Supergravity at Five Loops

Current Themes in High Energy Physics and Cosmology August 24, 2017 Zvi Bern

UCLA The Mani L. Bhaumik Institute for Theoretical Physics

ZB, John Joseph Carrasco, Wei-Ming Chen, Henrik Johansson, Radu Roiban arXiv:1701.02519

ZB, John Joseph Carrasco, Wei-Ming Chen, Henrik Johansson, Radu Roiban, Mao Zeng, arXiv:1708.06807 (today)

- 1. Why we care about supergravity amplitudes at high-loop orders. Understand structure of scattering. UV.
- 2. Color-kinematics duality and double-copy construction.
- **3.** Difficulties at 5 loops, causing multi-year delay.
- 4. Breaking the logjam: striking structure at high loops.
- **5. Exploiting the structure: Converting gauge theory to gravity.**

We finally have five-loop four-point integrand of *N* = 8 supergravity

UV Behavior of Gravity?

- Extra powers of loop momenta in numerator means integrals are badly behaved in the UV and must diverge at some loop order.
- Much more sophisticated power counting in supersymmetric theories but this is basic idea.
 - With more supersymmetry expect better UV properties.
 - Need to worry about "hidden cancellations".
 - *N* = 8 supergravity *best* theory to study.

UV Behavior of Gravity

What is the actual UV behavior of N = 8 supergravity?

Not a philosophical question, but a technical question.

By trying to answer this question we learn a lot about gravity

Feynman Diagrams for Gravity

Suppose we want to check UV properties of gravity theories:

- Calculations to settle this seemed utterly hopeless!
- Seemed destined for dustbin of undecidable questions.

Superspace helps, but not enough to make a difference. Standard techniques hopeless.

N = 8 supergravity: Where is First D = 4 UV Divergence?

3 loops <i>N</i> = 8	Green, Schwarz, Brink (1982); Howe and Stelle (1989); Marcus and Sagnotti (1985)	×	7P. Kasawar, Carrasaa, Diyan
5 loops <i>N</i> = 8	Bern, Dixon, Dunbar, Perelstein, Rozowsky (1998); Howe and Stelle (2003,2009)	×	Johansson, Roiban; ZB, Davies, Dennen, A. Smirnov, V. Smirnov;
6 loops <i>N</i> = 8	Howe and Stelle (2003)	×	series of calculations.
7 loops <i>N</i> = 8	Grisaru and Siegel (1982); Bossard, Howe, Stelle (2009);Vanhove; Björnsson, Green (2010); Kiermaier, Elvang, Freedman(2010); Ramond, Kallosh (2010); Biesert et al (2010); Bossard, Howe, Stelle, Vanhove (2011)	? ←	— Don't bet on divergence
3 loops <i>N</i> = 4	Bossard, Howe, Stelle, Vanhove (2011)	×	
4 loops <i>N</i> = 5	Bossard, Howe, Stelle, Vanhove (2011)	×	
4 loops <i>N</i> = 4	Vanhove and Tourkine (2012)		— Anomaly-like behavior
9 loops <i>N</i> = 8	Berkovits, Green, Russo, Vanhove (2009)	Χ «	- retracted

- Conventional wisdom holds that it will diverge sooner or later.
- But every detailed prediction either wrong or misleading.

Our Basic Tools

We have powerful tools for computing scattering amplitudes and studying their UV properties:

• Generalized unitarity method. ZB, Dixon, Dunbar, Kosower

ZB, Carrasco, Johansson, Kosower

7

- Duality between color and kinematics. Gravity scattering amplitudes directly from gauge-theory ones. Double copy. ZB, Carrasco and Johansson (BCJ)
- Advanced loop-integration technology. Chetyrkin, Kataev and Tkachov; Laporta; A.V. Smirnov; V.A. Smirnov; Vladimirov; Marcus, Sagnotti; Czakon; Laporta; Kosower; Larsen and Zhang; Zeng, etc
- I won't explain these tools in much detail but they underlie everything.
- Many other tools and advances that I won't discuss here.

See Nima's and David's talks

Divergences in Pure Gravity Goroff and Sagnotti, ZB, Cheung, Chi, Davies, Dixon and Nohle; ZB, Chi, Dixon, Edison

Even in pure gravity, leading 2-loop UV divergences don't work quite the way you were taught. $D = 4 - 2\epsilon$

$$\mathcal{M}_{4} = \begin{bmatrix} \frac{1}{\epsilon} \left(\frac{209}{24} - \frac{15}{2} n_{3} \right) - \left(\frac{1}{4} \ln \mu^{2} \right) \mathcal{K} + \text{finite} + \text{IR} \\ \text{Renormalization scale} \\ \text{divergence} & 3 \text{ forms} & \text{robust} \\ \end{bmatrix} \mathcal{K} = \left(\frac{\kappa}{2} \right)^{6} \frac{i}{(4\pi)^{4}} \operatorname{stu} \left(\frac{[12][34]}{\langle 12 \rangle \langle 34 \rangle} \right)^{2}$$

- The UV divergence depends on the details of the regularization prescriptions. 3 forms not dynamical.
- Weird that renorm. scale and UV divergence not linked.
- The divergence itself comes from anomaly-like behavior: $\epsilon/\epsilon \times 1/\epsilon$
- **Only other pure (super)gravity theory with known divergences** is N = 4 supergravity: Similar anomaly-like behavior.
- See Kosower's talk • No such anomaly expected in $N \ge 5$ sugra. Carrasco, Kallosh, Tseytlin and Roiban; Kallosh; Freedman, Kallosh, Murli, Van Proeyen, Yamada

New Structures?

Might there be a new unaccounted structure in gravity theories that suggests the UV might be is tamer than conventional arguments suggest?

Yes!

Duality Between Color and Kinematics

7

ZB, Carrasco, Johansson (BCJ)

Proven at tree level and conjectured at loop level.

ZB, Carrasco, Johansson; Kiermaier; Bjerrum-Bohr, Damgaard, Sondergaard, Vanhove; Cachazo, etc ¹⁰

Duality Between Color and Kinematics

$$c_1 + c_2 + c_3 = 0 \iff n_1 + n_2 + n_3 = 0$$

Claim: We can always find a rearrangement so color and kinematics satisfy the *same* **algebraic constraint equations.**

Progress on unraveling relations.

BCJ, Bjerrum-Bohr, Feng, Damgaard, Vanhove, ; Mafra, Stieberger, Schlotterer;
Tye and Zhang; Feng, Huang, Jia; Chen, Du, Feng; Du, Feng, Fu; Naculich, Nastase, Schnitzer
O'Connell and Montiero; Bjerrum-Bohr, Damgaard, O'Connell and Montiero; O'Connell, Montiero, White, etc.

Gravity loop integrands follow from gauge theory!

Gravity From Gauge Theory

$$-i\left(\frac{2}{\kappa}\right)^{(n-2)}\mathcal{M}_{n}^{\text{tree}}(1,2,\ldots,n) = \sum_{i} \frac{n_{i}\,\tilde{n}_{i}}{\prod_{\alpha_{i}}p_{\alpha_{i}}^{2}}$$

Here we consider only simplest constructions:

N = 8 sugra: $(N = 4 \text{ sYM}) \times (N = 4 \text{ sYM})$ N = 5 sugra: $(N = 4 \text{ sYM}) \times (N = 1 \text{ sYM})$ N = 4 sugra: $(N = 4 \text{ sYM}) \times (N = 0 \text{ sYM})$

Spectrum controlled by simple tensor product of gauge theories.

More sophisticated lower-susy cases: QCD, magical supergravities, Einstein-YM with and without Higgsing, twin supergravities.

Anastasiou, Bornsten, Duff; Duff, Hughs, Nagy; Johansson and Ochirov; Carrasco, Chiodaroli, Günaydin and Roiban; ZB, Davies, Dennen, Huang and Nohle; Nohle; Chiodaroli, Günaydin, Johansson, Roiban. A. Anastasiou, L. Borsten, M.J. Duff, M.J. Hughes, Marrani, Nagy, Zoccali.

Many other theories in double-copy story, including open and closed string theory, NLSM, Dirac Born Infeld, Galileon and Z theory.

Cachazo, He, Yuan; Chen Du, Broedel, Schlotterer and Stieberger; Carrasco, Mafra, Schlotterer;

BCJ

Recent Related Activities

- Examples of exact classical solutions, including black holes. Monteiro, O'Connell, White; Luna, Monteiro, O'Connell, White (2015)
- Perturbative constructions of general classical solutions, including gravitational radiation problems (LIGO)

Goldberger, Ridgway (2016); Luna, Monterio, Nicholson, O'Connell, Ochirov, Westerberg, White (2016)

- Loop level KLT and BCJ, using CHY, ambitwistor string, Q-cuts
 Song He, Oliver Schlotterer (2016), Tourkine, Vanhove (2016,2017); Hohenegger, S. Stieberger (2017).
- Analytic properties of gravity integrands. Herrmann and Trnka (2016)
- Kinematic algebra behind BCJ duality. Monteiro and O'Connell; Cheung and Shen (2016).
- Simplified gravity Lagrangian from left-right factorization.

Cheung and Remmen (2016,2017)

- **Double copy as consequence of gauge invariance.** Chiodaroli; Boels, Medina (2016), Arkani-Hamed, Rodina, Trnka (2016), Feng et al (2016)
- Applications in string theory. Steiberger; Vahhove Carrasco, Mafra, Schlotterer, (2016); Mafra and Schlotterer (2015,2016)

Supergravity and Ultraviolet Divergences

Bossard, Howe, Stelle; Elvang, Freedman, Kiermaier; Green, Russo, Vanhove ; Green and Björnsson ; Bossard , Hillmann and Nicolai; Ramond and Kallosh; Broedel and Dixon; Elvang and Kiermaier; Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Bossard, Howe, Stelle, Vanhove, etc

- First quantized formulation of Berkovits' pure-spinor formalism.
- Unitarity method.

Bjornsson and Green ZB, Davies, Dennen

Key point: *all* supersymmetry cancellations are exposed.

Poor UV behavior, unless new types of cancellations between diagrams exist that are "not consequences of supersymmetry in any conventional sense" Bjornsson and Green

- N = 8 sugra should diverge at 5 loops in D = 24/5.
- N = 8 sugra should diverge at 7 loops in D = 4.
- N = 4 sugra should diverge at 3 loops in D = 4.
- N = 5 sugra should diverge at 4 loops in D = 4.

Consensus agreement from all methods

But new types of cancellations do exist: "enhanced cancellations".

Х

ZB, Carrasco, Chen Johannson, Roiban, Zeng

Place your bets:

- At 5 loops in *D* = 24/5 does *N* = 8 supergravity diverge?
- At 7 loops in D = 4 does
 - *N* = 8 supergravity diverge?

Kelly Stelle: English wine "It will diverge"

Zvi Bern: California wine "It won't diverge"

N = 4 Supergravity UV Cancellation

BCJ duality works easily

$$D = 4 - 2\epsilon$$
 ZB, Davies, Dennen, Huang

Graph	$(\text{divergence})/(\langle 12 \rangle^2 [34]^2 st A^{\text{tree}}(\frac{\kappa}{2})^8)$
(a)-(d)	0
(e)	$\frac{263}{768}\frac{1}{\epsilon^3} + \frac{205}{27648}\frac{1}{\epsilon^2} + \left(-\frac{5551}{768}\zeta_3 + \frac{326317}{110592}\right)\frac{1}{\epsilon}$
(f)	$-\frac{175}{2304}\frac{1}{\epsilon^3} - \frac{1}{4}\frac{1}{\epsilon^2} + \left(\frac{593}{288}\zeta_3 - \frac{217571}{165888}\right)\frac{1}{\epsilon}$
(g)	$-\frac{11}{36}\frac{1}{\epsilon^3} + \frac{2057}{6912}\frac{1}{\epsilon^2} + \left(\frac{10769}{2304}\zeta_3 - \frac{226201}{165888}\right)\frac{1}{\epsilon}$
(h)	$-\frac{3}{32}\frac{1}{\epsilon^3} - \frac{41}{1536}\frac{1}{\epsilon^2} + \left(\frac{3227}{2304}\zeta_3 - \frac{3329}{18432}\right)\frac{1}{\epsilon}$
(i)	$\frac{17}{128}\frac{1}{\epsilon^3} - \frac{29}{1024}\frac{1}{\epsilon^2} + \left(-\frac{2087}{2304}\zeta_3 - \frac{10495}{110592}\right)\frac{1}{\epsilon}$
(j)	$-\frac{15}{32}\frac{1}{\epsilon^3} + \frac{9}{64}\frac{1}{\epsilon^2} + \left(\frac{101}{12}\zeta_3 - \frac{3227}{1152}\right)\frac{1}{\epsilon}$
(k)	$\frac{5}{64}\frac{1}{\epsilon^3} + \frac{89}{1152}\frac{1}{\epsilon^2} + \left(-\frac{377}{144}\zeta_3 + \frac{287}{432}\right)\frac{1}{\epsilon}$
(l)	$\frac{25}{64}\frac{1}{\epsilon^3} - \frac{251}{1152}\frac{1}{\epsilon^2} + \left(-\frac{835}{144}\zeta_3 + \frac{7385}{3456}\right)\frac{1}{\epsilon}$

 $(N = 4 \text{ sugra}) = (N = 4 \text{ sYM}) \times (N = 0 \text{ YM})$

All three-loop divergences and subdivergences cancel completely!

Still no standard-symmetry explanation, despite valiant attempt.

Bossard, Howe, Stelle; ZB, Davies, Dennen

A nontrivial example of "enhanced cancellations"

N = 5 Supergravity Four Loop Cancellations

ZB, Davies and Dennen

We calculated four-loop divergence in N = 5 supergravity.

Industrial strength software needed: FIRE5 and special purpose C++

N = 5 sugra: (N = 4 sYM) x (N = 1 sYM)

Crucial help from (Smirnov)²

N = 4 sYM N = 1 sYM

Diagrams necessarily UV divergent.

N = 5 supergravity has no divergence at four loops.

Nontrivial example of an "enhanced cancellation".

No standard-symmetry explanation known.

82 nonvanishing numerators in BCJ representation

ZB, Carrasco, Dixon, Johansson, Roiban (N = 4 sYM)

N = 5 supergravity at Four Loops

ZB, Davies and Dennen

Special purpose C++ and FIRE5

raphs	(divergence) × $u/(-i/(4\pi)^8 \langle 12 \rangle^2 [34]^2 st A^{\text{tree}}(\frac{\kappa}{2})^{10})$	[graphs	(divergence) $\times u/(-i/(4\pi)^8 \langle 12 \rangle^2 [34]^2 st A^{\text{tree}}(\frac{\kappa}{2})^{10})$	
	$\frac{1}{\epsilon^4} \left[\frac{7358585}{7962624} s^2 + \frac{2561447}{2654208} st - \frac{872683}{1990656} t^2 \right] + \frac{1}{\epsilon^3} \left[\frac{75972559}{35389440} s^2 + \frac{240984061}{26542080} st + \frac{1302037}{1310720} t^2 \right]$			$\frac{1}{\epsilon^4} \left[\frac{1052159}{995328} s^2 + \frac{509789}{331776} st - \frac{121001}{497664} t^2 \right] + \frac{1}{\epsilon^3} \left[\frac{9042569}{1474560} s^2 + \frac{34360945}{1327104} st + \frac{73518401}{1327104} t^2 \right]$	
	$+ \frac{1}{\epsilon^2} \left[\zeta_3 \left(-\frac{369234283}{11059200} s^2 - \frac{257792411}{4915200} st - \frac{101847769}{14745600} t^2 \right) + \zeta_2 \left(\frac{7358585}{3981312} s^2 + \frac{2561447}{1327104} st - \frac{872683}{995328} t^2 \right) \right]$			$+ \frac{1}{\epsilon^2} \left[\zeta_3 \left(-\frac{11443919}{2764800} s^2 + \frac{32520079}{552960} st + \frac{5836531}{230400} t^2 \right) + \zeta_2 \left(\frac{1052159}{497664} s^2 + \frac{509789}{165888} st - \frac{121001}{248832} t^2 \right) \right]$	
	$- S2 \left(\frac{1223621}{49152} s^2 + \frac{46816475}{442368} st + \frac{2639903}{221184} t^2 \right) + \frac{206093335871}{11466178560} s^2 + \frac{320983191023}{3822059520} st + \frac{53309416589}{2866544640} t^2 \right]$			$- \operatorname{S2}\left(\frac{637991}{6144}s^2 + \frac{10978729}{27648}st + \frac{5080825}{55296}t^2\right) + \left(\frac{270806866183}{7166361600}s^2 + \frac{89848068067}{597196800}st + \frac{218093645149}{7166361600}t^2\right)\right]$	
1_30	$+\frac{1}{\epsilon} \left[\zeta_5 \left(-\frac{84777347}{368640} s^2 + \frac{382194721}{1474560} st + \frac{417476581}{1474560} t^2 \right) - \zeta_4 \left(\frac{3062401}{2457600} s^2 + \frac{3881051}{3276800} st - \frac{112081813}{29491200} t^2 \right) \right]$		graphs 1-30 31-60 61-82	$+\frac{1}{\epsilon} \left[\zeta_5 \left(\frac{100843}{360}s^2 + \frac{17118043}{30720}st - \frac{30266471}{92160}t^2 \right) + \zeta_4 \left(\frac{11435323}{614400}s^2 + \frac{232002227}{1843200}st + \frac{22211783}{460800}t^2 \right) \right]$	
1 50	$+ \zeta_3 \left(\frac{28162691399797}{53747712000} s^2 + \frac{19354492750651}{35831808000} st - \frac{22092683352811}{107495424000} t^2 \right) - \zeta_2 \left(\frac{70861961}{17694720} s^2 + \frac{227180689}{13271040} st \right)$			$+\zeta_3\left(\frac{223300432349}{3359232000}s^2-\frac{178732984847}{716636160}st+\frac{951659436383}{53747712000}t^2\right)$	
	$+ \frac{105727243}{53084160}t^2 + T1 \exp\left(-\frac{1223621}{663552}s^2 - \frac{46816475}{5971968}st - \frac{2639903}{2985984}t^2\right) - S2\left(\frac{11916028151}{5898240}s^2 - \frac{1223621}{5898240}s^2 - \frac{1223621}{5898240}s^2\right)$				$-\zeta_2 \left(\frac{5492357}{245760}s^2 + \frac{53468887}{663552}st + \frac{129714599}{663552}t^2\right) + \text{T1ep}\left(-\frac{637991}{82944}s^2 - \frac{10978729}{373248}st - \frac{5080825}{746496}t^2\right)$
	$+ \frac{72637733971}{13271040}st + \frac{17223563447}{53084160}t^2 + D6\left(-\frac{9001177}{552960}s^2 - \frac{264491}{10240}st - \frac{2610157}{552960}t^2\right)$				$+ \operatorname{S2}\left(-\tfrac{5700088747}{3686400}s^2 - \tfrac{69470348491}{1658800}st - \tfrac{713512871}{6635520}t^2\right) + \operatorname{D6}\left(-\tfrac{357421}{43200}s^2 - \tfrac{2891743}{230400}st - \tfrac{470219}{138240}t^2\right)$
	$+ \frac{110945914744727}{1146617856000}s^2 + \frac{16989492195991}{127401984000}st - \frac{21362122998269}{573308928000}t^2 \Big]$			$-\frac{3571506237341}{28665446400}s^2 - \frac{1611591325291}{5971968000}st + \frac{2301084608777}{143327232000}t^2 \bigg]$	
	$\frac{1}{\epsilon^4} \left[-\frac{5502451}{2654208} s^2 - \frac{3675877}{884736} st + \frac{11269}{497664} t^2 \right] + \frac{1}{\epsilon^3} \left[\frac{38102993}{26542080} s^2 - \frac{291607201}{106168320} st - \frac{565798829}{318504960} t^2 \right]$			$\frac{1}{c^4} \left[-\frac{150715}{82944} s^2 - \frac{668333}{221184} st - \frac{7213}{1990656} t^2 \right] + \frac{1}{c^3} \left[-\frac{68021833}{13271040} s^2 - \frac{36852103}{1327104} st - \frac{298377299}{39813120} t^2 \right]$	
	$+ \frac{1}{\epsilon^2} \left[\zeta_3 \left(\frac{108955183}{2211840} s^2 + \frac{653019571}{8847360} st + \frac{9453043}{1769472} t^2 \right) + \zeta_2 \left(-\frac{5502451}{1327104} s^2 - \frac{3675877}{442368} st + \frac{11269}{248832} t^2 \right) \right]$	1		$+ \frac{1}{\sqrt{2}} \left[\zeta_3 \left(-\frac{36448033}{2764800} s^2 - \frac{455889533}{2764800} st - \frac{82059261}{1282400} t^2 \right) + \zeta_2 \left(-\frac{150715}{1427} s^2 - \frac{668333}{110603} st - \frac{7213}{006298} t^2 \right) \right]$	
	$\left. + \operatorname{S2}\left(\tfrac{16797481}{1327104} s^2 + \tfrac{1172969}{16384} st + \tfrac{978427}{82944} t^2 \right) - \tfrac{304243754383}{19110297600} s^2 - \tfrac{2032063711381}{19110297600} st - \tfrac{257798086613}{7166361600} t^2 \right] \right]$			$+ S2 \left(\frac{13910839}{1402838} s^2 + \frac{134003}{4002} st + \frac{26303855}{291782} t^2 \right) - \frac{68286245653}{959297900} s^2 - \frac{2064900431}{110499200} st - \frac{351701043553}{71104391200} t^2 \right]$	
21 60	$+ \frac{1}{\epsilon} \Big[\zeta_5 \left(\frac{33327659}{122880} s^2 + \frac{13276219}{24576} st + \frac{22251887}{184320} t^2 \right) \\ + \zeta_4 \left(\frac{12299887}{1474560} s^2 + \frac{258056147}{5898240} st + \frac{46913759}{5898240} t^2 \right) \Big] + \zeta_4 \left(\frac{12299887}{1474560} s^2 + \frac{258056147}{5898240} s^2 + \frac{46913759}{5898240} t^2 \right) \Big] + \zeta_4 \left(\frac{12299887}{1474560} s^2 + \frac{258056147}{5898240} s^2 + \frac{46913759}{5898240} t^2 \right) \Big] + \zeta_4 \left(\frac{12299887}{1474560} s^2 + \frac{258056147}{5898240} s^2 + \frac{46913759}{5898240} t^2 \right) \Big]$		graphs 1-30 - 31-60 - - - - - - - - - - - - -	$+\frac{1}{2}\left[\left(z\left(-\frac{2362679}{20000}s^2-\frac{178668311}{10000}st\right)+\frac{1268313}{10000}t^2\right)+\left(A\left(-\frac{124344121}{10000}s^2-\frac{491722333}{10000}st-\frac{6814309}{10000}t^2\right)\right)\right]$	
J1-00	$+ \zeta_3 \left(-\frac{26846001990157}{42998169600} s^2 - \frac{337106527201}{265420800} st - \frac{5298324906787}{42998169600} t^2 \right) + \zeta_2 \left(\frac{282283789}{39813120} s^2 + \frac{975199319}{53084160} st - \frac{5298324906787}{265420800} t^2 \right) + \zeta_2 \left(\frac{282283789}{39813120} s^2 + \frac{975199319}{53084160} st - \frac{5298324906787}{265420800} t^2 \right) + \zeta_2 \left(\frac{282283789}{39813120} s^2 + \frac{975199319}{53084160} st - \frac{5298324906787}{265420800} t^2 \right) + \zeta_2 \left(\frac{282283789}{39813120} s^2 + \frac{975199319}{53084160} st - \frac{5298324906787}{265420800} t^2 \right) + \zeta_2 \left(\frac{282283789}{39813120} s^2 + \frac{975199319}{53084160} st - \frac{5298324906787}{265420800} t^2 \right) + \zeta_2 \left(\frac{282283789}{39813120} s^2 + \frac{975199319}{53084160} st - \frac{5298324906787}{265420800} t^2 \right) + \zeta_2 \left(\frac{282283789}{39813120} s^2 + \frac{975199319}{53084160} st - \frac{5298324906787}{265420800} t^2 \right) + \zeta_2 \left(\frac{28283789}{39813120} s^2 + \frac{975199319}{53084160} st - \frac{5298324906787}{265420800} t^2 \right) + \zeta_2 \left(\frac{28283789}{39813120} s^2 + \frac{975199319}{53084160} st - \frac{52983249}{53084160} st - \frac{52983249}{500} s^2 + \frac{52983249}{500} st - \frac{5298349}{500} $			31-60	$\epsilon [53(-9216) - 92160 - 92160 - 10240 - 7] + 843200 - 1843200 - 1843200 - 921600 - 7]$ = $\epsilon (630084012997 s^2 - 1250670277213 st - 6913218302303 t^2)$
	$+ \frac{60394451}{159252480}t^2) + T1ep\left(\frac{16797481}{17915904}s^2 + \frac{1172969}{221184}st + \frac{978427}{1119744}t^2\right) + S2\left(\frac{10516980893}{4976640}s^2 + \frac{1172969}{221184}s^2\right)$				$(352368061_2 + 35509679_{\pm 4} + 227699801_42) + 0.13910839_2 + 1340033_{\pm 4} + 26303855_42)$
	$+ \frac{389045625329}{53084160}st + \frac{216032337589}{159252480}t^2 + D6\left(\frac{503413}{23040}s^2 + \frac{12342607}{552960}st + \frac{3661}{184320}t^2\right)$				$+ \zeta_{2} \left(\frac{19906560}{19906560} s + \frac{663552}{663552} st + \frac{19906560}{19906560} t \right) + 116 \left(\frac{12}{2239488} s + \frac{55296}{5296} st + \frac{4478976}{4478976} t \right)$ $+ S2 \left(\frac{188312318729}{2} s^{2} + \frac{110749829741}{19829741} st + \frac{5056299197}{2} t^{2} \right) + D6 \left(\frac{1220779}{2} s^{2} + \frac{44791}{44791} st - \frac{1159831}{159831} t^{2} \right)$
	$-\frac{166777358259461}{1146617856000}s^2 - \frac{565137511429117}{1146617856000}st - \frac{21629055712141}{191102976000}t^2 \Big]$			$ + 52 \left(\frac{99532800}{99532800} s^{2} + \frac{1}{16588800} s^{2} + \frac{3981312}{3981312} t^{2} \right) + 50 \left(\frac{76800}{76800} s^{2} + \frac{6912}{230400} t^{2} \right) \\ + \frac{2755666297013}{25666297013} s^{2} + \frac{5622513975899}{522513975899} st - \frac{196197363193}{230400} t^{2} \right] $	
	$\frac{1}{\epsilon^4} \left[\frac{285899}{248832} s^2 + \frac{1058273}{331776} st + \frac{275869}{663552} t^2 \right] + \frac{1}{\epsilon^3} \left[-\frac{380329649}{106168320} s^2 - \frac{74703227}{11796480} st + \frac{124701919}{159252480} t^2 \right]$			1 [756421 2 , 985421 , 163739 2] , 1 [1670161 2 , 415193 , 4863881 2]	
	$+\frac{1}{2}\left[\zeta_{3}\left(-\frac{1371419}{56109}s^{2}-\frac{236241539}{11070909}st+\frac{432607}{5761900}t^{2}\right)+\zeta_{2}\left(\frac{285899}{10147}s^{2}+\frac{1058273}{10799}st+\frac{275809}{10147}t^{2}\right)\right]$			$\frac{1}{\epsilon^4} \left[\frac{995332}{995328} s^2 + \frac{1}{663552} st + \frac{1}{663552} t^2 \right] + \frac{1}{\epsilon^3} \left[-\frac{1}{1658880} s^2 + \frac{1}{221184} st + \frac{1}{2488320} t^2 \right]$	
	$+ S2 \left(\frac{8120143}{corres} s^2 + \frac{1893299}{remer} st + \frac{92293}{corres} t^2 \right) - \frac{58867708100}{586677081008} s^2 + \frac{71191292711}{101000101} st + \frac{830163427}{remerv1000} t^2 \right]$			$+ \frac{1}{\epsilon^2} \left[\zeta_3 \left(\frac{14000}{6400} s^2 + \frac{1425000}{153600} st + \frac{37000}{276480} t^2 \right) + \zeta_2 \left(\frac{1000}{497664} s^2 + \frac{331776}{331776} st + \frac{331776}{331776} t^2 \right) \right]$	
	$+\frac{1}{(c_5}\left(-\frac{15205}{28297}s^2-\frac{11787685}{11281763}st-\frac{5549167}{11281767}t^2\right)-\zeta_A\left(\frac{6520949000}{28297}s^2+\frac{313837819}{282892}st+\frac{21665663}{112912900}t^2\right)$			$+ S2 \left[\frac{1007439}{82944} s^2 + \frac{1734025}{110592} st + \frac{4101059}{31776} t^2 \right] - \frac{6243510135}{895795200} s^2 + \frac{508543537}{2488300} st + \frac{11133943960}{59719600} t^2 \right]$	
31-82	$+ (2) (2070904575597 s^2 + \frac{6505876281371}{6000000000000000000000000000000000000$		61 - 82	$+\frac{1}{\epsilon} \left[\zeta_5 \left(-\frac{1094509}{46080} s^2 + \frac{63657091}{46080} st + \frac{5210161}{11520} t^2 \right) + \zeta_4 \left(\frac{11254769}{2230400} s^2 + \frac{129860053}{921600} st + \frac{23717743}{921600} t^2 \right) \right]$	
	$+\frac{128393639}{2}t^2$ + T1ep (8120143 s ² + 1893289 st + 92293 t ²) + S2 (-14810628499 s ²)			$-\zeta_3 \left(\frac{214304190036}{53747712000}s^2 + \frac{3034200131941}{2239488000}st + \frac{3120900529119}{1074954200}t^2\right)$	
	$-\frac{19698937889}{19698937889} st - \frac{10272602953}{12} + D6 \left(-\frac{616147}{6}s^2 + \frac{1939907}{193907}s^4 + \frac{1299587}{1299587}s^2\right)$		31–60	$+ \zeta_2 \left(\frac{1007437}{2488320} s^2 + \frac{2274301}{82944} st + \frac{30003637}{476640} t^2 \right) + \text{T1ep} \left(\frac{1007437}{119744} s^2 + \frac{173023}{1192992} st + \frac{4101097}{478976} t^2 \right)$	
	$10616832 s_{\ell} = -9953280 - t f + D.5 \left(-110592 s_{\ell} + 552960 s_{\ell} + 276480 t \right)$ $+ 9307894793789 s_{\ell} + 206124003456599 s_{\ell} + 21562322533673 t_{\ell} = 276480 t =$			+ S2 $\left(-\frac{10019}{1215}s^{2} - \frac{20000}{331776}st - \frac{10000000}{4976640}t^{2}\right)$ + D6 $\left(-\frac{27648}{27648}s^{2} + \frac{61019}{12000}st + \frac{140100}{172800}t^{2}\right)$, 33976742047 2, 4046536311847 4, 212357840779,2]	
	$+ \frac{9307894793789}{191102976000}s^2 + \frac{206124003456599}{573308928000}st + \frac{21562322533673}{143327232000}t^2$			$+ \frac{33976742047}{1194393600}s^2 + \frac{4046536311847}{35831808000}st + \frac{212357840779}{2239488000}t^2$	

Adds up to zero: no divergence. Enhanced cancellations! No standard (super)symmetry explanation exists.

Enhanced UV Cancellations

ZB, Davies, Dennen

Suppose diagrams in *all* possible Lorentz covariant representations are UV divergent, but the amplitude is well behaved.

- By definition this is an enhanced cancellation.
- Not the way nonabelian gauge theory works.

 $N = 4 \quad 2 - 4 \quad 3 = 4$ sugra $p \quad q = 4$

A already log divergent
N = 4 sugra: pure YM x N = 4 sYM

$$n_i \sim s^3 t A_4^{\text{tree}} (p \cdot q)^2 \varepsilon_1 \cdot p \varepsilon_2 \cdot p \varepsilon_3 \cdot q \varepsilon_4 \cdot q + \dots$$

This diagram is log divergent

- **3** loop UV finiteness of *N* = 4 supergravity proves existence of "enhanced cancellation" in supergravity theories.
- No known standard symmetry explanation.

Where does new magic come from?

ZB, Davies, Dennen, Huang; Bossard, Howe, Stelle

To analyze we need a simpler example: Half-maximal supergravity in D = 5 at 2 loops. No known symmetry explanation in this case.

Similar to N = 4, D = 4 sugra at 3 loops, except much simpler.

D = 5 half max sugra N = 4 sYM x N = 0 YM

Quick summary:

- Finiteness in D = 5 tied to double-copy structure.
- Cancellations in certain forbidden gauge-theory color structures imply hidden UV cancellations in supergravity.

Double-copy structure implies extra cancellations!

Unfortunately, argument relies on special two-loop property: integrals of N = 4 sugra are identical to those of QCD.

Need a more general approach

- Demonstrated enhanced cancellations require integration properties. Not like non-abelian gauge theory.
- Standard proofs of UV properties are ruled out.

We make use of enormous advances in understanding relations between integrals based on IBP technology.

Gluza, Kajda, Kosower ; Johansson, Kosower and Larsen; Ita; Larsen and Zhang

Allows us to write integrands manifestly UV finite up to terms that integrate to zero.

Is there a generic structure for the enhanced cancellations?

Multiloop Enhanced Cancellations

ZB, Enciso, Parra-Martinez, Zeng (2017)

Analysis of cancellations in half-maximal supergravity in D = 5 reveals following interesting pattern.

Conjecture: At large loop momentum enhanced cancellations follow from Lorentz symmetry and SL(*L*) relabeling symmetry.

Lorentz
symmetry
$$0 = \int \left(\prod_{a=1}^{L} d^{D}\ell_{a}\right) \sum_{a=1}^{L} \left(\ell_{a\mu} \frac{\partial}{\partial \ell_{a}^{\nu}} - \ell_{a\nu} \frac{\partial}{\partial \ell_{a}^{\mu}}\right) \frac{\mathcal{N}(\ell_{i})}{\prod_{j} \ell_{j}^{2}}$$

SL(L) relabeling
symmetry
$$0 = \int \left(\prod_{a=1}^{L} d^{D}\ell_{a}\right) \sum_{a=1}^{L} \frac{\partial}{\partial \ell_{a}^{\nu}} \frac{\omega_{ab}\ell_{b\mu}\mathcal{N}(\ell_{i})}{\prod_{j} \ell_{j}^{2}}$$

L loops

Symmetries generate a generic set of identities between integrals 24

Finding BCJ Forms Nontrivial

Gravity integrands might be free, but gauge-theory ones are not. Trouble beyond four loops.

5-loop 4-pt N = 4 sYM amplitude:

Despite considerable effort no one has succeeded in finding a BCJ form.

N = 4 sYM 5 loop form factor:

On other hand, no trouble with form factor. Gang Yang (2016)

Two-loop five-point QCD identical helicity:

This required an ansatz with curiously high
power counting.O'Connell and Mogull (2015)

It can be difficult to find BCJ representations.

Five-Loop *N* = 8 **Supergravity**

N = 4, 5 supergravity complicated. N = 8 supergravity simpler.

Are the expected enhanced cancellations actually present?

Turns out to be quite nontrivial to find BCJ representations:

- Need ansatz (guess) for numerators.
- Large linear systems (up to 10⁶ parameters).
- No one has succeeded as yet, despite considerable effort.

Need a better way:

- Banish large Ansatze or guessing.
- No large linear systems. Get amplitude one piece at a time.
- Stick to sYM as long as possible and convert to sugra at end.
- Keep double-copy idea. Essential!

The *N* = 4 sYM 5 Loop Integrand

ZB, Carrasco Johansson, Roiban, arXiv:1207.6666

410 diagrams. answer can be downloaded from arXiv

王国王这王国王和即国王和西国任帝国王 夏夏这过是这周夏夏天好好了是母母母国家 王王万首区王宫首会命令王母帝帝国王帝国 **王廷这本赵贾母叔赵赵母母母母母母母** 置这员区贸易合合人员合办合学团合合分分分分 王梦过是其我我这个学校的学校在我的我 罗肖》发出会会的合国家的会区会区会区会议会 因为原国家会会的成分的方法的外国国 这里阿阿里西国国家的国家的中国国家

Want to convert this to N = 8 supergravity.

Contact Term Method

ZB, Carrasco, Chen, Johansson, Roiban

Task is to convert *N* = 4 sYM 5-loop integrand into *N* = 8 sugra. Start with "naïve double copy" of *any* correct sYM integrand:

 $c_i
ightarrow n_i$ even though not BCJ representation

Without BCJ duality, not the correct N = 8 integrand

Blobs interfere: not automatic

Contact Term Method

contact = (gravity cut) - (cut of incomplete amplitude)

Cuts become complicated

analytical

numerical

 N^6MC

Missing contact terms become simple for complicated cuts

N⁶ MC contact numerator: $a_1s^2 + a_2st + a_3t^2$

- Contact associated with cut directly giving missing piece of amplitude.
- 75K cuts need to be evaluated.
- Sounds daunting. Not for faint of heart.

Game for optimists: "Simplifying miracle is around the corner"

Gravity cut generated directly from known 5 loop sYM result. Apply KLT to cuts of known N = 4 sYM loop amplitudes. Fast, but complicated analytic structure. **A Simplifying Miracle**

ZB, Carrasco, Chen, Johansson, Roiban

contact = (gravity cut) - (cut of incomplete amplitude)

- 1. Most contact terms vanish! Why?
- 2. In general gravity contacts far simpler than expected.
- 3. Four-point double-contacts factorize. Extremely striking.

$$\begin{bmatrix} 2s^3 - s^2u + 4s^2(2k_1 \cdot l_6) + \cdots \end{bmatrix}$$
 Each factor looks like gauge theory

double 4pt contact **Reminds us of KLT factorization:**

 $M^{\text{tree}}(1,2,3,4) = s_{12}A^{\text{tree}}(1,2,3,4) \times A^{\text{tree}}(1,2,4,3)$

For 5 or higher-point contacts no overall factorization, as with KLT.

Can we write down formulas that give missing gravity pieces directly from gauge theory, bypassing gravity cuts?

- 1. Start from gauge-theory loop amplitude.
 - 2. Construct naïve double copy.
 - 3. Compute cut of naïve double copy.
 - 4. Compute gravity cut from gauge-theory cuts via KLT.
 - 5. Subtract and shake hard (nontrivial).
 - 6. Extract surprisingly simple gravity contact.

Miracle: The contact terms are so simple we should be able write down missing gravity contacts directly from gauge theory.

BCJ Discrepancy Functions

Need a function defined purely in gauge theory as building block for missing gravity pieces.

Obvious guess is these are building blocks for missing gravity pieces.

Missing pieces:

$$\sim \sum J \times J$$

Generalized gauge invariance:

 $\sum_{i_1,i_2} \frac{c_{i_1i_2} \delta_{i_1i_2}}{d_{i_1}^{(1)} d_{i_2}^{(2)}} = 0 = \sum_{i_1,i_2} \frac{n_{i_1i_2}^{\text{BCJ}} \delta_{i_1i_2}}{d_{i_1}^{(1)} d_{i_2}^{(2)}}$

BCJ discrepancy function:

$$J_{i_{2}}^{(1)} \equiv \sum_{i_{1}}^{3} n_{i_{1}i_{2}} = d_{i_{2}}^{(1)} \sum_{i_{1}}^{3} k^{(1)}(i_{1})$$
$$\mathcal{C}_{SG}^{4 \times 4} = \sum_{i_{1}, i_{2}} \frac{n_{i_{1}i_{2}}^{BCJ} n_{i_{1}i_{2}}^{BCJ}}{d_{i_{1}}^{(1)} d_{i_{2}}^{(2)}}$$

Formula for missing contact:

$$J_{i_1}^{(2)} \equiv \sum_{i_2}^3 n_{i_1 i_2} = d_{i_1}^{(2)} \sum_{i_2}^3 k^{(2)}(i_2)$$

cross term between numerators and discrepancy vanishes.

 $\mathcal{C}_{\rm SG}^{4\times4} = \sum_{i=1}^{4} \frac{n_{i_1i_2}n_{i_1i_2}}{d_i^{(1)}d_i^{(2)}} - \frac{2}{d_1^{(1)}d_1^{(2)}}J_1^{(1)}J_1^{(2)}$

Gravity from Gauge Theory

ZB, Carrasco, Chen, Johansson, Roiban

Missing gravity from any gauge theory representation

 $(2) \qquad \mathcal{E}_{GR}^{4\times4} = -\frac{1}{d_1^{(1)}d_1^{(2)}} \left(J_{\bullet,1}\tilde{J}_{1,\bullet} + J_{1,\bullet}\tilde{J}_{\bullet,1}\right)$

propagators cancel trivially

BCJ discrepancy functions

Expand into 15 diagrams

$$(1) \underbrace{\mathcal{E}_{GR}^{4 \times 4 \times 4}}_{(1)} = -\sum_{i_3=1}^{3} \frac{J_{\bullet,1,i_3} \tilde{J}_{1,\bullet,i_3}}{d_1^{(1)} d_1^{(2)} d_{i_3}^{(3)}} - \sum_{i_2=1}^{3} \frac{J_{\bullet,i_2,1} \tilde{J}_{1,i_2,\bullet}}{d_1^{(1)} d_{i_2}^{(2)} d_1^{(3)}} - \sum_{i_1=1}^{3} \frac{J_{i_1,\bullet,1} \tilde{J}_{i_1,1,\bullet}}{d_{i_1}^{(1)} d_1^{(2)} d_1^{(3)}} + \frac{J_{\bullet,1,1} \tilde{J}_{\bullet,1,\bullet}}{d_{i_1}^{(1)} d_1^{(2)} d_1^{(3)}} + \frac{J_{1,1,\bullet} \tilde{J}_{\bullet,\bullet,1}}{d_1^{(1)} d_1^{(2)} d_1^{(3)}} + \{J \leftrightarrow \tilde{J}\}$$
Etc.

- Applies to *any* adjoint gauge theory, not just N = 4 sYM.
- Simple generalization for asymmetric double copies.
- Same constructions work at tree level! Five-point formula ۲ Bjerrum-Bohr, Damgaard, Søndergaad, Vanhove similar to known tree formula.

Simple Recursive Pattern

Simple recursive pattern for adding four-point trees to cuts:

Starting point:
$$-\sum_{i_1,i_p,...,i_q=1}^3 \frac{J_{i_1,...,i_p,...,i_q}\tilde{J}_{i_1,...,i_p,...,i_q}}{d_{i_1}^{(1)}\cdots d_{i_p}^{(p)}\cdots d_{i_q}^{(q)}}$$

Repeatedly substitute:

$$\sum_{i_p=1}^{3} \frac{J_{a_1,\dots,i_p,\dots,a_q} \tilde{J}_{b_1,\dots,i_p,\dots,b_q}}{d_{i_p}^{(p)}} \to -\frac{J_{a_1,\dots\bullet,\dots,a_q} \tilde{J}_{b_1,\dots,1,\dots,b_q}}{d_1^{(p)}} + \{J \leftrightarrow \tilde{J}\}$$

Correction to naïve double copy. Sum over unique terms generated, having at least one modification to starting J or \tilde{J} .

- Have similar formula for single 5 point tree.
- Promising that there should be simple patterns for more general configurations. See arXiv:1708.06807 (today)

5 Loop *N* = **8** supergravity

The generalized double copy enormously simplifies the computation of missing gravity contact terms. The impossible becomes doable!

N² – N³maximal cuts: use formulas. N⁴ – N⁶maximal cuts: numerical analysis more efficient.

We have the five-loop integrand!

- Of 76K potential diagrams with contact terms, 60K vanish.
- Details depends on arbitrary choices starting from naïve double copy.
- Contact-term representation is poor. Terms quartically divergent in D = 24/5 instead of log divergent.
- Have confirmed expected cancellations of divergences in D = 22/5. Tests integrand and integration methods.

IBP for High Loop Supergravity

Next step is to integrate the expression for large loop momenta.

Constructed representation is poor: need to series expand in four powers of external momenta. Get vacuum diagrams.

$$\bigcap_{p} \bigcap_{q} \times (p+q)^{2} + many thousands$$

Lorentz
symmetry
$$0 = \int \left(\prod_{a=1}^{L} d^{D}\ell_{a}\right) \sum_{a=1}^{L} \left(\ell_{a\mu} \frac{\partial}{\partial \ell_{a}^{\nu}} - \ell_{a\nu} \frac{\partial}{\partial \ell_{a}^{\mu}}\right) \frac{\mathcal{N}(\ell_{i})}{\prod_{j} \ell_{j}^{2}}$$
SL(5) relabeling
symmetry
$$0 = \int \left(\prod_{a=1}^{L} d^{D}\ell_{a}\right) \sum_{a=1}^{L} \frac{\partial}{\partial \ell_{a}^{\nu}} \frac{\omega_{ab}\ell_{b\mu}\mathcal{N}(\ell_{i})}{\prod_{j} \ell_{j}^{2}}$$

Should be sufficient for finding enhanced cancellations. ZB, Enciso, Parra-Martinez, Zeng

Integrating 5 Loop *N* **= 8 supergravity**

ZB, John Joseph Carrasco, Wei-Ming Chen, Henrik Johansson, Radu Roiban, Mao Zeng

As a warmup we calculated coefficient of two master integrals in D = 22/5.

Expand in large loop momentum. Use modern unitarity compatible IBP methods.

Gluza, Kadja, Kosower; Kosower and Larsen; Schabinger; Søgaard, Zhang; Ita; Georgoudis and Zhang, etc V(P) = V(NP)

level	V(1)	V(III)
0	$\frac{2439779211}{154000}$	$\frac{2911616507}{7392000}$
2	$\tfrac{374402283}{308000}$	$\frac{8846490651}{224000}$
3	$\frac{3535277}{800}$	$\frac{791440021}{35200}$
4	$-\frac{18900121}{880}$	$-\tfrac{1152620531}{18480}$
sum	0	0

D = 22/5

Cancellation in D = 22/5 checks integrand and our integration methods and efficiency. (Analogous to 5-loop QCD beta function.)

Currently working on much more challenging, but interesting D = 24/5 case. (The calculation for the bet.)

Some Remaining Challenges

- *D* = 24/5 loop integrations need to be done before we have answer to bet.
- Want complete set of formulas for converting *any* gauge-theory loop amplitude to corresponding gravity ones.
- Want better 5-loop sYM starting point to make UV extraction easier.
- Systematic and complete understanding of "enhanced cancellations" still needed.
- Can we carry over ideas to general classical solutions, without starting from special gauges? Applications to gravitational radiation?

Goldberger, Ridgway (2016); Luna, Monterio, Nicholson, O'Connell, Ochirov, Westerberg, White (2016)

- **1. Duality between color and kinematics.**
- 2. Double copy idea offer nontrivial insight into gravity.
 - Gravity loops from gauge theory.
 - Classical solutions.
- 3. Even when duality not manifest, new ideas allow us
 - to extract gravity generalized double copy from gauge theory.
- 4. Applied these ideas to solve 5-loop 4-point integrand.
- 5. Using modern integration ideas we have efficient loop integration. Stay tuned!

In the coming months we hope to finally determined UV behavior of N = 8 supergravity at 5 loops.

We have a powerful new method to construct multiloop gravity amplitudes from gauge theory. Expect to learn a lot more about gravity in the coming years.