

"Large Heavy-ion Collider" (LHC)

CMS

ATLAS

LHCb

ALICE,

Pb-Pb, p-Pb and pp

pp collisions p-Pb collisions **Pb-Pb** collisions p-Pb @ \s ... = 5.02 TeV o-Pib @ sqrt(s) = 2.76 AT 2012-9-13 01:33:48 Fill : 3056 Run : 188359 Event : 0x4cc42285 2011-11-12 06:51:12 Fill : 2290 Run : 167693 Event : 0x3d94315a

- 2.76 TeV
- 5.02 TeV

- 5.02 TeV
- 5.02 TeV (2016)
- 8 TeV (2016)

- 900 GeV
- 2.76 TeV
- 5.02 TeV
- 7 TeV
- 8 TeV
- 13 TeV

3

Anisotropic Flow

- Spatial anisotropies in the initial state converted to momentum anisotropies
 - known as *anisotropic flow* J. Y. Ollitrault, Phys. Rev., D46 (1992) 229
 - its magnitude sensitive to details of initial state and transport properties of QGP

Centrality dependence of vn

- QGP: a state of perfect liquid
 - liquid: described by hydrodynamics; perfect: η /s is close to the quantum limit 1/4 π
 - more precise information can be obtained from differential measurements

Transverse momentum dependence of v_n

More detailed information are carried by transverse momentum or pseudorapidity dependence of anisotropic flow v_n

comparisons of data and hydrodynamic calculations show:

- calculations with IP-Glasma initial conditions give the best description of data
- Neither calculation with MC-Glauber not MC-KLN (CGC) initial conditions can reproduce the data.
- strong constraints on the initial state and η/s of QGP.

You Zhou, Flow@CPH

Discover

6

Pseudorapidity dependence of vn

ALICE Collaboration, arXiv: 1605.02035 submitted to PLB Hydrodynamics: PRL 116, 212301 (2016)

- We find that the shape of v_n(η) is largely independent of centrality for the flow harmonics n = 2, 3 and 4,
 - v_3 and v_4 have weaker dependence on eta than v_2
- hydrodynamic calculations:
 - tuned $\eta/s(T)$ to fit $v_n(\eta)$ at RHIC
 - do not reproduce the data well, new challenge to the theory community

You Zhou, Flow@CPH

de-correlations of flow-vector V_n

$$\overrightarrow{V_m} = v_m e^{-im\Psi_m}$$
$$\overrightarrow{V_n} = v_n e^{-in\Psi_n}$$

New hydrodynamic picture, better constrain the initial conditions and η /s

You Zhou, Flow@CPH

8

p_T and/or η dependent flow-vector

- Traditionally Flow analyses look for correlations w.r.t common symmetry planes over a large range in p_{T or} η.
- However, hydrodynamic simulations show p_T dependent flow angle and magnitude fluctuations
 - Further constraints on the initial state and η/s .

✤ 2 particle correlations probe these predicted effects in experiments.

2 Particle Correlations

v_n {2} and v_n [2]

- $v_n{2} = d_n{2}/c_n{2}^{1/2}$
 - < a, All > for $d_n{2}$ and < All, All > for $c_n{2}$
 - Contributions from possible p_T dependent flow angle and magnitude fluctuations, in addition from non-flow
- **♦** v_n[2]:
 - < a, a >

Sept. 19th, 2016

You Zhou, Flow@CPH

Discovery

11

v₂{ } / v₂[]

MC-Glauber & MC-KLN: PRC 87, 034913

ALICE, NPA931 (2014) 949

✤ v₂{2} / v₂[2]

- Significant deviation for $p_T > 2 \text{ GeV}/c$ in most central collisions.
- Hydrodynamic calculations (no non-flow) already overestimate the deviation of v₂{2}/v₂[2] in most central collisions
 - Calculations with MC-KLN describe the data better than MC-Glauber.

Sept. 19th, 2016

You Zhou, Flow@CPH

12

Factorization ratio r

- r_n probes < a, b > \Rightarrow < a, a > & < b, b >
- r_n < I, Factorization broken

Discovery

13

- $r_n < 1$ observed in hydrodynamic calculations
 - indication of p_T dependent fluctuations of flow angle and magnitude.

Sept. 19th, 2016

Centrality dependence of r_2

Breakdown of factorization more pronounced in central collisions.

- Hydrodynamic calculations also show that the factorization is broken.
- CMS r₂ quantitatively agrees with our measurements

Sept. 19th, 2016

You Zhou, Flow@CPH

Discoverv

14

Factorization ratio $r_n vs \eta$

r_n < I, indication of η dependent flow-vector fluctuations
 (v_n(-η^a) v_n(η^b))/((v_n(η^a) v_n(η^b))) < 1
 η dependent flow magnitude fluctuations

• $\frac{\langle \cos\left[n(\Psi_n(-\eta^a) - \Psi_n(\eta^b))\right]\rangle}{\langle \cos\left[n(\Psi_n(\eta^a) - \Psi_n(\eta^b))\right]\rangle} < 1 \quad \eta \text{ dependent flow angle fluctuations}$

Sept. 19th, 2016

You Zhou, Flow@CPH

15

Factorization broken in η

CMS, PRC 92 (2015) 034911

• Deviation of r_2 from unity, increase as $\Delta \eta$ increasing

- further non-flow suppression in 2-particle correlations with large $\Delta\eta$ gap?
- indications of η dependent flow-vector fluctuations (angle and magnitude)

You Zhou, Flow@CPH

Correlations of flow-vector V_n and V_m

$$\overrightarrow{V_m} = v_m e^{-im\Psi_m}$$
$$\overrightarrow{V_n} = v_n e^{-in\Psi_n}$$

Discover

17

- Correlations between $\overrightarrow{V_n}$ and $\overrightarrow{V_m}$
 - Correlations between ψ_{n} and ψ_{m}
 - Correlations between v_{n} and v_{m}

Sept. 19th, 2016

Symmetry plane correlations

Sept. 19th, 2016

Ψ_n and Ψ_m

 symmetry plane correlations are sensitive to initial conditions and detailed setting of η/s(T)

• using multi-particle correlations instead of event-plane methods

Sept. 19th, 2016

You Zhou, Flow@CPH

19

v_m and v_n correlations via ESE

- Using Event-Shape selection with q₂, v₂ increases
 - -> v₃ decreases (anti-correlations)
 - -> v₄ increases (correlations)
 - -> qualitatively study the correlations of v_{n} and v_{m}

Centrality interval with g selection:

0.1

0.05

You Zhou, Flow@CPH

- 50-55%

60-65%

20

V₂

0.15

v_m and v_n via SC

- New observable: SC(m,n), measures the correlations of v_m and v_n
 - $SC(m,n) = \langle v_m^2 v_n^2 \rangle \langle v_m^2 \rangle \langle v_n^2 \rangle$
 - Details see: <u>Phys. Rev. C 89, 064904 (2014)</u>
 - It is found that $\langle v_m^2 v_n^2 \rangle > 0$ and $\langle v_m^2 \rangle \langle v_n^2 \rangle > 0$ in HIJING, but SC(m,n) are compatible with zero
 - SC measurements are nearly insensitive to non-flow effects.
 - ALICE data shows
 - positive SC(4,2) -> correlation between v₂ and v₄,
 - negative SC(3,2) -> anti-correlation between v₂ and v_{3.}

Discover

71

Correlations between v_m and v_n

Comparison of SC and Normalized SC (NSC) to hydrodynamic calculations

- Although hydro describes the v_n fairly well, there is not a single centrality for which a given η /s parameterization describes simultaneously SC and NSC.
- NSC(3,2) is insensitive to parameterization of $\eta/s(T)$
 - -> direct constraints on initial conditions.
- SC and NSC measurements provide stronger constrains on the η/s in hydro than standard v_n measurements alone.

You Zhou, Flow@CPH

Identified particle flow

✤ Identified particle flow

- further constraints of the initial state and collision dynamics
 - Anisotropy ε_n, EoS, η/s
- (multi-)strange particles: small hadronic sections
 - insensitive to final hadronic interactions
 - additional information from early stage
- indication of partonic collectivity
 - Number of Constituent Quark (NCQ) scaling

identified particle v2 in Pb-Pb

ALI-PUB-82981

♦ p_T < 2.5 GeV/c: mass ordering
</p>

♦ p_T >3 GeV/c: baryon-meson grouping

Sept. 19th, 2016

You Zhou, Flow@CPH

identified particle vn in Pb-Pb

ALICE Collaboration, arXiv:1606.06057

Similar results observed for higher harmonic flow v_3 and v_4

- mass ordering for pT < 2.5 GeV/c
- baryon-meson grouping for $p_T > 3$ GeV/c

You Zhou, Flow@CPH

low pT: vn mass ordering

ALICE Collaboration, arXiv: 1606.06057 submitted to JHEP

• Hydrodynamic model (iEBE-VISHNU:AMPT-IC & $\eta/s = 0.08$)

- reproduces the observed mass ordering of v_n for $p_T < 2$ GeV/c
- describes the measurements for v_{n} within 5%

You Zhou, Flow@CPH

intermediate pT: vn NCQ scaling

ALICE Collaboration, arXiv:1606.06057

submitted to JHEP

universal number of constituent quark (NCQ) scaling observed at RHIC

only approximate within ~20% at the LHC, works better for higher harmonics than v₂

Sept. 19th, 2016

You Zhou, Flow@CPH

Discover

27

From 2.76 to 5.02 TeV

Theoretical predictions

- For all centralities and every model, the change from 2.76 TeV to 5.02 TeV is between -2% and 2% for ε₂ and between -3% and 1% for ε₃.
- v2 and v3 should see the largest increases in peripheral collisions, while in central collisions they will show little increase

* The increasing of v_n from 2.76 TeV to 5.02 TeV is sensitive to the detailed setting of $\eta/s(T)$, a new constraint on the $\eta/s(T)$

Anisotropic flow at 5.02 TeV

ALICE Collaboration <u>PRL 116, 132302 (2016)</u> J. Noronha-Hostler et al., PRC93 (2016) 034912

L 116, 132302 (2016)	PHYSICAL REVIEW LETTERS	week ending 1 APRIL 201
Anisotropic Flow	of Charged Particles in Pb-Pb Collisions at $\sqrt{s_{N_i}}$	$\overline{N} = 5.02 \text{ TeV}$
	J. Adam <i>et al.</i> [*] (The ALICE Collaboration) (Received 4 February 2016; published 1 April 2016)	
We report the first in Pb-Pb collisions a detector at the CE pseudorapidity regit The anisotropic flow one unit and with ti $\sqrt{s_{NN}} = 2.76$ TeV, ti $(4.3 \pm 1.4)\%$, and () attributed mostly to measurements are for provides a unique op discriminate between density ratio of the p	results of elliptic (v_2), triangular (v_3), and quadrangular (v_4) flow of cl it a center-of-mass energy per nucleon pair of $\sqrt{s_N w} = 5.02$ TeV w RN Large Hadron Collider. The measurements are performed is measured using two-particle correlations with a pseudorapidity g he multiparticle cumulant method. Compared to results from Pb-P he anisotropic flow coefficients v_2 , v_3 , and v_4 are found to increase by 10.2 ± 3.8)%, respectively, in the centrality range 0%=50%. This is an increase of the average transverse momentum between the two bound to be compatible with hydrodynamic model calculations. Th oportunity to test the validity of the hydrodynamic picture and the p various possibilities for the temperature dependence of shear visco produced matter in heavy-ion collisions at the highest energies.	arged particles ith the ALICE in the central $p_T < 5$ GeV/ <i>c</i> . ap greater than b b collisions at $i (3.0 \pm 0.6)\%$, ncrease can be energies. The tis comparison ower to further sity to entropy
DOI: 10.1103/PhysRev	Latt 116 132302	

Anisotropic flow v_n

- agrees with hydrodynamic predictions with the best knowledge of initial conditions and η/s.
- provides a unique opportunity to test the validity of the hydrodynamic framework.

You Zhou, Flow@CPH

Discoverv

v_n from 2.76 to 5.02 TeV

ALICE Collaboration PRL 116, 132302 (2016)

Ref [27]: J. Noronha-Hostler et al., PRC93 (2016) 034912 Ref [25]: H. Niemi et al, PRC 93, 014912 (2016)

The anisotropic flow coefficients v_2 , v_3 and v_4 are found to increase by $(3.0\pm0.6)\%$, $(4.3\pm1.4)\%$ and $(10.2\pm3.8)\%$, respectively, in the centrality range 0-50%, mainly due to the increase of $<p_T>$

None of the ratios 5.02 TeV/2.76 TeV of flow harmonics exhibit a significant centrality dependence in the centrality range 0–50%,

 Changes of anisotropic flow are compatible with theoretical predictions.

Sept. 19th, 2016

You Zhou, Flow@CPH

31

$v_2 v_5 \sqrt{s_{NN}}$

ALICE has measured the largest hydro-like flow so far!

Sept. 19th, 2016

You Zhou, Flow@CPH

Discovery

32

p_T differential flow

ALICE Collaboration PRL 116, 132302 (2016)

- For the 0–5% centrality class, at pT > 2 GeV/c, v₃{2} is observed to be larger than v₂{2}, while v₄{2} is compatible with v₂{2}
- For the 30–40% centrality class v₂{2} is higher than v₃{2} and v₄{2} for the entire p_T range measured: no crossing
 - Comparable results to Run I results, increase in integrated flow can be attributed to the increase in radial flow

Sept. 19th, 2016

You Zhou, Flow@CPH

33

Comparisons between experiments

Good agreements between ALICE and CMS.

Sept. 19th, 2016

You Zhou, Flow@CPH

Discovery

34

v₂ at high p_T

measure multi-particle v₂{4,6,8} up to 100 GeV/c

- v_2 {4,6,8} seems converge with v_2 {SP} at high pT
- Collective nature of high pT particles

v_2 from low and high p_T

- High pT v2 strongly correlated with low pT v2
 - Suggest on of same origin of the correlations (?)
- Slope decrease while increasing pT

You Zhou, Flow@CPH

QGP in small systems?

Hot Quark-Gluon Plasma (QGP)

QGP ??

37

Sept. 19th, 2016

multi-particle cumulants in AA

 $QC\{2\} = v_n^2$ $QC\{4\} = -v_n^4$ $QC\{6\} = v_n^6$ $QC\{8\} = -v_n^8$

Lesson from AA collsions, Flow signal:

+, -, +, - signs for cumulants

80

70

30

30

40 50

40 50 60 70 80

centrality percentile

60

centrality percentile

multi-particle cumulants in AA, pA and pp

- $v_2\{2\} \ge v_2\{4\} \approx v_2\{6\} \approx v_2\{8\} \approx v_2\{LYZ, \infty\}$
 - Collectivity in any hadronic systems (?)

Sept. 19th, 2016

You Zhou, Flow@CPH

Discovery

39

identified particle v2 in pp, pA, AA

ALICE, JHEP 06 (2015) 190 PLB 726 (2013) 164

CMS: 1606.06198

- Anisotropic flow of identified particles
 - mass ordering at low pT
 - NCQ scaling at immediate pT
 - Evidence of collectivity in small system ?

Summary

The anisotropic flow measured at the LHC open new possibilities for investigation of the initial conditions in heavy-ion collisions.

	MC-Glauber	MC-KLN	MC-AMPT	IP-Glasma	EKRT
V ₂	✓	\checkmark	\checkmark	\checkmark	\checkmark
Vn	×	×	\checkmark	\checkmark	\checkmark
Vn-Vm	×	×	×	?	×
ψ_n - ψ_m	×	×	?	✓	\checkmark

The LHC RUN2 program provides new opportunities

- Pb-Pb 5.02 TeV, p-Pb 8 TeV, 5.02 TeV, pp 13 TeV
- the anisotropic flow measurements will shed new light into the properties of produced QGP.
 Thanks for your attention!

You Zhou, Flow@CPH

Summary

The anisotropic flow measured at the LHC open new possibilities for investigation of matter in heavy-ion collisions.

The LHC RUN2 program provides new opportunities

- Pb-Pb 5.02 TeV, p-Pb 8 TeV, 5.02 TeV, pp 13 TeV
- the anisotropic flow measurements will shed new light into the properties of produced QGP.
 Thanks for your attention!

Sept. 19th, 2016

You Zhou, Flow@CPH

42

	MC-Glauber	MC-KLN	MC-AMPT	IP-Glasma	EKRT
V 2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
∨ n	×	×	\checkmark	\checkmark	\checkmark
V n⁻ V m	×	×	×	?	×
ψ ո -ψ m	×	×	?	\checkmark	\checkmark
Xn	×	×	?	?	?

 \bigcirc

Sept. 19th, 2016

You Zhou, Flow@CPH

Discovery

backup

Sept. 19th, 2016

You Zhou, Flow@CPH

ALICE Collaboration

41 countries, 159 institutes, 1665 members

Detectors used:

- Inner Tracking System (trigger, tracking and vertexing)
- Time Projection Chamber (tracking, centrality determination)
- V0 detectors

(trigger, centrality determination)

Data Samples:
2.76 TeV: 12 million M.B. events
5.02 TeV: 140 k M.B. events

Questions:

- What has been learnt in Pb-Pb collisions at 2.76 TeV (Run I)?
- What's new in Pb-Pb collisions at 5.02 TeV (Run 2)?

Anisotropic flow at 5.02 TeV

ALICE Collaboration PRL 116, 132302 (2016)

AMPT: Z. Feng et al. (Wuhan group), arXiv:1606.02416

Discover

46

AMPT with string melting calculations

- parameters tuned for Pb-Pb collisions at 2.76 TeV, details see: G. Ma, Z.W. Lin, Phys. Rev. C 93 (2016), 054911
- calculations of v_2 , v_3 and v_4 are compatible with ALICE data

Sept. 19th, 2016

p⊤ differential flow (I)

ALICE Collaboration PRL 116, 132302 (2016)

- For the 0–5% centrality class, at pT > 2 GeV/c, v₃{2} is observed to be larger than v₂{2}, while v₄{2} is compatible with v₂{2}
- For the 30–40% centrality class v₂{2} is higher than v₃{2} and v₄{2} for the entire p_T range measured: no crossing
 - Comparable results to Run I results, increase in integrated flow can be attributed to the increase in radial flow

Sept. 19th, 2016

You Zhou, Flow@CPH

7

p_T differential flow (II)

ALICE Collaboration PRL 116, 132302 (2016)

- v₂{4} decreases from mid-central to central collisions over the entire p_T range
- ratio of v₂{4} (5.02 TeV)/v₂{4} (2.76 TeV) indicates there is no change in the p_T dependence between both energies

Discovery

48

Correlations between v_m and v_n

- New observable: SC(m,n), measures the correlations of v_m and v_n
 - $SC(m,n) = \langle v_m^2 v_n^2 \rangle \langle v_m^2 \rangle \langle v_n^2 \rangle$
 - Details see: <u>Phys. Rev. C 89, 064904 (2014)</u>
 - It is found that $\langle v_m^2 v_n^2 \rangle > 0$ and $\langle v_m^2 \rangle \langle v_n^2 \rangle > 0$ in HIJING, but SC(m,n) are compatible with zero
 - SC measurements are nearly insensitive to non-flow effects.
 - ALICE data shows
 - positive SC(4,2) -> correlation between v₂ and v₄,
 - negative SC(3,2) -> anti-correlation between v₂ and v_{3.}

Discover

49

Correlations between v_m and v_n

- Comparison of SC and Normalized SC (NSC) to hydrodynamic calculations
 - Although hydro describes the v_n fairly well, there is not a single centrality for which a given η/s parameterization describes simultaneously SC and NSC.
 - NSC(3,2) is insensitive to parameterization of $\eta/s(T)$
 - -> direct constraints on initial conditions.
 - SC and NSC measurements provide stronger constrains on the η/s in hydro than standard v_n measurements alone.

You Zhou, Flow@CPH

SC(m,n) from VISH2+1

X.-R. Zhu et. al, IS2016

Discovery

51

Sept. 19th, 2016

particle identification

Time Projection Chamber (TPC)

dE/dx : the specific energy loss Resolution: $\sigma dE/dx \approx 5\%$

Time of Flight (TOF)

B=Track length/arrival time Resolution: $\sigma TOF \approx 86 \text{ ps}$

Bayesian PID (arXiv:1602.01392):

- Input quantities: $\langle dE/dx \rangle$, β
- Identification Probability > 90%

You Zhou, Flow@CPH

52

Pseudorapidity dependence of vn

We find that the shape of $v_n(\eta)$ is largely independent of centrality for the flow harmonics n = 2, 3 and 4,

Sept. 19th, 2016

You Zhou, Flow@CPH

53

Pseudorapidity dependence of vn

Sept. 19th, 2016

ALICE Collaboration, arXiv: 1605.02035 submitted to PLB AMPT:

- A multiphase transport (AMPT) model with a so-called string melting scenario is used for comparisons.
- Good agreements of anisotropic flow from AMPT and data are observed in 40-50\% centrality class, except v₂{4} at forward pseudorapidity.
- In more central collisions, AMPT overestimate v₂ and v₃ nevertheless agrees with v₄ measurements.

Sept. 19th, 2016

You Zhou, Flow@CPH

55

multi-particle correlations: p-Pb

Positive QC{2} and negative QC{4} observed in p-Pb collisions

- signature of collective behavior
- hard to reproduce in models without QGP

You Zhou, Flow@CPH

Flow signal from multi-particle correlations in p-Pb collisions

• very similar with what observed in Pb-Pb, $v_2{2} > v_2{4} \simeq v_2{6} \simeq v_2{8}$

Sept. 19th, 2016

You Zhou, Flow@CPH

57

identified particle v_2 in p-Pb

p-Pb collisions

Discovery

58

ALICE Collaboration, K. Werner, et. al., Phys. Lett. B 726 (2013) 164 Phys. Rev. Lett. 112, 232301 (2014) _>^{0.14} 0.25 v₂{2PC, sub} ALICE EPOS3.074 η/s=0.08 p-Pb vs_{NN} = 5.02 TeV 0.12 π 0.2 (0-20%) - (60-100%) 0.1 0.15 0.08 0.1 ALICE 0.06 π 0.04 0.05 K p 0.02 0.5 2.5 3.5 1.5 3 2 1.5 0.5 2 2.5 p_ (GeV/c) p_t

Identified particle v₂ shows mass ordering in high multiplicity p-Pb collisions

- similar feature as observed in Pb-Pb collisions
 - indication of anisotropic flow (?)
 - EPOS (hydro+transport model) reproduces similar feature

multi-particle correlations: pp

Anisotropic flow produced in (high multiplicity) pp collisions?

- negative QC{4} and positive QC{6} -> signal of flow in pp (QGP in pp?)
- other mechanism?

Sept. 19th, 2016

You Zhou, Flow@CPH

multi-particle cumulants in AA, pA and pp

 $v2{2} \ge v2{4} \approx v2{6} \approx v2{8} \approx v2{LYZ, \infty}$

• Collectivity in any hadronic systems (?)

Sept. 19th, 2016

You Zhou, Flow@CPH

Discovery

60

smaller fluctuations in pp ??

You Zhou, Flow@CPH

Fluctuation-driven ϵ_n

Sept. 19th, 2016

$$P(\varepsilon_n) = 2\alpha\varepsilon_n(1-\varepsilon_n^2)^{\alpha-1}, \alpha = (N_s-1)/2$$

Suggest smaller Ns in pp ?

Discovery

61

identified particle v₂ in pp

p-Pb collisions

Anisotropic flow produced in (high multiplicity) pp collisions?

will PID v₂ in high multiplicity pp collisions show any indication?

Sept. 19th, 2016

You Zhou, Flow@CPH

62

identified particle v2 in pp, pA, AA

CMS: 1606.06198

- Anisotropic flow of identified particles
 - mass ordering at low pT
 - NCQ scaling at immediate pT
 - Evidence of collectivity in small system ?

