Dark Matter in the Cosmic Context

Katie Mack Mark Mark

(soon: North Carolina State University)

www.ph.unimelb.edu.au/~kmack

Dark Matter

massive

massive

ubiquitous

Galaxy Cluster Abell 2218 NASA, A. Fruchter and the ERO Team (STScl, ST-ECF) • STScl-PRC00-08

massive

ubiquitous

smooth

collisionless

- massive
- ubiquitous
- smooth
- collisionless
- new component

Candidates (incomplete list)

MACHOs (e.g., primordial black holes)

 Mack, Ostriker & Ricotti 2007, Ricotti, Ostriker & Mack 2008, Mack & Wesley 2008

Axions/axion-like particles

Mack & Steinhardt 2011, Mack 2011

Weakly Interacting Massive Particles (a.k.a., WIMPs)

 Something not included in the Standard Model of Particle Physics

Annihilating WIMPS

Key detection signature: WIMP annihilation

Why **annihilating** dark matter?

- Good candidates in supersymmetry (e.g. neutralino), Kaluza-Klein theory (e.g. B¹)
- Early thermal equilibrium and freeze-out gives natural production mechanism

?

Dark Matter: Indirect Detection

 signature: cosmic rays, gamma rays, neutrinos (annihilation products)

Gamma Rays

Gamma-ray excess in Galactic Center at I-3 GeV 3I-40 GeV WIMP annihilation?

In favor: spatial distribution looks plausible; fairly simple WIMP model, possible new hints seen in Andromeda

Against: Galactic Center is **messy**; **complicated analysis**; statistics favor **point sources** (Lee et al. 2015)

Daylan et al. 2014

Gamma Rays

However: Statistical distribution appears to be more consistent with point sources (probably pulsars)

Lee et al. 2015

Cosmic Rays

Image credit: PAMELA Collaboration

Image credit: NASA

PAMELA and the **AMS instrument** (and several others) saw an excess of positrons in their measurements -- could it be dark matter annihilation?

3 TeV DM with **high crosssection** proposed as explanation

Cosmic Rays

Image credit: PAMELA Collaboration

Image credit: NASA

But: **pulsars** also make electronpositron pairs

Limited directional information

A couple of nearby pulsars could produce entire signal

Grasso et al. 2009

Cosmic Rays

Image credit: PAMELA Collaboration

positrons

Pulsar fit

Pulsar fit

Pulsar fit

AMS02

Background

J1001-5507

Background+J1001-5507

Kohri et al. 2015

Feng & Zhang 2015

(e)

Dark Matter: Indirect Detection

- signature: cosmic rays, gamma rays, neutrinos (annihilation products)
- results: inconclusive
- the future: giant cosmic ray array (CTA), highresolution gamma-ray astronomy

Dark Matter: Direct Detection

signature: nuclear recoil

Image credit: UC Berkeley

Direct Detection

Direct Detection

Neutrino Wall

Neutrino Wall

O'Hare, from paper in prep

Annual Modulation

DAMA/LIBRA experiment results

winter

summer

Dark Matter: Direct Detection

- signature: nuclear recoil
- results: inconclusive
- the future: SABRE, directional detection (see: CYGNUS project)

Dark Matter: Production

- signature: missing energy
- results: no signal (yet)
- the future: more LHC data, future colliders

Cosmological DM Signatures

- Density field
 - angular dependence of 21cm power spectrum
 - Iensing (CMB, LSS)
- Energy injection (annihilation, decay)
- Structure formation
 - velocity offset between dark matter & baryons
- Small-scale structure and bias (warm dark matter)
- Radio counterparts (axions, annihilation)

Dark Matter: Cosmology

Paul Angel, Tiamat Simulation

Annihilation "Feedback"

Major unanswered question:

If dark matter **annihilates** across all of cosmic time, **how does it affect the first stars and galaxies**?

First question to ask: When is annihilation power **strongest**?

Balance: density of universe (decreasing with time) vs

growth of structure

(increasing with time)

Annihilation in the Intergalactic Medium

Annihilation in the Intergalactic Medium

Annihilation in the Intergalactic Medium

inverse Compton scattering

Better:

- structured halos
- delayed energy deposition

If dark matter is annihilating within baryonic halos, does this constitute an effective "feedback" process?

Sarah Schon, very-soon-to-be-PhD

If dark matter is annihilating within baryonic halos, does this constitute an effective "feedback" process?

PYTHIA code: dark matter annihilation events

MEDEA2 code: energy transfer to baryons

Halo models: density profile, mass-concentration

Comparing: dark matter annihilation energy (over Hubble time) to: gas binding energy

Schon, Mack+ 2015, MNRAS [arxiv: 1411.3783]

Comparing: dark matter annihilation energy (over Hubble time) to: gas binding energy

Schon, Mack+ 2015, MNRAS [arxiv: 1411.3783]

Halo Structure and Environment

Improved code: tracks full particle cascades & deposition within halos

Main questions:

- Where is the energy deposited?
- What is the effect on the halo environment?

Schon, Mack & Wyithe 2017 [arxiv:1706.04327]

Halo Structure and Environment

Annihilation products **filtered** through halo baryons

Schon, Mack & Wyithe 2017 [arxiv: 1706.04327]

Halo Structure and Environment

Schon, Mack & Wyithe 2017 [arxiv:1706.04327]

Alteration of halo collapse

Heating of halos alters Jeans mass (mass at which collapse possible)

This can **prevent or delay collapse** for small halos at high redshift

Schon, Mack & Wyithe 2017 [arxiv:1706.04327]

Tseliakhovich & Hirata 2010 McQuinn & O'Leary 2012 Fialkov et al. 2014 Ali-Haimoud et al. 2014

animation by Daniel Eisenstein

Tseliakhovich & Hirata 2010 McQuinn & O'Leary 2012 Fialkov et al. 2014 Ali-Haimoud et al. 2014

Tseliakhovich & Hirata 2010 McQuinn & O'Leary 2012 Fialkov et al. 2014 Ali-Haimoud et al. 2014

Tseliakhovich & Hirata 2010 McQuinn & O'Leary 2012 Fialkov et al. 2014 Ali-Haimoud et al. 2014

Probing "Cosmic Dawn"

Djorgovski et al., Caltech

current instruments next decade

Take-Home Messages

- The fundamental nature of dark matter is still a mystery (but we are getting clues)
- To identify dark matter from astrophysics, we need multi-messenger signals and a solid understanding of astrophysical foregrounds
- Future surveys can probe the particle physics
 of dark matter and produce a more consistent
 picture of cosmology

end