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where

U(φ) = λ
(
|φ|2 − v2

)2
. (10.2)

In the vacuum |φ| = v but the phase of the field φ may rotate. Imagine a
point on the xy plane and a contour C which encircles this point (Fig. 10.1).
Imagine that, as we travel along this contour, the phase of the field φ changes
from 0 to 2π, or from 0 to 4π, and so on. In other words,

φ(r,α) → v einα at r→∞, (10.3)

where we use polar coordinates: α is the angle on the xy plane, r is the

C

Fig. 10.1. The vortex of the φ field. The arrows show the values of the complex
field φ at given points on the contour which encircles the origin (the vortex center).

radius (Fig. 74.1), and n is an integer. Such field configuration is called a
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Fig. 10.2. Polar coordinates on the xy plane, r =
√

x2 + y2.

130 Vortices and Flux Tubes (Strings)

vortex. It is clear, on topological grounds, that the winding of φ cannot
be “unwind” by any continuous field deformations. Mathematically this is
expressed as follows. The vacuum manifold in the case at hand is a circle.
We map this circle onto a spatial circle depicted in Fig. (10.1). Such maps
are categorized by topologically distinct classes labeled by integers: positive,
negative or zero,

Topological
formula for the
first homotopy

group. π1(U(1)) = Z .

The integer counts how many times we wind around the vacuum manifold
circle when we sweep the spatial circle once. The map is orientable: sweep-
ing the vacuum manifold clockwise we can wind around the spatial circle
clockwise or anticlockwise.

Although such global vortices may play a role if spatial dimensions are
assumed to be finite, their energy diverges (logarithmically) in the limit of
infinite sample size. Indeed,

∂iφ∼ i nφ∂iα = −i n εij
xi

r2
at r →∞ (i, j = 1, 2) , (10.4)

which implies

E =

∫
d2x

{
∂iφ̄∂iφ+ U(φ)

} φ=veinα

−→ 2πv2n2
∫

dr

r
→∞ . (10.5)

Thus, the global vortex mass (the flux tube tension in D = 4) diverges
logarithmically both at large and small r. The small-r divergence can be
cured if we let φ→ 0 in the vicinity of the vortex center. To cure the large-r
divergence we will have to introduce a gauge field.

10.2 The Abrikosov–Nielsen–Olesen vortex (string)

A way-out allowing one to make the vortex energy finite is well-known.†
To this end one should gauge the U(1) symmetry. The Abrikosov–Nielsen–
Olesen (ANO) vortex is a soliton in the gauge theory with a charged scalar
field whose vacuum expectation value breaks U(1) spontaneously. The model
is described by the LagrangianU(1) is gauged

L = − 1

4e2
F 2

µν + |Dµφ|2 − U(φ) (10.6)

† Since the transverse size of the ANO string is of the order of m−1
V, H , see below, and the energy

density is well localized, some people refer to the ANO string as local. Strings occupying an
intermediate position between the global strings of Section 10.1 and the ANO strings, whose
transverse size can be arbitrary while their tension is finite, go under the name of semilocal. For
a review see [3]. An example of semilocal string is the CP(1) instanton provided one elevates
the CP(1) model to four dimensions. The semilocal strings will not be considered in this course.
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φ= vei(n)α

φ= veiα at r⇾∞ 
or
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Non-Abelian vortex strings are supported in 4D Yang-Mills theories 
with matter with N=2,1, and 0 supersymmetry. 


In QCD they are supported at hight density (chemical potential);


In condensed matter physics 


 

Gapless modes of vortices in superfluid 3He-B 5

2. The Ginzburg-Landau description of superfluid 3He-B

In this section we will briefly review the Ginzburg-Landau theory describing the

superfluid phases of 3He. We will follow the description as given by [1] and [32, 33]

where more detailed discussions can be found. As discussed above the order parameter
eµi is a complex 3×3 matrix that transforms under the vector representations of SO(3)L
and SO(3)S

eµi → eiψSµνLijeνj , (5)

where eiψ is an element of the global U(1)P phase rotations. We write the most general
free energy possessing the complete symmetry G = U(1)P × SO(3)S × SO(3)L

FGL = Ftime + Fgrad + V,

Ftime = ieµi∂te
⋆
µi,

Fgrad = γ1∂ieµj∂ie
⋆
µj + γ2∂ieµi∂je

⋆
µj + γ3∂ieµj∂je

⋆
µi,

V = −αeµie
⋆
µi + β1e

⋆
µie

⋆
µieνjeνj + β2e

⋆
µieµie

⋆
νjeνj + β3e

⋆
µie

⋆
νieµjeνj ,

+ β4e
⋆
µieνie

⋆
νjeµj + β5e

⋆
µieνieνje

⋆
µj , (6)

where the parameters γi, α, and βi are phenomenological parameters depending on

temperature and pressure that can be determined from BCS-like calculations from the
underlying microscopic theory [23], and may include corrections from strong coupling

considerations [34]. In this paper we will adjust the constants at our will depending on

the particular features we wish to illustrate.

The free energy can be minimized by considering the subgroups of the group G.

Two of these subgroups can be realized physically, which are characterized by the A

phase HA = U(1) × U(1), and the B phase HB = SO(3)S+L. In the bulk A phase the
order parameter takes the form

(eA0 )µi =
∆√
2
Vi(∆

′
µ + i∆′′

µ), (7)

where V⃗ is a unit vector in the direction of the spin, and ∆⃗′ and ∆⃗′′ are mutually

orthogonal unit vectors whose cross product ∆⃗′ × ∆⃗′′ is in the direction of the

orbital angular momentum [21]. In this work we will consider only the bulk B phase

characterized by the order parameter

(e0)µi = eiψ∆(R0)µi, (8)

where (R0)µi is a generic element of SO(3). The gap parameter ∆ can be found by

inserting (8) into the potential V in (6) and minimizing the expression. The result is

∆ =
α

6β12 + 2β345
, (9)

where we are employing a shorthand notation

γabc... = γa + γb + γc + ...,

βabc... = βa + βb + βc + ... (10)
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The model obviously supports the Abrikosov flux tube. Inside the tube, the
spin field �

i

is excited giving rise to gapless (or quasigapless) excitations of
non-Abelian type, localized on the flux tube.

Now we would like to make the next step and introduce a twist term
L
"

which violates parity through mixing of the “spin term” with angular
momentum,

L = L
0

+ L
�

+ L
"

, L
"

= �⌘"
ijk

�
i

@
j

�
k

, (7)

where ⌘ is a deformation parameter. The spatial kinetic terms of �
i

including
the twist L

"

, is recognized as the Frank-Oseen free energy density of an
isotropic chiral nematic liquid crystal [7]. Note that the twist term is linear
in derivatives. If ⌘ is large enough, a vacuum expectation value of �

i

develops
with a cholesteric structure.

L
"

also breaks the orbital rotational part of the Lorentz symmetry im-
plying a spin-orbit locked symmetry of the full Lagrangian,

SO(3)
L

⇥ SO(3)
S

! SO(3)
S+L

. (8)

The energy density derived from the Lagrangian (7) is

E =
1

4e2
F
ij

F ij + |D
i

�|2 + �(|�|2 � v2)2 + @
i

�
j

@
i

�
j

+ ⌘"
ijk

�
i

@
j

�
k

+ �
⇥

(�µ2 + |�|2)�
i

�
i

+ �(�
i

�
i

)2
⇤

. (9)

Our first task is to study the vacuum (ground state) of the dynamical system
described by (7) or (9).

3 Generalities

Assuming that all couplings of the model at hand are small in what follows
we will solve static classical equations of motion (i.e. we will limit ourselves
to the quasiclassical approximation). The Lagrangian (7) contains a number
of constants: e, �, � and � (dimensioneless couplings) and dimensionful
parameters v, µ and ⌘. The mass of the elementary excitations of the charged
field � is

m2

�

= 4�v2 . (10)

In the next sections we will rescale all quantities to appear below to make
them dimensionless, for instance, distance in the direction of the flux tube
axis

z̃ = m
�

z , (11)

3

Δ

P-odd, spin-orbit

distance in the perpendicular direction

⇢ = m
�

p

x2 + y2 , (12)

and so on. Other dimensionless parameters are

b =
�(c� 1)

4�c
, c =

v2

µ2

, a =
e2

2�
, ⌘̃ = ⌘/m

�

. (13)

The field �
i

being represented in Cartesian coordinates takes the form

�
i

=
µp
2�

n

�̃
x

(x, y, z), �̃
y

(x, y, z), �̃
z

(x, y, z)
o

. (14)

The static classical equations of motion are derived by extremization of
energy (9), in a general coordinate system they read

r
i

�p�ggijr
j

�
k

�� ⌘"
kji

r
j

�
i

� @V

@�
k

= 0 ,

D
i

�

gij
p�gD

j

�
�

+
p�g

�

2�
�|�|2 � v2

�

+ �gij�
i

�
j

�

� = 0 ,

@
i

⇣p�ggjigklF
jk

⌘

� ie2
p�g

⇣

�⇤Dl�� �Dl�⇤
⌘

= 0 , (15)

where
@V

@�
k

=
p�g�

���µ2 + |�|2�+ 2�gij�
i

�
j

�

�
k

, (16)

and
r

i

�
j

= @
i

�
j

� �k

ij

�
k

(17)

is the standard curved space covariant derivative.

4 Ground state

Inspection of L
"

in the Lagrangian (7) – in particular, the fact that it is of
the first order in derivative – prompts us that, generally speaking, in the
ground state translational invariance will be spontaneously broken. One
can always assume that this breaking is aligned in the z direction. Then
minimization of energy argument suggests that the spin field �

i

is oriented
in the x, y plane and rotates as we move in the z direction. In other words,
a cholesteric structure appears in the ground state

�
i

= �
0

✏
i

(z) , �
i

=
µp
2�

�̃
0

✏
i

(z) ,

~✏ (z) =
n

cos kz, sin kz, 0
o

, (18)
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Figure 2: Z2 string junction.

have the same tension. Hence, two different strings form a stable junction. Figure 2
shows this junction in the limit

ΛCP(1) ≪ |∆m| ≪
√

ξ (4)

corresponding to the lower left corner of Fig. 1. The magnetic fluxes of the U(1) and
SU(2) gauge groups are oriented along the z axis. In the limit (4) the SU(2) flux
is oriented along the third axis in the internal space. However, as |∆m| decreases,
fluctuations of Ba

z in the internal space grow, and at ∆m → 0 it has no particular
orientation in SU(2) (the lower right corner of Fig. 1). In the language of the
worldsheet theory this phenomenon is due to restoration of the O(3) symmetry in
the quantum vacuum of the CP(1) model.

The junctions of degenerate strings present what remains of the monopoles in
this highly quantum regime [11, 12]. It is remarkable that, despite the fact we are
deep inside the highly quantum regime, holomorphy allows one to exactly calculate
the mass of these monopoles. This mass is given by the expectation value of the kink
central charge in the worldsheet CP(N − 1) model (including the anomaly term).

What remains to be done? The most recent investigations zero in on N = 1
theories, which are much closer relatives of QCD than N = 2. I have time to say
just a few words on the so-called M model suggested recently [13] which seems quite
promising.

2.3 M model

The unwanted feature of N = 2 theory, making it less similar to QCD, is the
presence of the adjoint scalar field. One can get rid of it making it heavy. To
this end we must endow the adjoint superfield by a mass term. Supersymmetry of
the model becomes N = 1. Moreover, to avoid massless modes in the bulk theory
(in the limit of very heavy adjoint fields) we must introduce a “meson” superfield
MA

B analogous to that emerging in the magnetic Seiberg dual, see Sect. 1, with an
appropriately superpotential. After the adjoint field is eliminated the theory has no
’t Hooft–Polyakov monopoles in the quasiclassical limit. Nevertheless, a non-Abelian

6
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= kink

Evolution in dimensionless parameter m2/ξ

Yung + M.S.

Hanany, Tong



Kink = Confined Monopole

Why?

✵ Kinks are confined in 4D (attached to strings).

✵ ✵ Kinks are confined in 2D: 


 ★only kink-antikink in the spectrum★

 if SUSY is unbroken (explained by Witten)

4D ⬌  2D correspondence
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ΛCP(1)

Λ
−1

CP(1)

Δ m
−1

ξ
−1/2

ξ=0

Δ m =0

ξ=0

Δ m >> ξ
1/2

The ’t Hooft−Polyakov
monopole

Almost free monopole

B

ξ
−1/2

< << Δ m < ξ
1/2

Confined monopole,
quasiclassical regime

Δ m 0

Confined monopole,
highly quantum regime

Figure 1: Various regimes for monopoles and strings.

was in full swing.1 BPS domain walls, analogs of D branes, had been identified
in supersymmetric Yang–Mills theory. It had been demonstrated that such walls
support gauge fields localized on them. and BPS saturated string-wall junctions
had been constructed [8]. And yet, non-Abelian flux tubes, the basic element of the
non-Abelian Meissner effect, remained elusive.

2.1 Non-Abelian flux tubes

They were first found [9, 10] in U(2) super-Yang–Mills theories with extended su-
persymmetry, N = 2, and two matter hypermultiplets. If one introduces a non-
vanishing Fayet–Iliopoulos parameter ξ the theory develops isolated quark vacua,
in which the gauge symmetry is fully Higgsed, and all elementary excitations are
massive. In the general case, two matter mass terms allowed by N = 2 are unequal,
m1 ̸= m2. There are free parameters whose interplay determines dynamics of the
theory: the Fayet–Iliopoulos parameter ξ, the mass difference ∆m and a dynamical
scale parameter Λ, an analog of the QCD scale ΛQCD. Extended supersymmetry
guarantees that some crucial dependences are holomorphic, and there is no phase
transition.

The number of colors can be arbitrary. The benchmark model supporting non-
Abelian flux tubes has the gauge group SU(N)×U(1) and N flavors. The N =
2 vector multiplet consists of the U(1) gauge field Aµ and the SU(N) gauge field Aa

µ,

1This program started from the discovery of the BPS domain walls in N = 1 supersymmetric
gluodynamics [7].
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carry baryonic charge, see [2, 3] for more details. Its dimension is 16. The
above Higgs branch is non-compact and is hyper-Kählerian [20, 17], therefore
its metric cannot be modified by quantum corrections [17]. In particular, once
the Higgs branch is present at weak coupling we can continue it all the way
into strong coupling.

On the world sheet of the non-Abelian critical string we have [1, 2, 3] the
translational moduli fields (they decouple from other moduli) which, in the
Polyakov formulation [21], are given by the action

S

0

=
T

2

Z
d

2

�

p
hh

↵�

@

↵

x

µ

@

�

x

µ

+ fermions , (2.2) {s0}

where �↵ (↵ = 1, 2) are the world-sheet coordinates, xµ (µ = 1, ..., 4) describe
the R4 part of the string target space and h = det (h

↵�

), where h

↵�

is the
world-sheet metric which is understood as an independent variable.

Next, the non-Abelian semilocal vortices have orientational zero modes
n

P (here P = 1, 2), as well as size moduli ⇢K (K = 1, 2) [22]. The gauged for-
mulation of the e↵ective world sheet theory for orientational and size moduli
is as follows [23]. One introduces the U(1) charges ±1 for the n and ⇢ fields,
namely +1 for n’s and �1 for ⇢’s,

S

1

=

Z
d

2

�

p
h

n
h

↵�

⇣
r̃

↵

n̄

P

r
�

n

P +r
↵

⇢̄

K

r̃
�

⇢

K

⌘

+
e

2

2

�|nP |2 � |⇢K |2 � �

�
2

�
+ fermions , (2.3) {wcp}

where
r

↵

= @

↵

� iA

↵

, r̃
↵

= @

↵

+ iA

↵

(2.4) {24}
and A

↵

is an auxiliary gauge field without the kinetic term. The limit e2 ! 1
is implied. Equation (2.3) represents the WCP(2, 2) model.1

The total number of real bosonic degrees of freedom in (2.3) is six, where
we take into account the constraint imposed by the D-term. Moreover, one

1Both the orientational and the size moduli have logarithmically divergent norms, see
e.g. [22]. After an appropriate infrared regularization, logarithmically divergent norms can
be absorbed into the definition of relevant two-dimensional fields [22]. In fact, the world-
sheet theory on the semilocal non-Abelian string is not exactly the WCP(N, eN) model
[24], there are minor di↵erences. The actual theory is called the zn model. Nevertheless
it has the same infrared physics as the model (2.3) [25].
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Non-compact Calabi-Yau, Ricci-flat!!!!!
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). This function enters the Seiberg-Witten curve for
our 4D QCD [49,50].

Note, that the 4D self-dual point g2 = 4⇡ is mapped onto the 2D self-dual point
� = 0.

The thin string hypothesis is equivalent to the assumption that the inverse string
thickness has a singularity as a function of g2. If we assume for simplicity that there
is only one singular point, then by symmetry, a natural choice is the self-dual point
⌧c = i or g2c = 4⇡. This gives
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where the dependence of `�2 at small and large g

2 follows from the weak coupling
formula for the Higgsed bulk gauge bosons and duality (36). In terms of � the critical
point is � = 0. At this point the target space of the WCP (2, 2) part of the world-
sheet model develops a conical singularity. The number of real (bosonic) degrees of
freedom parametrizing WCP (2, 2) is six. Adding four translational moduli we get
ten-dimensional space

As will be explained later the critical string we arrived at can be viewed as a
type IIA superstring, a version of the Kutasov-Vafa little string. The target space is
R4 ⇥WCP (2, 2) = R4 ⇥ Y

6

where Y

6

is a non-compact Calabi-Yau conifold.

6 Spectrum

6.1 Massless states

First, we will be interested in massless four dimensional excitations of the quantized
string. To this end we must find zero modes of appropriate operators in the Y

6

background. At first sight one might think that there are no normalizable zero
modes at all, because our our Calabi-Yau space is non-compact. As a matter of fact,
at the selfdual value of � = 0 a marginally normalizable scalar zero mode exists!

Our analysis led us to the conclusion that the only road leading to the above zero
mode is as follows:

�Gij = �

4

(x) �gij(y) , (40)

where xµ and yi are the coordinates on R4 and Y

6

, respectively, and Gij is the
metric on Y

6

. Then we studied the relevant Lichnerowicz equation on Y

6

[44, 45].
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β = 0 in the self dual point;

Target space develops conical singularity!
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where the dependence of m at small and large g

2 follows from the quasiclas-
sical analysis (see [19]) and the duality relation (2.9), respectively.
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4D 6D

Must be normalizable

Solutions of this equation for the Calabi-Yau spaces reduce to deformations of the
Kähler form or deformations of complex structure [52,53]. In the former case we deal
with the resolved conifold while in the latter case with the deformed conifold. The
di↵erence between the two lies in the way of smoothing the conifold singularity. For
the resolved conifold one introdeces introducing a non-zero (but small) � preserving
the Kähler structure and Ricci-flatness of the metric. The explicit metric for the
resolved conifold can be found in [54–56]. The resolved conifold has no normalizable
zero modes. In particular, it is demonstrated in [45] that the four-dimensional scalar
� associated with the Kähler form deformation is non-normalizable.

At the same time deformation of the complex structure [52] does lead to a
marginally normalizable four-dimensional scalar localized on the string in the same
sense as the orientational and size zero modes are localized on the vortex-string
solution.

The four-dimensional massless scalar b is a part of a four-dimensional N = 2
hypermultiplet. Thus, we observed a new Higgs branch in the bulk which is developed
only at the self-dual value of the bulk coupling constant g2 = 4⇡.

6.2 Massive states
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lead to one 4D massless scalar hyper

(Supergravity approx.)



There are two 4D modular parameters in the case at 
hand:  

(a) complex structure (determined by H{2,1}); 

(b) Kähler form (determined by H{1,1}).


(a) deformed conifold , H{2,1} (Hodge numbers) implies 1 
normalizable mode 


(b) Resolved manifold, H{1,1}, (Hodge numbers) non-
normalizable modes in 6D


One massless scalar hypermultiplet of string states in 
4D at strong coupling (g2     4π)               




• U(1)B in the bulk is unconventional

Take U(1) from U(2)gauge;

• Define U(1)flavor as a U(1) rotation of f1 

and f2 in one direction & f3 and f4 in 
opposite;


• U(1)gauge × U(1)flavor ➔ U(1)diag = U(1)B

On the world sheet
Unbroken by <f1>, <f2>

   w∼n×ρ;  w2∼b;   QB(b)= 2


Deformed conifold par.n      ρ
U(1)g -1/2     1/2   
U(1)f  1/2     1/2   
U(1)diag  0      1  



Massive excitations

●  Unlike M=0 case, supergravity approximation cannot be used

●                                                   (with Liouville, e.g. 
Kutasov et al.)

this hypermultiplet can be restored by N = 2 supersymmetry. In particular,
4D N = 2 hypermultiplet should contain another complex scalar b̃ with
baryon charge Q

B

(b̃) = �2. In the stringy description this scalar comes from
ten-dimensional three-form, see [32] for a review.

4 Non-critical c = 1 string

{c=1}
As was explained in the Introduction the critical string theory on the conifold
is hard to use for calculating the spectrum of massive string modes because
the supergravity approximation does not work. Below we take a di↵erent
route and use the equivalent formulation of our theory as a non-critical c = 1
string theory with the Liouville field and a compact scalar at the self-dual
radius [6, 7].

Non-critical c = 1 string theory is formulated on the target space

R4 ⇥ R
�

⇥ S

1

, (4.1) {target}

where R
�

is a real line associated with Liouville field � and the theory has a
linear in � dilaton, such that string coupling is given by

g

s

= e

�Q
2 �

. (4.2) {strcoupling}

In our case Q =
p
2 (see Eq. (4.7) below).

Generically the above equivalence relates critical strings on the non-
compact Calabi-Yau spaces with isolated singularities and non-critical c = 1
string with an additional Ginzburg-Landau N = 2 superconformal system
[6]. In the case of the conifold this extra Ginzburg-Landau factor in (4.1) is
absent [33].

In [34, 6, 33] it was argued that non-critical string theories with the
string coupling which falls o↵ exponentially at � ! 1 are holographic. The
string coupling tends to zero in the space-time bulk, and non-trivial dynamics
(Little String Theory, LST) is localized on the “boundary.”4 In our case the
“boundary” is our four-dimensional space in which N = 2 QCD is defined.

The holography for our non-Abelian vortex (in fact, a reversed hologra-
phy) is most welcome and expected. We start with N = 2 QCD in 4D and
study solitonic vortex string. In our framework the 10D space (formed by

4A basic example of this behavior is non-gravitational LST on the flat six-dimensional
space formed by the world volume of parallel NS5-branes.
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1 Introduction

{intro}
Recently it was found that a solitonic vortex string supported by N = 2
Yang-Mills theory with the U(2) gauge group and N

f

= 4 matter hypermul-
tiplets becomes critical and infinitely thin at strong coupling under a certain
condition [1, 2, 3] (for a brief review see [4]). We will refer to it as the bulk
four-dimensional theory; its U(1) factor is endowed with the Fayet-Iliopoulos
(FI) term, which is responsible for the BPS saturation of the solitonic vor-
tex string. The bulk theory would be conformal if it were not for the FI
parameter ⇠ (which does not run).

Here we will briefly report on our calculation of the spectrum of massive
states. A massless four-dimensional scalar state was observed previously
[2, 3]. Our current analysis (based on little string theory [5, 6, 7] conceptually
and to a significant extent technically) reproduces the above massless state
as a particular case. More details and further results will be presented in a
subsequent publication.

The solitonic string we will deal with is non-Abelian [8, 9, 10, 11] and
semilocal. The world-sheet dynamics are described by a two-dimentional
sigma model which is usually referred to as WCP(2, 2) in the physical liter-
ature. In the mathematical literature its target space is known as

O(�1)�(2)

CP1 . (1.1) {12}

This world-sheet model presents translational, orientational and size moduli.
The target space for the orientational and size moduli is dimension-6 noncom-
pact Calabi-Yau manifold Y

6

, the so-called resolved conifold (see [12, 13]).
Adding four dimensions from the R

4

factor we arrive at the ten-dimensional
space R

4

⇥ Y

6

.
The non-Abelian vortex string is 1/2 BPS saturated and, therefore, has

N = (2, 2) supersymmetry on its world sheet. For N

f

= 4 and N = 2 the
world sheet-model is conformal. The Virasoro central charge for WCP(2, 2)
is c = 9 implying that the overall central charge, including ghosts, vanishes.
Thus, we arrive at a critical string.

The main obstacle to describe a solitonic vortex string as a critical string
is that solitonic strings are typically not infinitely thin. Their transverse size
is given by 1/m, where m is a typical mass scale of four-dimensional fields
forming the string. This entails occurrence of a series of higher-derivative
corrections in the low-energy sigma model. The latter runs in powers of
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states are non-normalizable, thus we are left with the interval � 1p
2

< (j +
1

2

) < 0. From (5.10) we see that the states with l = 0 or l = �1 are“
tachyonic.” Clearly the tachyonic states cannot exist in N = 2 QCD. They
are forbidden by supersymmetry. Moreover, they cannot arise as string states
in the critical string theory on the conifold. Conifold is a six dimensional
Calabi-Yau space with SU(3) holonomy which ensuresN = 2 supersymmetry
in four dimensions [38]. This creates a puzzle.

We suggest the following resolution to this puzzle: the equivalence be-
tween the critical string theory on the conifold and noncritical c = 1 string
theory established in [7, 33, 6] is in fact not complete. Certain (tachyonic)
string states present in c = 1 theory are absent in the string theory on the
conifold. They are forbidden in the latter theory by 4D supersymmetry. We
believe that the GSO projection should be extended to exclude these states
from the noncritical c = 1 string theory in order to preserve 4D supersym-
metry. We know for a fact that they are absent in our basic bulk theory.
This issue needs a more detail study.

5.4 Spin-2 states

At the next level we consider 4D spin-2 states (“gravitons”). The corre-
sponding vertex operators are given by

V

G

j,n

(p
µ

) = ⇠

µ⌫

 

µ

L

 

⌫

R

e

�'

e

ipµx
µ
V

j,n

, (5.16) {graviton}

where  µ

L,R

are the world-sheet superpartners of the 4D coordinates xµ while
⇠

µ⌫

is the polarization tensor.
The condition for these states to be physical takes the form

p

µ

p

µ

8⇡T
+

n

2

4
� j(j + 1) = 0 , (5.17) {gravphys}

and we still consider logarithmically normalizable states with j = �1

2

.
The GSO projection selects now n to be even, n = 2l, |l| = 0, 1, 2, ....

This gives for masses of these states,

(MG)2
j,l

= 8⇡T

✓
l

2 +
1

4

◆
. (5.18) {gravitonmass}

We see that all spin-2 states are massive. This confirms the result in [3] that
massless 4D graviton is absent in our theory. It also matches the fact that
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Figure 1: Spectrum of spin-0 and spin-2 states as a function of the baryonic
charge. Closed and open circles denote spin-0 and spin-2 states, respectively.

We see that the momentum m in the compact Y direction is in fact the
baryon charge of a string state. In particular, 4D scalar states (5.20) are all
baryons for positive l and anti-baryons for negative l with

QB = 4l + 2 .

The masses of 4D scalars as a function of the baryonic charge are shown in
Fig. 1.

To conclude this subsection let us note that the second allowed value of
j, j = −1 in (5.12), is excluded by the GSO projection which selects only
half-integer values of m for states (5.13), see (5.14).

Note also that the 4D scalar states found above are the lowest components
of N = 2 multiplets. Other components can be restored by virtue of 4D
N = 2 supersymmetry.
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ba

Figure 2: Examples of the monopole “necklace” baryons: a) Massless b-baryon
with QB = 2; b) Spin-2 baryon with QB = 4. Open circles denote monopoles.

6 Physical interpretation of string states

In this section we reveal a physical interpretation of all baryonic states found
in the previous section as monopole “necklaces.”

Consider first the weak coupling domain g2 ≪ 1 in four-dimensional
N = 2 QCD. It is in the Higgs phase: N squarks condense. Therefore,
non-Abelian vortex strings confine monopoles. However, the monopoles can-
not be attached to the string endpoints. In fact, in the U(N) theories con-
fined monopoles are junctions of two distinct elementary non-Abelian strings
[50, 5, 6] (see [10] for a review). As a result, in four-dimensional N = 2 QCD
we have monopole-antimonopole mesons in which the monopole and anti-
monopole are connected by two confining strings. In addition, in the U(N)
gauge theory we can have baryons appearing as a closed “necklace” con-
figurations of N×(integer) monopoles [10]. For the U(2) gauge group the
lightest baryon presented by such a “necklace” configuration consists of two
monopoles, see Fig. 2.

Moreover, the monopoles acquire quantum numbers with respect to the
global symmetry group (2.1). To see that this is the case note that in the
world-sheet theory on the vortex string the confined monopole is seen as a
kink interpolating between two distinct vacua (i.e. distinct elementary non-
Abelian strings) in the corresponding 2D sigma model [50, 5, 6]. At the same
time, we know that the sigma model kinks at strong coupling are described
by the nP and ρK fields [51, 52] (for the sigma model described by (2.5) it was
shown in [53]) and therefore transform in the fundamental representations 9

9Strictly speaking, to make both bulk monopoles and world-sheet kinks well defined as
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Conclusion:


10D critical string IS reincarnation of a BPS soliton

in 4D N=2 super-Yang-Mills with U(2) gauge and 

four quark flavors!


Reverse Holography!


