Dark Matter in Disequilibrium

Time Lo

Mariangela Lisanti Princeton University

The Dark Matter Halo

The Dark Matter Halo

The Dark Matter Halo

A flat rotation curve implies that the enclosed mass scales as

 $M(r) \propto r$

Dark matter forms a halo as it interacts weakly and is non-dissipative

relevant scales

 $M_{\rm halo} \sim 10^{12} \,\mathrm{M_{\odot}} \qquad R_{\rm halo} \sim 100 \,\mathrm{kpc}$

$$\langle v \rangle \sim \sqrt{\frac{GM_{\rm halo}}{R_{\rm halo}}} \sim 200 \, \rm km/s$$

Dark Matter Direct Detection

Scattering rate depends on the local dark matter number density and velocity distribution

Rate =
$$n_{\chi} \langle \sigma v_{\chi} \rangle$$

The Dark Matter Halo v1.0

Treat the dark matter as a collision-less fluid with phase space distribution

 $f(\mathbf{x}, \mathbf{p}, t)$

Ostriker, Peebles, and Yahil (1974); Bahcall and Soneira (1980); Caldwell and Ostriker (1981); Drukier, Freese, and Spergel (1986)

Simulated Galaxy Formation

Stellar Structure Evolution in the FIRE Simulation

Hopkins et al. (2015)

z=9.9

Video by Shea Garisson-Kimmel, http://www.tapir.caltech.edu/~sheagk/firemovies.html

10 kpc

Dark Matter Direct Detection

The Milky Way's merger history shapes the local dark matter distribution

Dark Matter Direct Detection

The Milky Way's merger history shapes the local dark matter distribution

History A could lead to higher scattering rates in experiments

How is the local dark matter distribution built up?

Strong tidal forces strip dark matter off an infalling satellite galaxy

Soon after infall, tidal debris is clustered in position and velocity

e.g., tidal stream

Via Lactea N-body Simulation (Dark Matter Only)

Dark Matter

Diemand et al. (2008)

Velocity substructure can survive after many orbital wraps

e.g., debris flow

ML and Spergel, Phys. Dark Univ. [1105.4166]; Kuhlen, ML, and Spergel, PRD [1202.0007]; ML, Spergel, and Madau, ApJ [1410.2243]

Via Lactea N-body Simulation (Dark Matter Only)

ML and Spergel, Phys. Dark Univ. [1105.4166]

Long after infall, tidal debris becomes fully phase mixed

e.g., virialized halo

Stars are also stripped from merging satellites

Visible tracers for the underlying dark matter

Stellar Tracers for Dark Matter

Simulations demonstrate that stars and dark matter from old mergers follow similar trajectories in a Galaxy

Herzog-Arbeitman, ML, Madau, and Necib, PRL [1704.04499]; Herzog-Arbeitman, ML, and Necib, JCAP [1708.03635]

The Gaia Mission

Gaia Collaboration [1804.09365]

Gaia is the follow-up astrometric survey to the Hipparcos mission (1989-1993)

Launched December 2013; second data release April 2018

Provides measurements for over a billion stars, ~1% of the Milky Way's stars

Milky Way Archaeology

Milky Way Archaeology

Metallicity

The average stellar metallicity of a satellite galaxy is correlated with its stellar mass

$$[\mathrm{Fe}/\mathrm{H}] = \log_{10} \left(\frac{N_{\mathrm{Fe}}}{N_{\mathrm{H}}}\right) - \log_{10} \left(\frac{N_{\mathrm{Fe}}}{N_{\mathrm{H}}}\right)_{\odot}$$

Link stars with similar chemical abundance to a parent satellite

Accreted Stars

Accreted stars are typically older than those born in the Milky Way disk

Their velocity and spatial distributions also differ from disk stars

Johnston et al. (1996), Helmi & White (1999), Bullock et al. (2001), Harding et al. (2001)

Accreted Stars

Accreted stars are typically older than those born in the Milky Way disk

Their velocity and spatial distributions also differ from disk stars

Johnston et al. (1996), Helmi & White (1999), Bullock et al. (2001), Harding et al. (2001)

The Local Neighborhood

The Gaia Sausage

Accreted stellar population is dominated by the debris of a single large merger

Belokurov et al. (2018); Deason et al. (2018); Myeong et al. (2018); Helmi et al. (2018); Lancaster et al. (2018)

Dark Matter, All Mixed Up

Necib, ML, and Belokurov [1807.02519]

Revisit assumptions about the dark matter distribution in light of new results from Gaia

Need to separate the following stellar populations:

Disk stars

Accreted stars

unrelated to dark matter

trace dark matter halo & substructure

SDSS-Gaia DR2 cross-match

Dark Matter, All Mixed Up

Necib, ML, and Belokurov [1807.02519]

Revisit assumptions about the dark matter distribution in light of new results from Gaia

Need to separate the following stellar populations:

Disk stars

Accreted stars

unrelated to dark matter

trace dark matter halo & substructure

SDSS-Gaia DR2 cross-match

Necib, ML, and Belokurov [1807.02519]

Necib, ML, and Belokurov [1807.02519]

Necib, ML, and Belokurov [1807.02519]

Necib, ML, and Belokurov [1807.02519]

SDSS-Gaia DR2 $r \in [7.5, 8.5] \text{ kpc}$ 6 6 |z| > 2.5 kpc $10^3 f(w) \, [\rm km/s]^{-1}$ Bimodal radial $10^3 f(v_{\theta}) \, [\mathrm{km/s}]$ velocities 220 0 -200200 400 -400-2000 200 400 -4000 $v_r \, [\mathrm{km/s}]$ $v_{\theta} \, [\rm km/s]$ Intermediate metallicity Data (old) Halo $\mathbf{6}$ $10 f([Fe/H]) [dex]^{-1}$ $10^3 f(v_{\phi}) \; [{\rm km/s}]^{-1}$ Subs Disk 4 2 20 0 -200200 400 -2-4000 -3 $^{-1}$ 0 $v_{\phi} \, [\mathrm{km/s}]$ [Fe/H] [dex] Age

Radial Velocity Distribution

Necib, ML, and Belokurov [1807.02519]

Radial lobes correspond to debris stripped from satellite as it moves towards/away from the Galactic Center

Halo and substructure exhibit no spatial features within region studied

Example Stellar Orbits

Necib, ML, and Belokurov [1807.02519]

Orbits of the disk, halo, and substructure stars look quite different

Not that 'Sub' of a Structure

Necib, ML, and Belokurov [1807.02519]

Substructure comprises approximately ~60% of the accreted stellar population

Dark Matter Implications

The Old Debris Flow

Stellar debris from older mergers tracks the dark matter very well

Okay to infer dark matter distribution from observed stellar debris flow

FIRE Simulation (m12i)

Necib, ML, Garisson-Kimmel, et al. (2018) in prep.

The Very Old Halo

The stellar halo traces the virialized dark matter halo ...rather miraculous given that this sums over *all* the early accretion events

Herzog-Arbeitman, ML, Madau, and Necib, PRL [1704.04499]

FIRE Simulation (m12i)

Necib, ML, Garisson-Kimmel, et al. (2018) in prep.

Putting it All Together

Putting it All Together

f_{h,s} are order-1 factors that account for different mass-to-light ratios of satellites

Putting it All Together

 $f_{h,s}$ are order-1 factors that account for different mass-to-light ratios of satellites

Direct Detection Implications

Necib, ML, and Belokurov [1807.02519]

Non-trivial fraction of the local dark matter distribution is in substructure, potentially reducing sensitive to low-mass dark matter

Interpolated distributions can be found at

https://linoush.github.io/DM_Velocity_Distribution/

Direct Detection Implications

Necib, ML, and Belokurov [1807.02519]

Non-trivial fraction of the local dark matter distribution is in substructure, potentially reducing sensitive to low-mass dark matter

The Dark Matter Halo v2.0

The Dark Matter Halo v2.0

Backup Slides

Direct Detection Implications

The Likelihood

Disk/Halo $p_d(O_i | \theta) = \mathcal{N}\left(\mathbf{v}_i | \boldsymbol{\mu}^d, \boldsymbol{\Sigma}_i^d\right) \mathcal{N}\left([\mathrm{Fe}/\mathrm{H}]_i | \boldsymbol{\mu}_{[\mathrm{Fe}/\mathrm{H}]}^d, \sigma_{[\mathrm{Fe}/\mathrm{H}],i}^d\right)$ Substructure $p_s(O_i | \theta) = \frac{1}{2} \left[\mathcal{N}\left(\mathbf{v}_i | \boldsymbol{\mu}^{\tilde{s}}, \boldsymbol{\Sigma}_i^s\right) + \mathcal{N}\left(\mathbf{v}_i | \boldsymbol{\mu}^s, \boldsymbol{\Sigma}_i^s\right) \right]$
 $\times \mathcal{N}\left([\mathrm{Fe}/\mathrm{H}]_i | \boldsymbol{\mu}_{[\mathrm{Fe}/\mathrm{H}]}^s, \sigma_{[\mathrm{Fe}/\mathrm{H}],i}^s\right)$

Total
$$p(\{O_i\} \mid \theta) = \prod_{i=1}^{N} \sum_{j=d,h,s} Q_j p_j (O_i \mid \theta)$$

The Young Tidal Stream

Dark matter and stars from recent accretion events may not be well-correlated

Care must be taken when inferring properties of dark matter streams from stellar observations

FIRE Simulation (m12f)

Necib, ML, Garisson-Kimmel, et al. (2018) in prep.

Model Residuals

The Disk Population

The Halo Population

The Substructure Population

Fractional Contribution

Chemical Abundance

Merging galaxies typically only experience a brief period of star formation

Their interstellar medium is dominated by explosions of core-collapse supernova, suppressing Fe abundances

Thermonuclear Supernova

Large amounts of Fe relative to α -elements Act on longer timescales

Core-collapse Supernova

Large amounts of α -elements relative to Fe Act on shorter timescales

Image: D. Hardy (astroart.org)

Image: Chandra

Debris Flow in Via Lactea

Radial-velocity substructure had already been observed in Via Lactea, a dark matter-only N-body simulation

'Painting' stars onto the dark matter particles in the simulation showed that the substructure was also present in the simulated stellar halo

ML and Spergel, Phys. Dark Univ. [1105.4166]

Kuhlen, ML, and Spergel, PRD [1202.0007]

Dark Matter Debris

ML, Spergel, and Madau, ApJ [1410.2243]

Stellar Debris