p\mu^- \overline{\nu}_{\mu})}{dq^2} / |V_{ub}|^2 dq^2} \end{split}$$

 V_{ub} from $\Lambda_b
ightarrow p \mu \nu$

MC Samples

Decay	Stats	B Decay Model
$\Lambda_b o \Lambda_c^+ \mu^- \overline{ u}, \ \Lambda_c^+ o p X$ Neutral	3m filt	EvtLb2BaryonInu
$\Lambda_b o \Lambda_c^+ \mu^- \overline{ u}, \ \Lambda_c^+ o p X$ Charged	3m filt	EvtLb2BaryonInu
$\Lambda_b \to \Lambda_c^+ \mu^- \overline{ u}, \ \Lambda_c^+ \to p K \pi$ Normalisation	0.6m filt	EvtLb2BaryonInu
$\Lambda_b o \Lambda_c^+ au^- \overline{ u}$, $\Lambda_c^+ o p K \pi$ Normalisation	0.05m filt	EvtLb2BaryonInu
$\Lambda_b o \Lambda_c \pi^+ \pi^- \mu^- \overline{ u}, \ \Lambda_c^+ o p X$	0.15m filt	EvtPHSP
$\Lambda_b o \Lambda_c \pi^0 \pi^0 \mu^- \overline{ u}, \ \Lambda_c^+ o p X$	0.15m filt	EvtPHSP
$\Lambda_b o \Lambda_c \pi^0 \mu^- \overline{ u}$, $\Lambda_c^+ o ho X$	0.15m filt	EvtPHSP
$\Lambda_b o \Lambda_c(2625) \mu^- \overline{ u}, \ \Lambda_c^+ o p X$	0.6m filt	EvtLb2BaryonInu
$\Lambda_b o \Lambda_c(2595) \mu^- \overline{ u}, \ \Lambda_c^+ o p X$	0.3m filt	EvtLb2BaryonInu
$\Lambda_b o \Lambda_c(2625) \mu^- \overline{ u}, \Lambda_c^+ o ho K \pi$	0.1m filt	EvtLb2BaryonInu
$\Lambda_b o \Lambda_c(2595) \mu^- \overline{ u}, \Lambda_c^+ o ho K \pi$	0.1m filt	EvtLb2BaryonInu
$\Lambda_b ightarrow D^0 p \mu^- \overline{ u}$	0.6m filt	EvtPHSP
$\Lambda_b o p \mu^- \overline{ u}$	0.6m filt	EvtLb2pInuLQCD
$arLambda_{b} o {\sf N}^{*+} \mu^{-} \overline{ u}$, ${\sf N}^{*+} o {\sf p} X$	0.5m filt	EvtLb2BaryonInu
$\Lambda_b o p \pi^0 \mu^- \overline{ u}$	1m filt	EvtLb2BaryonInu
$\Lambda_b o p \mu^- \overline{ u}$	5m	EvtLb2pInuLCSR
$\Lambda_b o oldsymbol{p} \mu^- \overline{ u}$	1m	EvtLb2pInuLQCD
$\Lambda_b o \Lambda_c^+ \mu^- \overline{ u}, \Lambda_c^+ o p K \pi$ Normalisation	10m	EvtBaryonPCR

Proton cuts	cuts	Mother/Comb cuts
$P>15000~{ m MeV}$	P > 3000 MeV	$cos \theta_{\Lambda_b(p\mu)} > 0.9994$
$p_{\mathrm{T}} > 1000 \mathrm{MeV}/c$	$p_{ m T} > 1500{ m MeV}/c$	$M_{p\mu} > 1000 { m MeV}/c$
Track $\chi^2 < 6.0$	Track $\chi^2 <$ 4.0	Vertex $\chi^2 <$ 4.0
Min IP $\chi^2 > 16.0$	Min IP $\chi^2 > 16.0$	FD $\chi^2 > 150.0$
$\Delta LL(p-K) > 10$	isMuon = true	$p_{\mathrm{T}} > 1500 MeV$
$\Delta LL(p-\pi) > 10$	Ghost Prob. < 0.35	
Ghost Prob. < 0.35		

_

イロト イヨト イヨト イヨト

Normalisation Selection

Kaon cuts	Pion cuts	Mother/Comb cuts
P > 2000 MeV	P > 2000 MeV	$cos heta_{\Lambda_b \Lambda_c} > 0.9$
$p_{T} > 300 \mathrm{MeV}/c$	$ ho_{T} > 300\mathrm{MeV}/c$	$cos heta_{A_b(A_c \mu)} > 0.99$
Min IP $\chi^2 > 9.0$	Min IP $\chi^2 > 9.0$	$pK\pi$ Vertex $\chi^2 < 6$
$\Delta LL(K-\pi) > 0$	$\Delta LL(\pi - K) > 0$	$\Lambda_{c}\mu$ Vertex $\chi^{2}<$ 6
Ghost Prob. < 0.35	Ghost Prob. < 0.35	$2650 < M_{ m pK\pi} < 3050 { m MeV}$

イロン イ団と イヨン イヨン

Corrected Mass Error

$$\sigma_{M_{corr}} = \left(\frac{p_T}{\sqrt{M_{\rho\mu}^2 + \rho_T^2}} + 1\right) \sigma_{\rho_T}$$
(3)

$$p_T^2 = \left(p_x - (x - x')\frac{\left(p_x(x - x') + p_y(y - y') + p_z(z - z')\right)}{\left((x - x')^2 + (y - y')^2 + (z - z')^2\right)}\right)^2 + \left(p_y - (y - y')\frac{\left(p_x(x - x') + p_y(y - y') + p_z(z - z')\right)}{\left((x - x')^2 + (y - y')^2 + (z - z')^2\right)}\right)^2 + \left(p_z - (z - z')\frac{\left(p_x(x - x') + p_y(y - y') + p_z(z - z')\right)}{\left((x - x')^2 + (y - y')^2 + (z - z')^2\right)}\right)^2$$

$$\sigma_{\rho_T}^2 = \sigma_x^2 \left(\frac{\partial p_T}{\partial x}\right)^2 + \sigma_y^2 \left(\frac{\partial p_T}{\partial y}\right)^2 + \sigma_z^2 \left(\frac{\partial p_T}{\partial z}\right)^2 + \sigma_{z'}^2 \left(\frac{\partial p_T}{\partial z'}\right)^2 + \sigma_{z'}^2 \left(\frac{\partial p_T}{\partial z'}\right)^2 + \sigma_{z'}^2 \left(\frac{\partial p_T}{\partial z'}\right)^2 + \sigma_{z'}^2 \left(\frac{\partial p_T}{\partial x'}\right)^2 + \sigma_{z'}^2 \left(\frac{\partial p_T}{\partial z'}\right)^2 + 2cov(x, z)\frac{\partial p_T}{\partial x}\frac{\partial p_T}{\partial z} + 2cov(y, z)\frac{\partial p_T}{\partial y}\frac{\partial p_T}{\partial z'} = 0$$

LHCb Approval

 V_{ub} from $\Lambda_b \to p \mu \nu$

Miss ID Approach

$$n(P, \eta, TM)_{\pi}^{i+1} = \frac{N(P, \eta, TM)_{\pi} - M(P, \eta, TM)_{K \to \pi} n(P, \eta, TM)_{K}^{i}}{\epsilon(P, \eta, TM)_{\pi}}$$
(4)

$$n(P, \eta, TM)_{K}^{i+1} = \frac{N(P, \eta, TM)_{K} - M(P, \eta, TM)_{\pi \to K} n(P, \eta, TM)_{\pi}^{i}}{\epsilon(P, \eta, TM)_{K}}$$
(5)

$$\underbrace{Pions}_{\substack{\text{DLL}(\pi - K) > 0\\ \text{DLL}(\pi - p) > -5}} \underbrace{C(\pi \to K)^{0}}_{\substack{\text{Kaons}\\ \text{DLL}(\pi - p) > -5}} \underbrace{C(K \to \pi)^{0}}_{\substack{\text{Kaons}\\ \text{DLL}(K - p) > -5}} \underbrace{C(K \to \pi)^{0}}_{\substack{\text{Kaons}\\ \text{DL}(K - p) > -5}} \underbrace{C(K \to \pi)^{0}}_{\substack{\text{Kaons}\\ \text{DL}(K - p) > -5}} \underbrace{C(K \to \pi)^{0}}_{\substack{\text{Kaons}\\ \text{DL}(K - p) > -5}} \underbrace{C(K \to \pi)^{0}}_{\substack{\text{Kaons}\\ \text{Kaons}}} \underbrace{C(K \to \pi)^{0}}_{\substack{\text{Kaons}\\ \text{Kaons}}} \underbrace{C(K \to \pi)^{0}}_{\substack{\text{Kaons}\\ \text{Kaons}}} \underbrace{C(K \to \pi)^{0}}_{\substack{\text{Kaons}\\ \text{Kaons}} \underbrace{C(K \to \pi)^{0}}_{\substack{\text{Kaons}}} \underbrace{C(K \to \pi)^{0}}_{\substack{\text{Kaons}\\ \text{Kaons}}} \underbrace{C(K \to \pi)^{0}}_{\substack{\text{Kaons}} \underbrace{C(K \to \pi)^{0}}_{\substack{\text{Kaons}}} \underbrace{C(K \to \pi)^{0}}_{\substack{\text{Kaons}\\ \text{Kaons}}}$$

LHCb Approval

William Sutcliffe

 V_{ub} from $\Lambda_b \to p \mu \nu$

Corrected Mass Error Efficiency

(14, 15)

- Good agreement in MC between $\Lambda_b \rightarrow p \mu^- \nu_\mu$ and $B^+ \rightarrow J/\psi K^+$.
- Derive correction to relative efficiency using Data vs MC for $B^+ \to J\!/\psi \, K^+.$

• • = • • = •

Image: Image:

Isolation Efficiency

(14, 15)

- Relative efficiency almost unity in simulation.
- Reweight simulation BDT Isolation to that of normalisation in data to evaluate a systematic.

PID efficiency

(14, 15)

- PID callib, $\Lambda_b \rightarrow \Lambda_c \mu^- \nu_\mu$ sample
- Main difference in relative efficiency is due to the extra K and π .
- 100 variations of PID histograms used for evaluating a systematic

LHCb Approval

Tracking efficiency

(14, 15)

- Reweight according to track multiplicity and efficiency maps from J/ ψ tag and probe.
- 1.5% systematic for kaon and pion to account for material interactions.

Trigger efficiency

(14, 15)

- TISTOS method applied using $B^+ \rightarrow J/\psi K^+$ in p_T and M_{corr} .
- Reweight according to this for a number of variations of the correction histograms to obtain systematic.

Λ_b Production

(14, 15)

- Use $\Lambda_b \rightarrow J/\psi \, pK$ in data to reweight simulation.
- Large effect due to tight proton *P* cut.

- ∢ ∃ ▶

Λ_c Dalitz distribution

(14, 15)

- Reweight simulation dalitz distribution to data.
- For systematic compare with a square dalitz parametrisation.

Λ_b Lifetime

(14, 15)

• Reweight simulation for latest Λ_b lifetime.

-

・ロト ・ 日 ト ・ 田 ト ・

q^2 Migration

(14, 15)

• Correct for unphysical solutions and by $(1 - \text{mig}_{in})/(1 - \text{mig}_{out})$.

イロト イヨト イヨト イヨト

Form factors

(14, 15)

- Reweight by EvtGen probabilities to 100 variations of the form factors.
- Look at effect on the trigger, stripping and DecProdCut efficiencies.

N* factors

(14, 15)

- Generate large scale variations of the form factors.
- Run toy fits with datasets generated with FF reweighted corrected mass shapes for N^* states.
- Fit with nominal fit model.
- Difference in spreads in quadrature over signal yield is taken as a systematic.

3 ×

N^* widths

(14, 15)

- A factor 2π too narrow in simulations (bug).
- Use $\Lambda_b \to p \pi^0 \mu \nu$ MC to derive a correction based on reweighting the $p \pi^0$ mass to different Breit Wigner shapes.
- Use toy fits to quantify the systematic on the signal yield associated with such corrections.

42/21

LHCb Approval